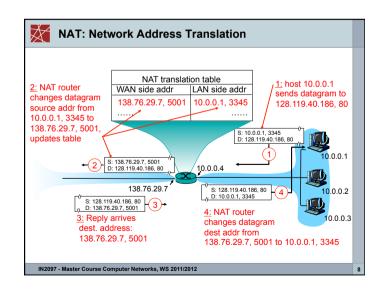

Authority (IANA)
 RFC 1918 (published in 1996) directs IANA to reserve the following IPv4 address ranges for private networks 10.0.0.0 - 10.255.255.255 172.16.0.0 - 172.31.255.255 192.168.0.0 - 192.168.255.255
 The addresses may be used and reused by everyone Not routed in the public Internet Therefore a mechanism for translating addresses is needed



- Idea: only hosts communicating with the public Internet need a public address
 - Once a host connects to the Internet we need to allocate one
 - · Communication inside the local network is not affected
- A small number of public addresses may be enough for a large number of private clients
- $\hfill\square$ Only a subset of the private hosts can connect at the same time
 - not realistic anymore (always on)
 - we still need more than one public IP address

NAT: Network Address Translation
Implementation: NAT router must:
 On outgoing datagrams: replace (source IP address, port #) of every outgoing datagram to (NAT IP address, new port #) remote clients/servers will respond using (NAT IP address, new port #) as destination addr.
 remember (in NAT translation table) every (source IP address, port #) to (NAT IP address, new port #) translation pair -> we have to maintain a state in the NAT
 incoming datagrams: replace (NAT IP address, new port #) in dest fields of every incoming datagram with corresponding (source IP address, port #) stored in NAT table

NAT: Network Address Translation

NAPT:

- ~65000 simultaneous connections with a single LAN-side address!
- helps against the IP shortage
- More advantages:
 - we can change addresses of devices in local network without notifying outside world
 - we can change ISP without changing local addresses
 - devices inside local net not explicitly addressable/visible by the outside world (a security plus)

NAT is controversal:

- routers should only process up to layer 3
- violates end-to-end argument

IN2097 - Master Course Computer Networks, WS 2011/2012

Binding

When creating a new state, the NAT has to assign a new source port and IP address to the connection

- Port binding describes the strategy a NAT uses for the assignment of a new external source port
 - Port Preservation (if possible)
 - Some algorithm (e.g. +1)

IN2097 - Master Course Computer Networks, WS 2011/2012

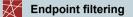
Random

NAT Behavior and Implementation

- Implementation not standardized
 - thought as a temporary solution
- implementation differs from model to model
 - if an application works with one NAT does not imply that is always works in a NATed environment
- NAT behavior
 - Binding (which external mapping is allocated)
 - NAT binding
 - · Port binding
 - Endpoint filtering (who is allowed to access the mapping)

IN2097 - Master Course Computer Networks, WS 2011/2012

NAT binding

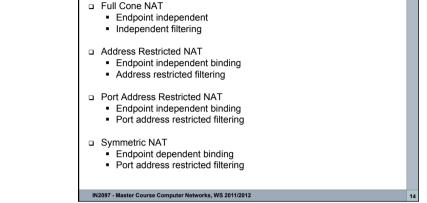

- NAT binding describes the behavior of the NAT regarding the reuse of an existing binding
 - two consecutive connections from the same transport address (combination of IP address and port)
 - 2 different bindings?
 - If the binding is the same → Port prediction possible

Endpoint Independent

- the external port is only dependent on the source transport address
- both connections have the same IP address and port

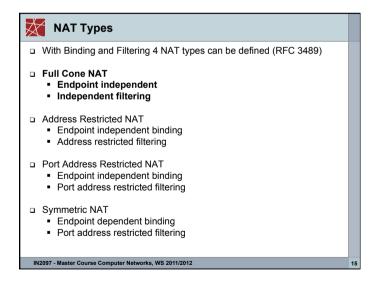
Endpoint Dependent

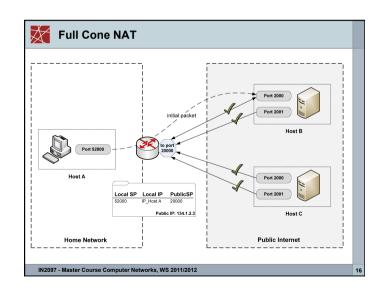
- a new port is assigned for every connection
- strategy could be random, but also something more predictable
- Port prediction is hard

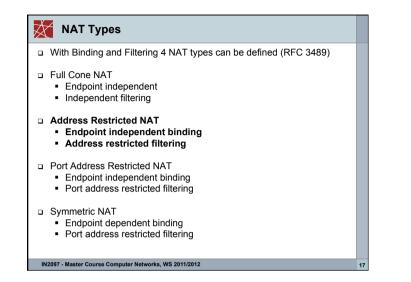


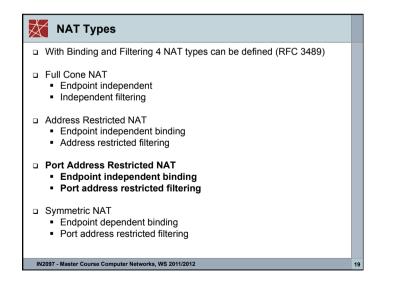
Filtering describes

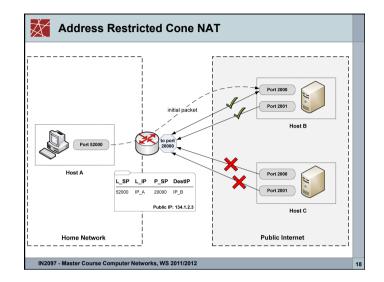
- how existing mappings can be used by external hosts
- How a NAT handles incoming connections
- Independent-Filtering:
 - All inbound connections are allowed
 - Independent on source address
 - · As long as a packet matches a state it is forwarded
 - No security
- Address Restricted Filtering:
 - packets coming from the same host (matching IP-Address) the initial packet was sent to are forwarded

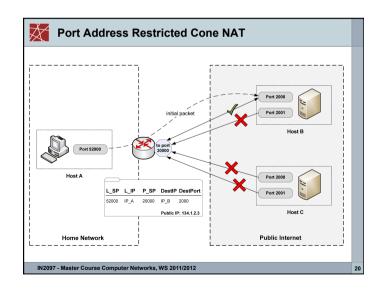

13

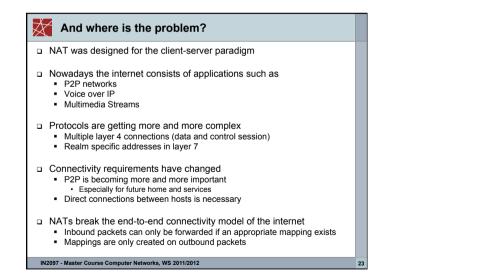

- Address and Port Restricted Filtering:
 - IP address and port must match
- IN2097 Master Course Computer Networks, WS 2011/2012

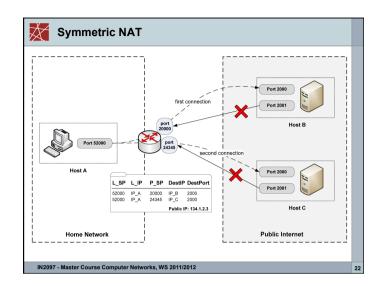


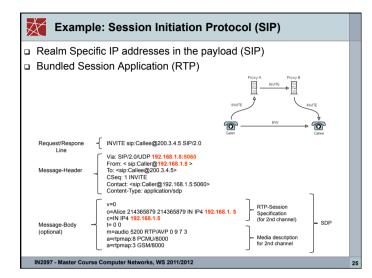

□ With Binding and Filtering 4 NAT types can be defined (RFC 3489)

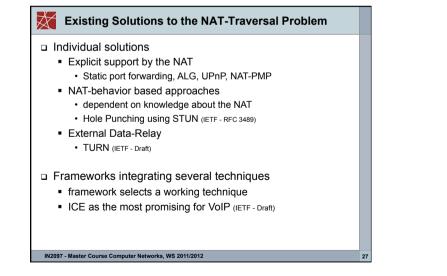

NAT Types

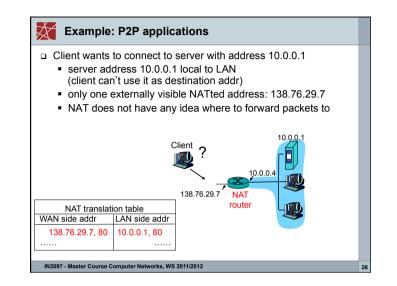






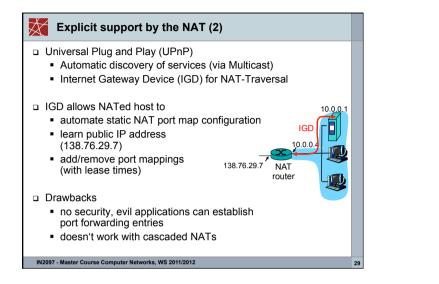


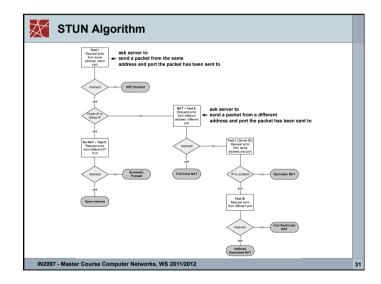

_ X /				
717			I Decki	-
<i>L X</i>	INAI-	Fraversa	I PIOD	еш
\sim				

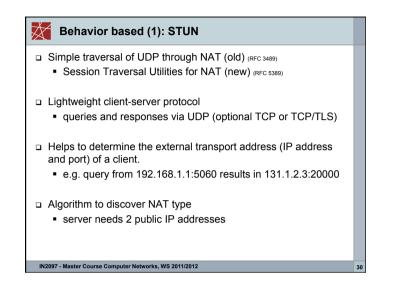

Divided into four categories: (derived from IETF-RFC 3027)

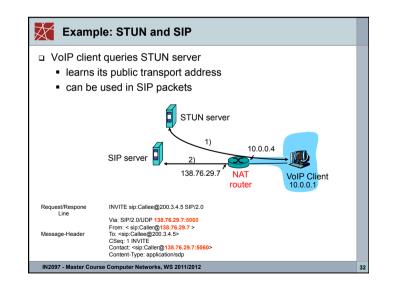
- Realm-Specific IP-Addresses in the Payload
 - Session Initiation Protocol (SIP)
- Peer-to-Peer Applications
 - Any service behind a NAT
- Bundled Session Applications (Inband Signaling)
- FTP
- Real time streaming protocol (RTSP)
- SIP together with SDP (Session Description Protocol)
- Unsupported Protocols

- SCTP (Stream Control Transmission Protocol)
- IPSec



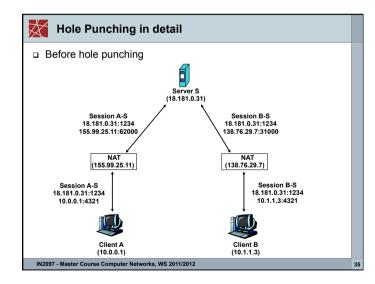


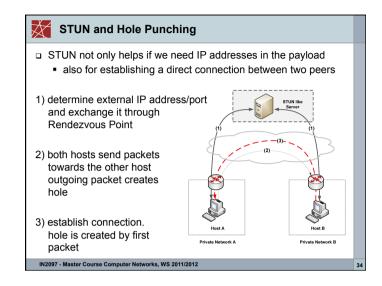

);	' /					
7	\mathbf{x}	Evolici	t support	hv tha	ΝΔΤ (1)	۱.
7~	1	LAPIICI	ι σαρροπ	. Dy life		,

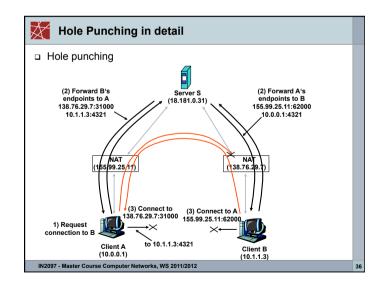

- Application Layer Gateway (ALG)
 - implemented on the NAT device and operates on layer 7
 - supports Layer 7 protocols that carry realm specific addresses in their payload
 SIP, FTP
- Advantages
 - transparent for the application
 - no configuration necessary

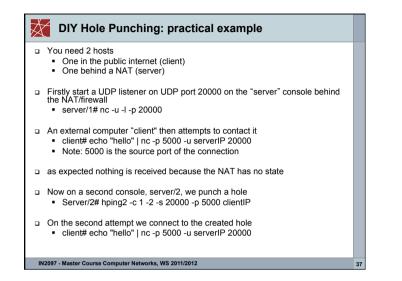
- Drawbacks
 - protocol dependent (e.g. ALG for SIP, ALG for FTP...)
 - may or may not be available on the NAT device

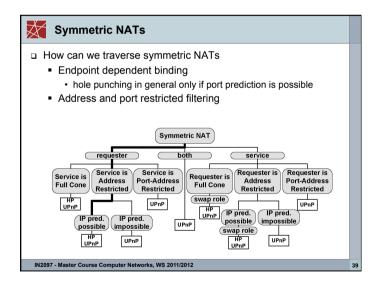
Limitations of STUN

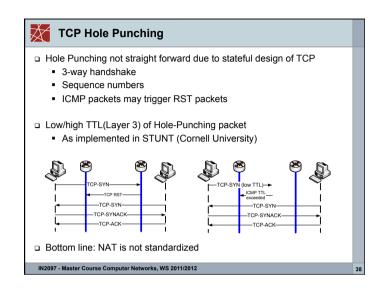

STUN only works if

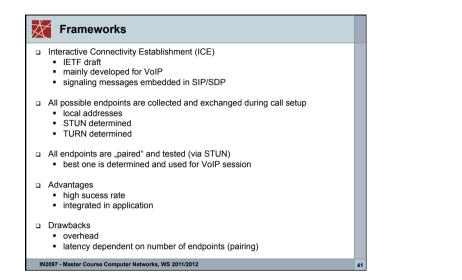

- the NAT assigns the external port (and IP address) only based on the source transport address
- Endpoint independent NAT binding
 - Full Cone NAT
 - Address Restricted Cone NAT
 - Port Address restricted cone NAT
- Not with symmetric NAT!


□ Why?


- Since we first query the STUN server (different IP and port) and then the actual server
- The external endpoint must only be dependent on the source transport address


33





 relaying (used in Skype) NATed client establishes cor External client connects to re relay bridges packets betwee Traversal using Relay NAT (1) 	elay en to connections
2. connection to relay initiated by client Client 3. relaying established	1. connection to relay initiated by NATted host 138.76.29.7 NAT router

