

MPLS TTL Processing	
c.f. RFC 3032 - MPLS Label Stack Encoding	
 "outgoing TTL" of a labeled packet is either a) one less than the incoming TTL, or b) zero. 	
 Packets with TTL=0 are discarded 	
IP-dependent rules	
 When an IP packet is first labeled, the TTL field of the label stack is set to the value of the IP TTL field. 	
 If the IP TTL field needs to be decremented, as part of the IP processing, it is assumed that this has already been done. 	
 When a label is popped, and the resulting label stack is empty, then the value of the IP TTL field SHOULD BE replaced with the outgoing MPLS TTL value. 	
 A network administration may prefer to decrement the IPv4 TTL by one as it traverses an MPLS domain. 	

IN2097 - Master Course Computer Networks, WS 2011/2012

ісмр

- When a router receives an IP datagram that it can't forward, it sends an ICMP message to the datagram's originator
- The ICMP message indicates why the datagram couldn't be delivered
 - E.g., Time Expired, Destination Unreachable

IN2097 - Master Course Computer Networks, WS 2011/2012

- The ICMP message also contains the IP header and at least leading 8 octets of the original datagram
 - RFC 1812 Requirements for IP Version 4 Routers extends this to "as many bytes as possible"
 - Historically, every ICMP error message has included the Internet header and at least
 - Including only the first 8 data bytes of the datagram that triggered the error is no longer adequate, due to use e.g. of IP-in-IP tunneling

ICMP in presence of MPLS

- When an LSR receives an MPLS encapsulated datagram that it can't deliver
 - It removes entire MPLS labels stack
 - It sends an ICMP message to datagram's originator
- □ The ICMP message indicates why the datagram couldn' t be delivered (e.g., time expired, destination unreachable)
- The ICMP message also contains the IP header and leading 8 octets of the original datagram
 - RFC 1812 extends this to "as many bytes as possible"

ICMP in Presence of MPLS

IN2097 - Master Course Computer Networks, WS 2011/2012

Issue

ICMP Destination Unreachable

IN2097 - Master Course Computer Networks, WS 2011/2012

- Message contains IP header of original datagram
- Router sending ICMP message has an IP route to the original datagram's destination
- Original datagram couldn't be delivered because MPLS forwarding path was broken
- ICMP Time Expired
 - Message contains IP header of original datagram
 - TTL value in IP header is greater than 1
 - TTL expired on MPLS header. ICMP Message contains IP header of original datagram

ICMP in Presence of MPLS

Issue

- The ICMP message contains no information regarding the MPLS stack that encapsulated the datagram when it arrived at the LSR
- □ This is a significant omission because:
 - The LSR tried to forward the datagram based upon that label stack
 - Resulting ICMP message may be confusing

Why?

IN2097 - Master Course Computer Networks, WS 2011/2012

ICMP with MPLS

- c.f. RFC 4950 ICMP Extensions for Multiprotocol Label Switching
- defines an ICMP extension object that permits an LSR to append MPLS information to ICMP messages.
- ICMP messages include the MPLS label stack, as it arrived at the router that is sending the ICMP message.
- □ equally applicable to ICMPv4 [RFC792] and ICMPv6 [RFC4443]
- sample output from an enhanced TRACEROUTE: > traceroute 192.0.2.1
 - traceroute to 192.0.2.1 (192.0.2.1), 30 hops max, 40 byte packets
 - 1 192.0.2.13 (192.0.2.13) 0.661 ms 0.618 ms 0.579 ms 2 192.0.2.9 (192.0.2.9) 0.861 ms 0.718 ms 0.679 ms
 - MPLS Label=100048 Exp=0 TTL=1 S=1
 - 3 192.0.2.5 (192.0.2.5) 0.822 ms 0.731 ms 0.708 ms MPLS Label=100016 Exp=0 TTL=1 S=1
 - 4 192.0.2.1 (192.0.2.1) 0.961 ms 8.676 ms 0.875 ms

IN2097 - Master Course Computer Networks, WS 2011/2012

MPLS for Linux	
# The work of James Leu:	
https://sourceforge.net/projects/mpls-linux/	
Discussions:	
http://sourceforge.net/mailarchive/forum.php?forum_name=mpls-linux-devel	
# Bug fixes of Jorge Boncompte:	
http://mpls-linux.git.sourceforge.net/git/gitweb.cgi?p=mpls-linux/net- next;a=shortlog;h=refs/heads/net-next-mpls	
# Additional bug fixes by Igor Maravić:	
https://github.com/i-maravic/MPLS-Linux	
https://github.com/i-maravic/iproute2	
# MPLS for Linux Labs	
by Irina Dumitrascu and Adrian Popa: graduation project with purpose of teaching MPLS to university students, at Limburg Catholic University College	
http://ontwerpen1.khlim.be/~Irutten/cursussen/comm2/mpls-linux-docs/	
inlcudes e.g. Layer 2 VPN with MPLS, Layer 3 VPN with MPLS	
IN2097 - Master Course Computer Networks, WS 2011/2012	15

X	VPNs: Why?
	Privacy

- Security
- Works well with mobility (looks like you are always at home)
- Cost
 - many forms of newer VPNs are cheaper than leased line VPNs
 - ability to share at lower layers even though logically separate means lower cost
 - exploit multiple paths, redundancy, fault-recovery in lower layers
 - need isolation mechanisms to ensure resources shared appropriately
- Abstraction and manageability

IN2097 - Master Course Computer Networks, WS 2011/2012

 all machines with addresses that are "in" are trusted no matter where they are

Variants of VPNs	
Leased-line VPN	
 configuration costs and maintenance by service provider: long time to set up, manpower 	
CPE-based VPN	
 expertise by customer to acquire, configure, manage VPN 	
Network-based VPN	
 Customer routers connect to service provider routers 	
 Service provider routers maintain separate (independent) IP contexts for each VPN 	
 sites can use private addressing 	
 traffic from one VPN cannot be injected into another 	

IN2097 - Master Course Computer Networks, WS 2011/2012

Questions

- Why is circuit switching expensive?
- □ Why is packet switching cheap?
- Is best effort packet switching able to carry voice communication?
- □ What happens if we introduce "better than best effort" service?
- How can we charge fairly for Internet services: by time, by volume, or flat?
- □ Who owns the Internet?

IN2097 - Master Course Computer Networks, WS 2011/2012

- □ You' ve invented a new protocol. What do you do?
- How does the Internet grow? Exponentially? What is the growth perspective?

7

Å	Introduction What is a Packet Switch?	
	Basic Architectural Components of an IP Router Example Packet Switches	
IN	2097 - Master Course Computer Networks, WS 2011/2012 3	¹ 31

IP Router

 Lookup packet destination address in forwarding table. If known, forward to correct port. If unknown, drop packet. Decrement TTL, update header checksum. Forward packet to outgoing interface. 	
Transmit packet onto link.	
Jorg Liebeherr, 2005 IN2097 - Master Course Computer Networks, WS 2011/2012	ECE 1545 ₃₆

ATM Switch

- Look up VCI/VPI of cell in VC table.
- □ Replace old VCI/VPI with new.
- □ Forward cell to outgoing interface.

© Jörg Liebeherr, 2005 IN2097 - Master Course Computer Networks, WS 2011/2012

Transmit cell onto link.

ECE 154537

