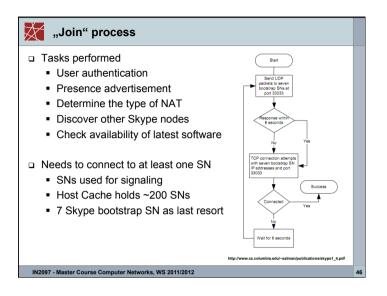


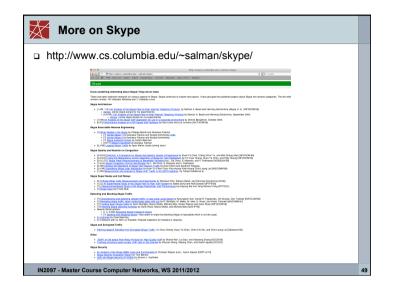
Skype

- Closed source P2P VoIP and IM Client
- Many techniques to make reverse engineering difficult
 - Code obfuscation
 - Payload obfuscation

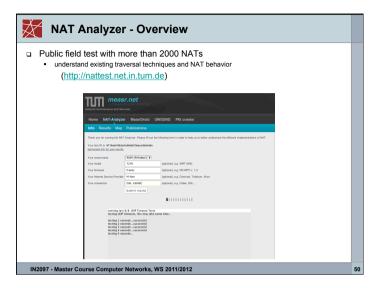
- Known to work in most environment
- Extensive use of NAT Traversal techniques
 - STUN
 - Hole Punching
 - Relaying
 - UPnP
 - Port Prediction

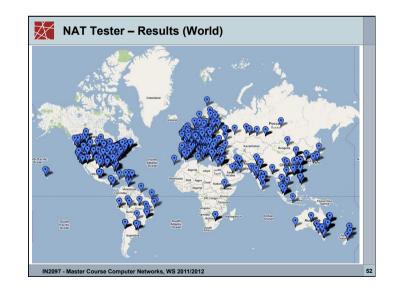


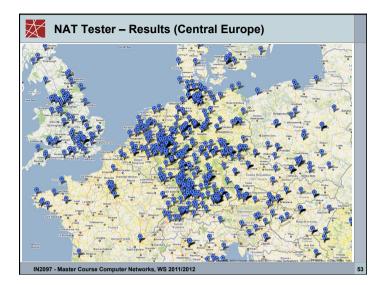
Ports


- Randomly chosen (configurable) TCP and UDP port for the Skype client
- Additionally: listen at port 80 and 443 if possible
 - If you become a SN (outgoing connections to 80/443 are usually possible)
- Skype SNs used as Rendezvous Points
 - SN acts as STUN like server to determine external mappings
 - Signaling and exchange of public endpoints for HP
 - Used as relays if necessary

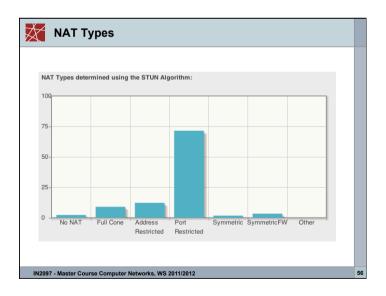
IN2097 - Master Course Computer Networks, WS 2011/2012

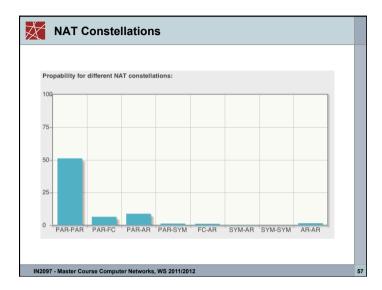

• Otherwise, no centralized NAT helper

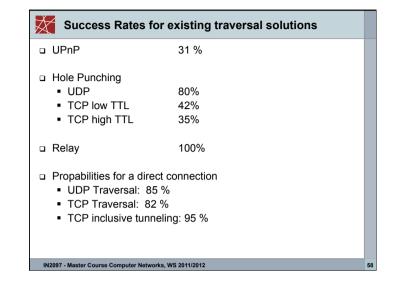



ur Not geht Skype Klink	en putzen und	Protocol	Info	1
probiert alle Ports in eine	m ganzen Bereich	UDP	Source port: 35416 Destination port: 38906	
us. Hier wird es auf Port	38901 fündig.	UDP	Source port: 35416 Destination port: 38907	
82 82 93 34	193 99 15 1	UDP	Source port: 35416 Destination port: 38893	
82.82.93.34	193.99.15.1	UDP	Source port: 35416 Destination port: 38894	
82.82.93.34	193, 99, 15, 1	UDP	Source port: 35416 Destination port: 38895	
82.82.93.34	193.99.15.1	UDP	Source port: 35416 Destination port: 38896	
82.82.93.34	193.99.15.1	UDP	Source port: 35416 Destination port: 38897	
82.82.93.34	193.99.15.1	UDP	Source port: 35416 Destination port: 38898	
82.82.93.34	193.99.15.1	UDP	Source port: 35416 Destination port: 38899	
82.82.93.34	193.99.15.1	UDP	Source port: 35416 Destination port: 38900	
82.82.93.34	193.99.15.1	UDP	Source port: 35416 Destination port: 38901	
82.82.93.34	193.99.15.1	UDP	Source port: 35416 Destination port: 38892	
82.176.176.212	82.82.93.34	TCP	39093 > 46757 [PSH, ACK] Seg=1263 Ack=1243 Win=161	
82.82.93.34	82.41.204.47	TCP	51472 > 49803 [PSH, ACK] Seq=55 Ack=3137 Win=5687	
82.82.93.34	82.176.176.212	TCP	46757 > 39093 [ACK] feq=1257 Ack=1338 Win=8656 Ler	
193.99.15.1	82.82.93.34	UDP	Source port: 38901 Destination port: 35416	
82.82.93.34	193.99.15.1	UDP	Source port: 35416 Destination port: 38901	
193.99.15.1	82.82.93.34	UDP	Source port: 38901 Destination port: 35416	-
193.99.15.1	82. 82. 93. 34	UDP	Source port: 38901 Destination port: 35416	•

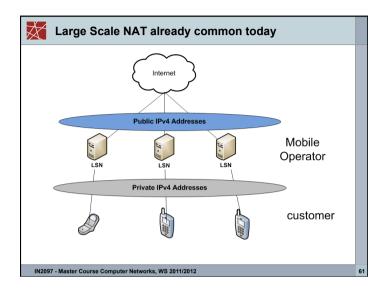
NAT Analyzer		
 Connectivity tests with NAT Type Mapping strategy Binding Strategy Hole Punching beha Timeouts 	a server at TUM vior using different techniques	
	measr.net - meassung the Internet. res and Services	
Example Home NA	T-Analyzer MeasrDroid UNISONO PKI crawler	
Result Info Resu	s Map Publications	
Your Results Here are the res STNN Yest UP Binding Y TCP Binding Y TCP Binding Y TCP Binding Y Sign ALG:	Port Address Restocied NAT Endpoint Independent mapping, port prediction is easy tie: Endpoint Independent mapping, port prediction is easy tie: Draphosint Independent mapping, port prediction is easy tie: prove stemar IP address was different from your local one (NAT), your external source ports were preserved on every commercion.	
IN2097 - Master Course Computer No		51

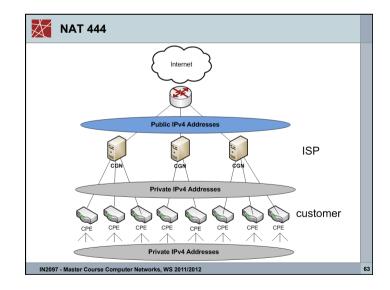


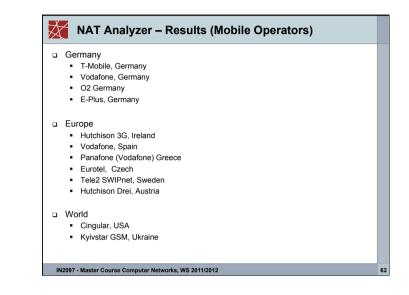



NAT Tester -	Results (Providers)	
Deutsche Telekom	186	
Alice	49	
Comcast (US)	47	
Arcor	40	
Freenet	40	
SBS (US)	34	
Kabel Deutschland	25	
Virgin Media (GB)	23	
China Telecom (CN)	20	
Road Runner (CA)	18	
IN2097 - Master Course Computer	Networks, WS 2011/2012	54

NAT Tester	– Results (Findings)	
Ranking NAT Rou	ter	
 Others 	30%	
 Linksys 	16%	
 Netgear 	10%	
 AVM 	7 %	
 D-Link 	7%	
 Dt. Telekom 	6%	
 Symmetric "NATs" China Iran Malaysia Israel 		
IN2097 - Master Course Comput	er Networks, WS 2011/2012	55





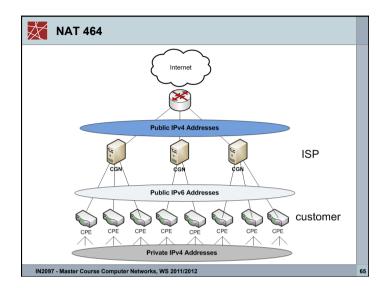

More and more devices connect to the	Internet
 PCs 	
 Cell phones 	
 Internet radios 	email WWW phone
 TVs 	
 Home appliances 	SMTP HTTP RTP
 Future: sensors, cars 	TCP UDP
	IP
With NAT, every NAT router needs an	
IPv4 address	ethernet PPP
	CSMA async sonet
□ \rightarrow ISPs run out of global IPv4	copper fiber radio
addresses	

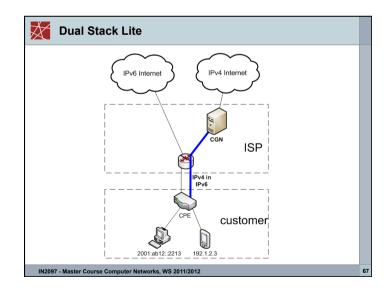
Å	Large Scale NAT (LSN)
	Facts
	 ISPs run out of global IPv4 addresses
	 Many hosts are IPv4 only
	 Not all content in the web is (and will be) accessible via IPv6 infact: < 5% of the Top 100 Websites (09/2011)
	Challenges for ISPs
	 access provisioning for new customers
	 allow customers to use their IPv4 only devices/CPEs
	 provide access to IPv4 content
	Approach: move public IPv4 addresses from customer to provider
	Large Scale NAT (LSN) / Carrier Grade NAT (CGN)
	at provider for translating addresses
IN	12097 - Master Course Computer Networks, WS 2011/2012

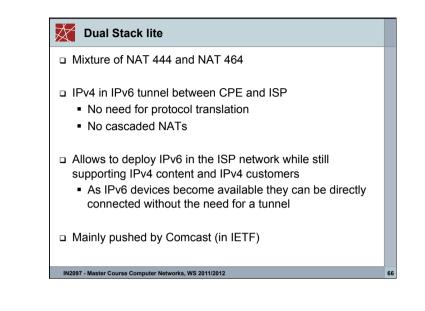
NAT 444

- Easiest way to support new customers
 - immediately available
 - no changes at CPEs (Customer Premises Equipment)

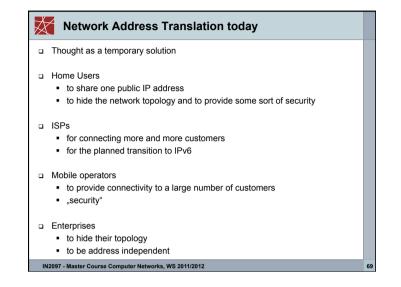
Problems:

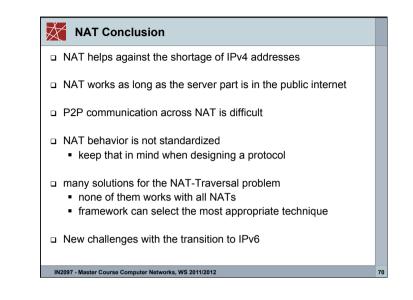

- Address overlap -> same private IP address on both sides
- Hairpinning necessary: firewalls on CPE may block incoming packets with a private source address

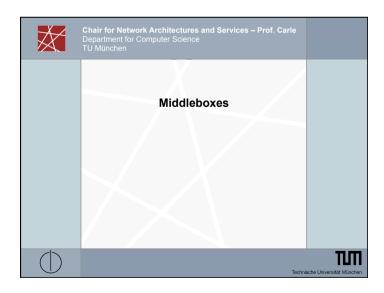

Solutions


- declare a range of public IP addresses as "ISP shared" and reuse it as addresses between CGN and CPE
- NAT 464: IPv6 between CPE and CGN

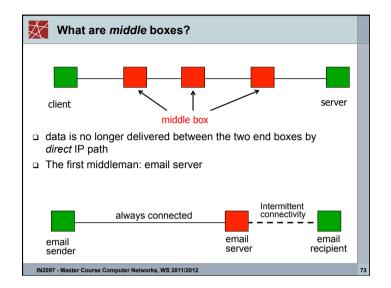
IN2097 - Master Course Computer Networks, WS 2011/2012


Problem: CPEs must implement NAT64

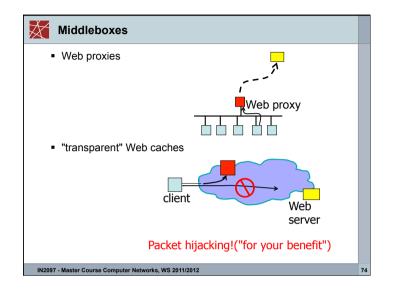




LSN - Challenges	
 Mainly: how to manage resources Ports (number of ports, allocation limit (time)) Addresses Bandwidth legal issues (logging) 	
 NAT behavior desired: first packet reserves a bin for the customer -> less logging effort IP address pooling: random vs. paired (same ext IP for internal host) Pairing between external and internal IP address 	
 Impacts of double NAT for users Blacklisting as done today (based on IPs) will be a problem No control of ISP NATs 	
 Possible Approaches Small static pool of ports in control of customer Needs configuration/reservation/security protocols 	
IN2097 - Master Course Computer Networks, WS 2011/2012	68


RFC 3234 - Middleboxes

IN2097 - Master Course Computer Networks, WS 2011/2012


The phrase "middlebox" was coined by Lixia Zhang as a graphic description of a recent phenomenon in the Internet.

Lixia Zhang, UCLA

Middleboxes Address Practical Challenges	
IP address depletion	
 Allowing multiple hosts to share a single address 	
Host mobility	
 Relaying traffic to a host in motion 	
Security concerns	
 Discarding suspicious or unwanted packets 	
 Detecting suspicious traffic 	
Performance concerns	
 Controlling how link bandwidth is allocated 	
 Storing popular content near the clients 	
IN2097 - Master Course Computer Networks, WS 2011/2012	75

- Deels into env	liestien leven beeden	
	blication layer headers	
	packets to a different server	
Proxy certain	request without being asked	
Rewrite reque	ests	
Result: unpre	dictable behaviour, inexplicable failures	
□ c.f. RFC 3234	4	

RFC 3234 - Middleboxes: Taxonomy and Issues

- A middlebox is defined as any intermediary device performing functions other than standard functions of an IP router on the datagram path between a source host and destination host.
- Standard IP router: transparent to IP packets
- End-to-end principle: asserts that some functions (such as security and reliability) can only be implemented completely and correctly end-to-end.
- Note: providing an incomplete version of such functions in the network can sometimes be a performance enhancement, but not a substitute for the end-to-end implementation of the function.

Concerns

IN2097 - Master Course Computer Networks, WS 2011/2012

IN2097 - Master Course Computer Networks, WS 2011/2012

- New middleboxes challenge old protocols. Protocols designed without consideration of middleboxes may fail, predictably or unpredictably, in the presence of middleboxes.
- Middleboxes introduce new failure modes; rerouting of IP packets around crashed routers is no longer the only case to consider. The fate of sessions involving crashed middleboxes must also be considered.
- □ **Configuration** is no longer limited to the two ends of a session; middleboxes may also require configuration and management.
- Diagnosis of failures and misconfigurations is more complex.

Properties

- Middleboxes may
 - Drop, insert or modify packets.
 - Terminate one IP packet flow and originate another.
 - Transform or divert an IP packet flow in some way.
- Middleboxes are never the ultimate end-system of an application session
- Examples
 - Network Address Translators
 - Firewalls
 - Traffic Shapers
 - Load Balancers

IN2097 - Master Course Computer Networks, WS 2011/2012

Middlebox Classification

IN2097 - Master Course Computer Networks, WS 2011/2012

- 1. Protocol layer (IP layer, transport layer, app layer, or mixture?)
- 2. Explicit (design feature of the protocol) or implicit (add-on not by the protocol design)
- 3. Single hop vs. multi-hop (can there be several middleboxes?)
- 4. In-line (executed on the datapath) vs. call-out (ancillary box)
- 5. Functional (required by application session) vs. optimising
- 6. Routing vs. processing (change packets or create side-effect)
- 7. Soft state (session may continue while middlebox rebuilds state) vs. hard state
- Failover (may a session be redirected to alternative box?) vs. restart

Specific Middleboxes

Packet classifiers

- classify packets flowing through them according to policy
- either select them for special treatment or mark them
- may alter the sequence of packet flow through subsequent hops, since they control the behaviour of traffic conditioners.
- {1 multi-layer, 2 implicit, 3 multihop, 4 in-line, 5 optimising, 6 processing, 7 soft, 8 failover or restart}
- □ IP Firewalls
 - Inspects IP and Transport headers
 - configured policies decide which packets are discarded, e.g.:
 - Disallows incoming traffic to certain port numbers
 - Disallows traffic to certain subnets
 - Does not alter forwarded packets
 - Not visible as protocol end-point

IN2097 - Master Course Computer Networks, WS 2011/2012

Middlebox Types according	to RFC 3234	
1. NAT,	12. gatekeepers /	
2. NAT-PT,	session control boxes,	
3. SOCKS gateway,	13. transcoders,	
4. IP tunnel endpoints,	14. (Web or SIP) proxies,	
5. packet classifiers, markers,	15. (Web) caches,	
schedulers,	16. modified DNS servers,	
6. transport relay,	17. content and applications	
7. TCP performance enhancing proxies	distribution boxes,	
8. load balancers that divert/munge	18. load balancers that	
packets,	divert/munge URLs,	
9. IP firewalls,	19. application-level	
10. application firewalls,	interceptors,	
11. application-level gateways	20. application-level	
	multicast,	
bold - act per packet	21. involuntary packet	
 do not modify application payload 	redirection,	
- do not insert additional packets	22. anonymizers.	
IN2097 - Master Course Computer Networks, WS 2011/2012		83

Specific Middleboxes

Proxies

- An intermediary program that acts as a client and server
- Makes requests on behalf of a client and then serves the result

Application Firewalls

- act as a protocol end point and relay (e.g., Web proxy); may
- (1) implement a "safe" subset of the protocol,
- (2) perform extensive protocol validity checks,
- (3) use implementation methodology for preventing bugs,
- (4) run in an insulated, "safe" environment, or
- (5) use combination of above

IN2097 - Master Course Computer Networks, WS 2011/2012

IN2097 - Master Course Computer Networks, WS 2011/2012

X Assessment of Middlebox Classification 1. Protocol layer (IP layer, transport layer, app layer, or mixture?) 2. Explicit (design feature of the protocol) or implicit 3. Single hop vs. multi-hop (can there be several middleboxes?) 4. In-line (executed on the datapath) vs. call-out (ancillary box) 5. Functional (required by application session) vs. optimising 6. Routing vs. processing (change packets or create side-effect) 7. Soft state (session may continue while rebuilding state) vs. hard state 8. Failover (may a session be redirected to alternative box?) vs. restart Of 22 classes of Middleboxes:
17 are application or multi-layer □ 16 are implicit □ 17 are multi-hop □ 21 are in-line; call-out is rare □ 18 are functional; pure optimisation is rare Routing & processing evenly split □ 16 have hard state □ 21 must restart session on failure

Assessment

- □ Although the rise of middleboxes has negative impact on the end to end principle at the packet level, it is still a desirable principle of applications protocol design.
- Future application protocols should be designed in recognition of the likely presence of middleboxes (e.g. network address translation, packet diversion, and packet level firewalls)
- □ Approaches for failure handling needed
 - soft state mechanisms
 - rapid failover or restart mechanisms
- Common features available to many applications needed
 - Middlebox discovery and monitoring
 - Middlebox configuration and control
 - Routing preferences
 - Failover and restart handling
- Security
 IN2097 Master Course Computer Networks, WS 2011/2012

			_
			_
			_
IN2097 - Master Co	urse Computer Networks, WS 2011/201	2	8