
Network Security

Chapter 2 Basics 2.1 Symmetric Cryptography

- Overview of Cryptographic Algorithms
- Attacking Cryptographic Algorithms
- Historical Approaches
- Foundations of Modern Cryptography
- Modes of Encryption
- Data Encryption Standard (DES)
- Advanced Encryption Standard (AES)

Cryptographic algorithms: outline

Cryptographic algorithms: overview

- During this course two main applications of cryptographic algorithms are of principal interest:
 - Encryption of data: transforms plaintext data into ciphertext in order to conceal its meaning
 - Signing of data: computes a check value or digital signature of a given plain- or ciphertext, that can be verified by some or all entities who are able to access the signed data
- □ Some cryptographic algorithms can be used for both purposes, some are only secure and / or efficient for one of them.
- Principal categories of cryptographic algorithms:
 - Symmetric cryptography using 1 key for en-/decryption or signing/checking
 - Asymmetric cryptography using 2 different keys for en-/decryption or signing/checking
 - Cryptographic hash functions using 0 keys (the "key" is not a separate input but "appended" to or "mixed" with the data).

Attacking cryptography (1): Cryptanalysis

- Cryptanalysis is the process of attempting to discover the plaintext and / or the key
- Types of cryptanalysis:
 - Ciphertext only: work on ciphertext only; hope that specific patterns of the plaintext have remained in the ciphertext (frequencies of letters, digraphs, etc.)
 - Known ciphertext / plaintext pairs
 - Chosen plaintext or chosen ciphertext
 - Newer developments: differential cryptanalysis, linear cryptanalysis
- Cryptanalysis of public key cryptography:
 - The fact that one key is publicly exposed may be exploited
 - Public key cryptanalysis is more aimed at breaking the cryptosystem itself and is closer to pure mathematical research than to classic cryptanalysis
 - Important directions:
 - Computation of discrete logarithms
 - Factorization of large integers

Attacking cryptography (2): brute force attack

- The brute force attack tries every possible key until it finds an intelligible plaintext:
 - Every cryptographic algorithm can in theory be attacked by brute force
 - On average, half of all possible keys will have to be tried

Average	Time Req	uired for	Exhaustive	Key Se	earch
				- J	

Key Size [bit]	Number of keys	Time required at 1 encryption / μs	Time required at 10 ⁶ encryption/μs			
32	$2^{32} = 4.3 * 10^9$	$2^{31} \mu s = 35.8 \text{minutes}$	2.15 milliseconds			
56	$2^{56} = 7.2 * 10^{16}$	$2^{55} \mu s = 1142 \text{ years}$	10.01 hours			
128	$2^{128} = 3.4 * 10^{38}$	$2^{127} \mu s = 5.4 * 10^{24} \text{ years}$	5.4 * 10 ¹⁸ years			

- 1 encryption / μs: 100 Clock cycles of a 100 MHz processor
- 10⁶ encryptions / μs: Clock cycles using 500 parallel 2GHz processors

Attacking cryptography (3): How large is large?

Reference Numbers Comparing Relative Magnitudes

Reference	Magnitude						
Seconds in a year	≈ 3 * 10 ⁷						
Seconds since creation of solar system	$\approx 2 * 10^{17}$						
Clock cycles per year (3 GHz computer)	≈ 1 * 10 ¹⁷						
Binary strings of length 64	$2^{64} \approx 1.8 * 10^{19}$						
Binary strings of length 128	$2^{128} \approx 3.4 * 10^{38}$						
Binary strings of length 256	$2^{256} \approx 1.2 * 10^{77}$						
Number of 75-digit prime numbers	$\approx 5.2 * 10^{72}$						
Electrons in the universe	$\approx 8.37 * 10^{77}$						

Classification of modern encryption algorithms

- □ The type of operations used for transforming plaintext to ciphertext:
 - Substitution, which maps each element in the plaintext (bit, letter, group of bits or letters) to another element
 - Transposition, which re-arranges elements in the plaintext
- □ The number of keys used:
 - Symmetric ciphers, which use the same key for en- / decryption
 - Asymmetric ciphers, which use different keys for en- / decryption
- □ The way in which the plaintext is processed:
 - Stream ciphers work on bit streams and encrypt one bit after another
 - Block ciphers work on blocks of width b with b depending on the specific algorithm.

Basic Kryptographic Principles

Substitution

Individual characters are exchanged by other characters

Types of substitution

- simple substitution: operates on single letters
- polygraphic substitution: operates on larger groups of letters
- monoalphabetic substitution: uses fixed substitution over the entire message
- polyalphabetic substitution: uses different substitutions at different sections of a message

Transposition

The position of individual characters changes (Permutation)

Transposition: scytale

- □ Known as early as 7th century BC
- □ Principle:
 - Wrap parchment strip over a wooden rod of a fixed diameter and write letters along the rod.
 - Unwrap a strip and "transmit"
 - To decrypt, wrap a received over a wooden rod of the same diameter and read off the text.

Example:

troops
headii
nthewe
stneed
moresu
pplies

thus predd opoah nrlod eeeis iedus
predd opoah nrlod eeeis iedus

Weakness:

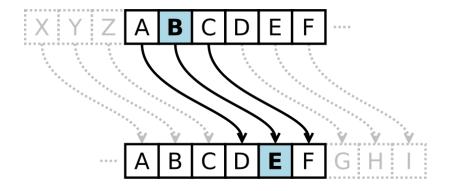
 Easy to break by finding a suitable matrix transposition.

Monoalphabetic substitution: Atbash

Jeremiah 25:25

And all the kings of the north, far and near, one with another, and all the kingdoms of the world, which are upon the face of the earth: and the king of Sheshach shall drink after them.

Atbash code: reversed Hebrew alphabet.

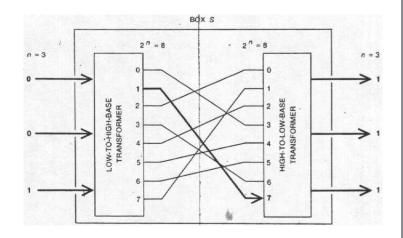

A Aleph	B Beth	G Gimel x	D <u>Daleth</u>	H He	WVFY <u>Waw</u> า	Z Zajin t	H Chet n	T Tet v	Jod ,	K <u>Kaph</u> יך	L <u>Lamed</u> ל	M <u>Mem</u> מם	N <u>Nun</u> נן	X <u>Samech</u> _D	O <u>Ajin</u> ע	P <u>Pe</u> ๆ จ	Z <u>Sade</u> ציץ	Q <u>Koph</u> P	R <u>Resch</u> า	S Sin	T Taw n
T <u>Taw</u> ת	S Sin v	R Resch	Q <u>Koph</u> ק	Z <u>Sade</u> ציץ	P <u>Pe</u> ๆ จ	O <u>Ajin</u> ע	X Samech	N <u>Nun</u> נן	M <u>Mem</u> מם	L <u>Lamed</u> ל	K <u>Kaph</u> יך	Jod ,	T Tet v	H Chet n	Z Zajin t	WVFY <u>Waw</u> า	H He	D <u>Daleth</u> ז	G Gimel	B Beth	A Aleph ×

Sheshach ⇒ לבב ⇔ כך שש ⇒ Babel

Monoalphabetic substitution: Caesar cipher

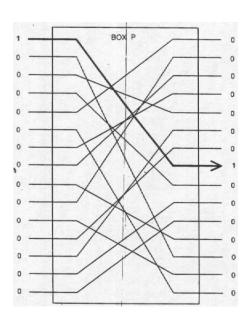
Caesar code: left shift of alphabet by 3 positions.

Example (letter of Cicero to Caesar):


MDEHV RSNQNRQNV PHDH XHVXNPRQNZP HABES OPINIONIS MEAE TESTIMONIUM

Weakness: a limited number of possible substitutions. Easy to break by brute force!

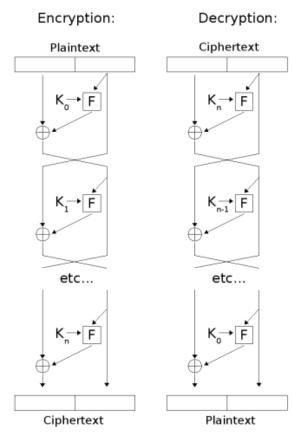
Modern cryptography: S and P-boxes


S-box:

- Block-wise substitution of binary digits.
- □ Resistant to attacks for sufficiently large block size; e.g. for n=128 it provides 2¹²⁸ possible mappings.

P-box:

- □ Block-wise **permutation** of binary digits.
- Realizes a simple transposition cipher with maximal entropy.
- Problem: straightforward attacks exist.


Feistel network: a product cipher of S and P-boxes

- A revival of the idea of a product cipher.
 - A product cipher is a combination of simple ciphers (e.g. S-box and P-box) to make the cipher more secure.
 - Rounds: This combination may be applied multiple times.
- Multiple rounds provide a cryptographically strong polyalphabetic substitution.
- Combination of substitution with transposition provides protection against specific attacks (frequency analysis).
- Follows the theoretical principles outlined by C. Shannon in 1949: combines "confusion" with "diffusion" to attain maximal entropy of a cipher text.
 - Confusion: cipher text statistics depend in a very complex way on plaintext statistics (approach: substitution in different rounds)
 - Diffusion: each digit in plaintext and in key influence many digits of cipher text (approach: many rounds with transposition)

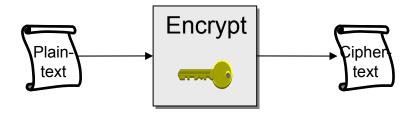
A practical Feistel cipher

- □ A multiple-round scheme with separate keys per round.
- □ Goal: Encrypt plaintext block $P = L_0 \mid R_0$
- □ Function f(K_i,R_{i-1}) is algorithm-specific, usually a combination of permutations and substitutions.
- □ Invertible via a reverse order of rounds.
- 3 rounds suffice to achieve a pseudorandom permutation.
- 4 rounds suffice to achieve a strong pseudorandom permutation (i.e. it remains pseudorandom to an attacker with an oracle access to its inverse permutation).
- □ A foundation for a large number of modern symmetric ciphers: DES, Lucifer, Blowfish, RC5, Twofish, etc.

Feistel Cipher

Important properties of encryption algorithms

Consider, a sender is encrypting plaintext messages P_1 , P_2 , ... to ciphertext messages C_1 , C_2 , ...

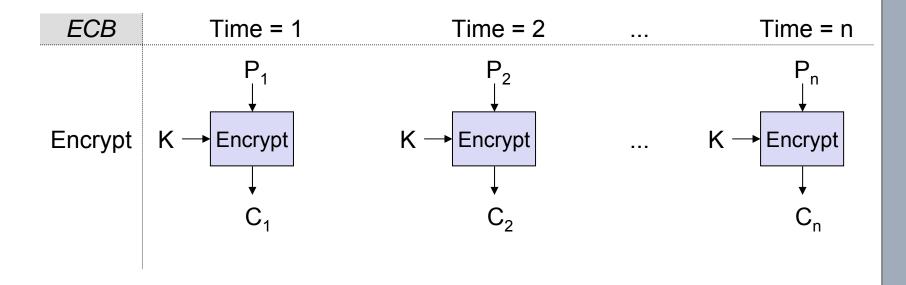

Then the following properties of the encryption algorithm are of special interest:

- □ *Error propagation* characterizes the effects of bit-errors during transmission of ciphertext on reconstructed plaintext P₁′, P₂′, ...
 - Depending on the encryption algorithm there may be one or more erroneous bits in the reconstructed plaintext per erroneous ciphertext bit
- Synchronization characterizes the effects of lost ciphertext data units on the reconstructed plaintext
 - Some encryption algorithms cannot recover from lost ciphertext and need therefore explicit re-synchronization in case of lost messages
 - Other algorithms do automatically re-synchronize after 0 to n (n depending on the algorithm) ciphertext bits

Symmetric Encryption

- General description:
 - The same key $K_{A,B}$ is used for enciphering and deciphering of messages:

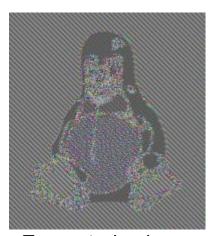
- Notation
 - If P denotes the plaintext message, $E(K_{A,B}, P)$ denotes the cipher text. The following holds: $D(K_{A,B}, E(K_{A,B}, P)) = P$
 - Alternatively we sometimes write $\{P\}_{K_{A,B}}$ or $E_{K_{A,B}}(P)$ for $E(K_{A,B}, P)$
- Symmetric encryption
 - $E_{K_{A,B}}$ is at least an injective, often a bijective function
 - $D_{K_{A,B}}$ is the inverse function of $E_{K_{A,B}}$: $D_{K_{A,B}} = (E_{K_{A,B}})^{-1}$
- Examples: DES, 3DES, AES, Twofish, RC4


Modes of Encryption

- Block ciphers operate on 128-256 bits. How can one encrypt longer messages? Answer:
 - A plaintext *p* is segmented in blocks *p*₁, *p*₂, ... each of length *b* or of length *j*<*b* when payload length is smaller or not a multiple of *b*. *b* denotes the block size of the encryption algorithm.
 - The ciphertext c is the combination of c_1 , c_2 , ... where c_i denotes the result of the encryption of the i^{th} block of the plaintext message
 - The entities encrypting and decrypting a message have agreed upon a key K.
- Modes where the plaintext is input to the block cipher. Examples:
 - Electronic Code Book Mode (ECB), Cipher Block Chaining Mode (CBC)
- Modes where the plaintext is XORed with the output of a block cipher
 - A pseudorandom stream of bits, called key stream is generated from the symmetric key K and a specific input per block,
 e.g. E(K,"Block 1"), E(K,"Block 2"), E(K,"Block 3"), ...
 - Examples
 - Output Feedback Mode (OFB), Counter Mode (CTR)


Symmetric Block Ciphers - Modes of Encryption - ECB (1)

- □ Electronic Code Book Mode (ECB):
 - Every block p_i of length b is encrypted independently: $c_i = E(K, p_i)$
 - A bit error in one ciphertext block c_i results in a completely wrongly recovered plaintext block p_i (subsequent blocks are not affected)
 - Loss of synchronization does not have any effect if integer multiples of the block size b are lost.
 If any other number of bits are lost, explicit re-synchronization is needed.
 - Drawback: identical plaintext blocks are encrypted to identical ciphertext!



Symmetric Block Ciphers - Modes of Encryption - ECB (2)

Original

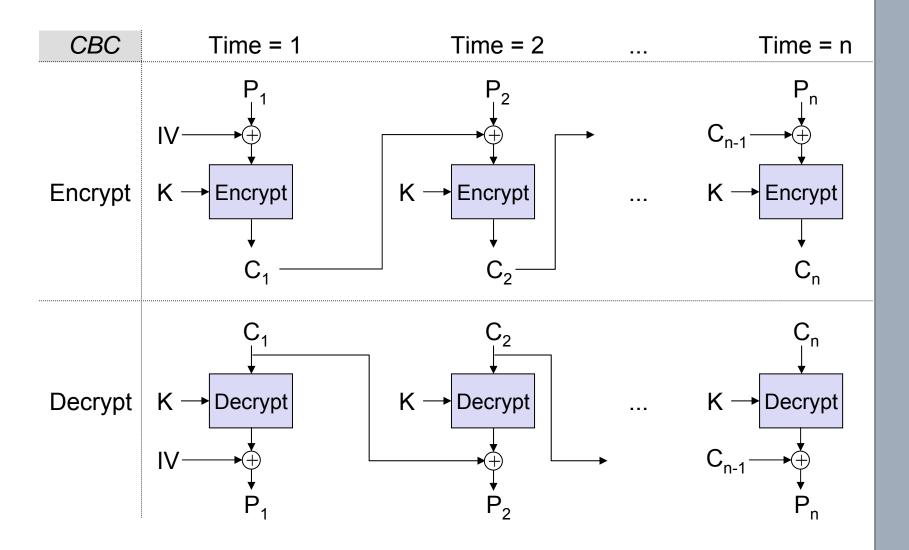
Encrypted using ECB mode

Encrypted using other modes

Source: http://www.wikipedia.org/

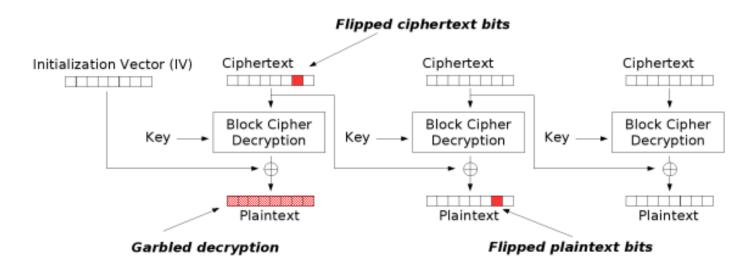
Symmetric Block Ciphers - Modes of Encryption — CBC (1)

□ Cipher Block Chaining Mode (CBC):


- Before encrypting a plaintext block p_i, it is XORed (⊕) with the preceding ciphertext block c_{i-1}:
 - $c_i = E(K, c_{i-1} \oplus p_i)$
 - $p_i' = c_{i-1} \oplus D(K, c_i)$
- Both parties agree on an *initial value* for *c_i* called *Initialization Vector* (*IV*)
 - $c_0 = IV$

□ Properties:

- Advantage: identical plaintext blocks are encrypted to non-identical ciphertext.
- Error propagation:
 - A distorted ciphertext block results in two distorted plaintext blocks, as p_i is computed using c_{i-1} and c_i
- Synchronisation:
 - If the number of lost bits is a multiple integer of b, one additional block p_{i+1} is misrepresented before synchronization is re-established. If any other number of bits are lost explicit re-synchronization is needed.
- Applicable for
 - Encryption
 - Integrity check: use last block of CBC as Message Authentication Code (MAC)

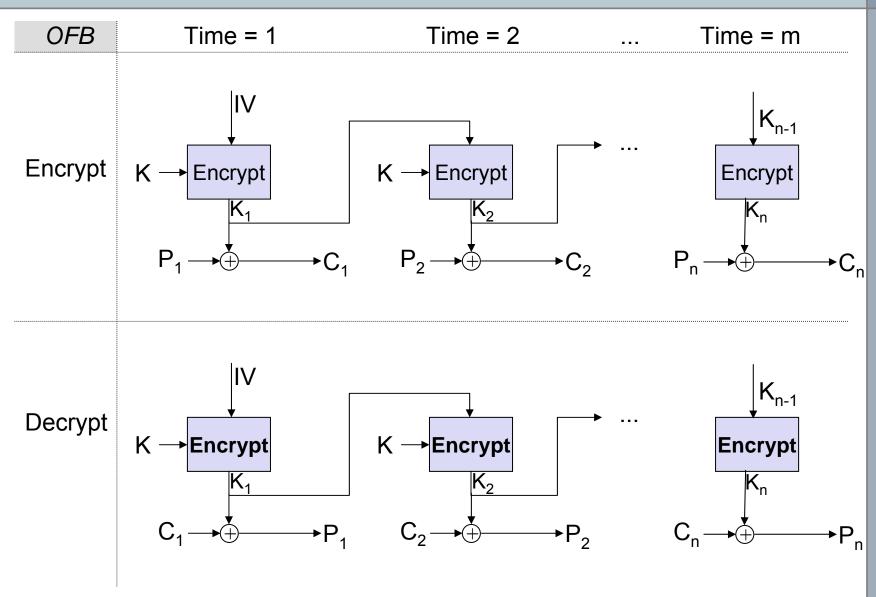

Symmetric Block Ciphers - Modes of Encryption - CBC (2)

CBC Error Propagation

 \Box A distorted ciphertext block results in two distorted plaintext blocks, as p_i is computed using c_{i-1} and c_i

Modification attack or transmission error for CBC

Source: http://www.wikipedia.org/



Symmetric Block Ciphers - Modes of Encryption - OFB (1)

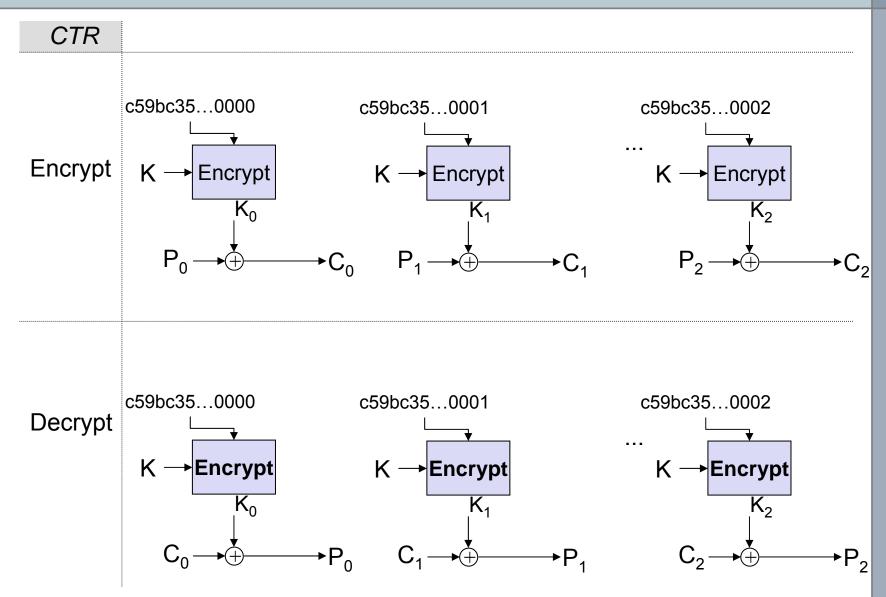
- □ Output Feedback Mode (OFB):
 - The block encryption algorithm is used to generate a key stream that depends only on K and IV
 - $K_0 = IV$
 - $K_i = E(K, K_{i-1})$
 - $C_i = P_i \oplus K_i$
 - The plaintext blocks are XORed with the pseudo-random sequence to obtain the ciphertext and vice versa

Symmetric Block Ciphers - Modes of Encryption - OFB (2)

Symmetric Block Ciphers - Modes of Encryption - OFB (3)

Properties of OFB:

- Error propagation:
 - Single bit errors result only in single bit errors ⇒ no error multiplication
- Synchronisation:
 - If some bits are lost explicit re-synchronization is needed
- Advantage:
 - The pseudo-random sequence can be pre-computed in order to keep the impact of encryption to the end-to-end delay low
- Drawbacks:
 - It is possible for an attacker to manipulate specific bits of the plaintext
 - → However, additional cryptographic means are can be used for message integrity


Symmetric Block Ciphers – Modes of Encryption - CTR (1)

□ Counter Mode (CTR)

- The block encryption algorithm is used to generate a key stream that depends on *K* and a counter function ctr_i.
- The counter function can be simply an increment modulo 2^w, where *w* is a convenient register width, e.g.
 - ctr_i = Nonce || i
- The counter function does not provide any security other than the uniqueness of the input to the block cipher function *E*
- The plaintext blocks are XORed with the pseudo-random sequence to obtain the ciphertext and vice versa
- Putting everything together:
 - $K_i = E(K, Nonce || i)$
 - $C_i = P_i \oplus K_i$

Symmetric Block Ciphers – Modes of Encryption - CTR (2)

Symmetric Block Ciphers – Modes of Encryption - CTR (3)

Properties of CTR:

- Error propagation:
 - Single bit errors result only in single bit errors ⇒ no error multiplication
- Synchronisation:
 - If some bits are lost explicit re-synchronization is needed.
- Advantage:
 - The key stream can be pre-computed in order to keep the impact of encryption to the end-to-end delay low.
 - The computation of the key stream can be parallelized.
- Drawbacks:
 - It is possible for an attacker to manipulate specific bits of the plaintext
 - → However, additional cryptographic means are required for message integrity