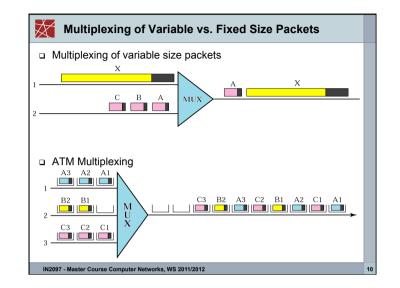
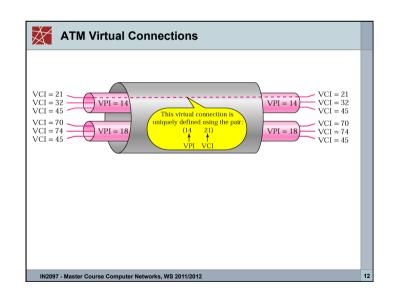
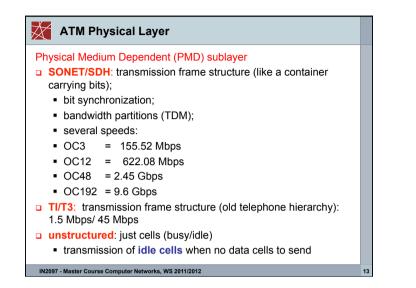
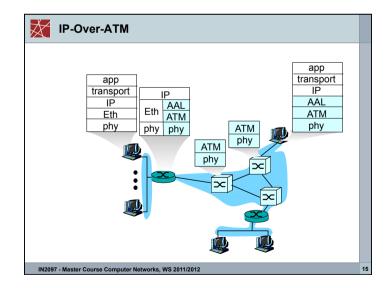
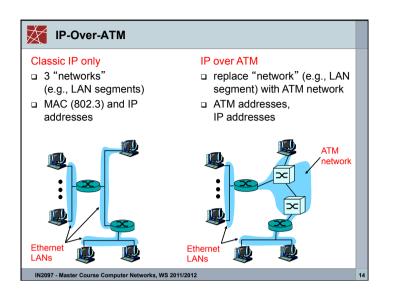

	Layer					
 analogou very diffe 	us to IP net erent servic	s across AT work layer ses than IP r Service (Qo	netwo	rk layei		
Network	Network Service Guarantees ? Congestic				Congestion	
Architecture	Model	Bandwidth	Loss	Order	Timing	feedback
Internet	best effort	none	no	no	no	no (inferred via loss)
ATM	CBR	constant rate	yes	yes	yes	no congestion
ATM	VBR	guaranteed rate	yes	yes	yes	no congestion
ATM	ABR	guaranteed minimum	no	yes	no	yes
ATM	UBR	none	no	yes	no	no
IN2097 - Master C	ourse Computer N	etworks, WS 2011/20	012			

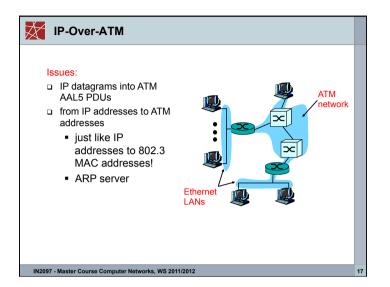

 48-byte payload (Why?) small payload ⇒ short cell-creation delay for digitized voic halfway between 32 and 64 (compromise!) Cell header 40 bits vci PT vci PT Cell format Cell Header	 small payload ⇒ short 	cell-creation delay for digitized voice
halfway between 32 and 64 (compromise!) Cell header	. ,	
40 bits Cell header va pr r	 halfwav between 32 an 	, ,
	,	· · · /
Cell Format Cell Header ATM Cell Payload - 48 bytes	va	PT L HEC
Cell format Cell Header ATM Cell Payload - 48 bytes		
	ell format Cell Header	ATM Cell Payload - 48 bytes


ATM VCs Advantages of ATM VC approach: QoS performance guarantee for connection mapped to VC (bandwidth, delay, delay jitter) Drawbacks of ATM VC approach: Inefficient support of datagram traffic one PVC between each source/destination pair does not scale SVC introduces call setup latency, processing overhead for short lived connections

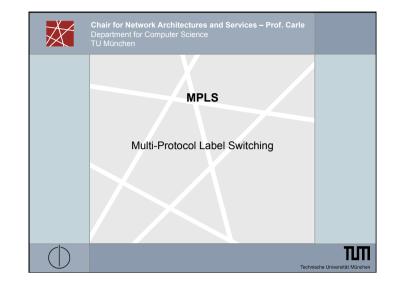




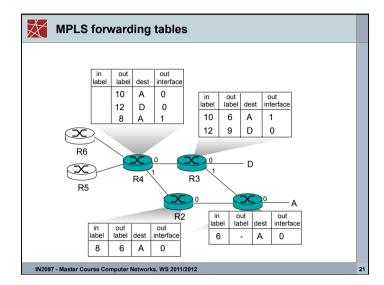


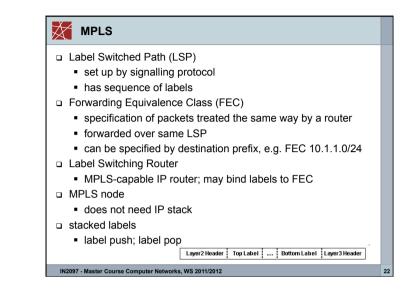

Datagram Journey in IP-over-ATM Network

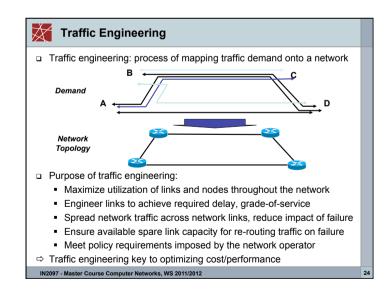
at Source Host:

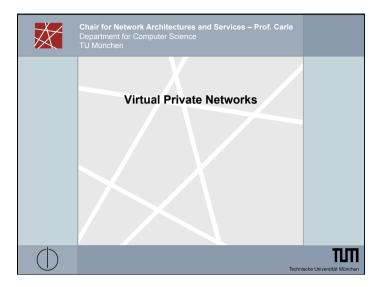

- IP layer maps between IP, ATM destination address (using ARP)
- passes datagram to AAL5

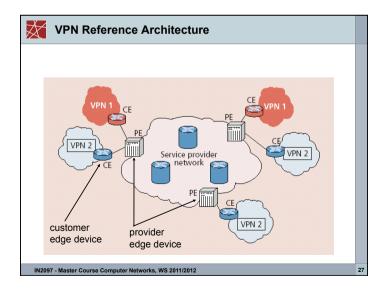
IN2097 - Master Course Computer Networks, WS 2011/2012

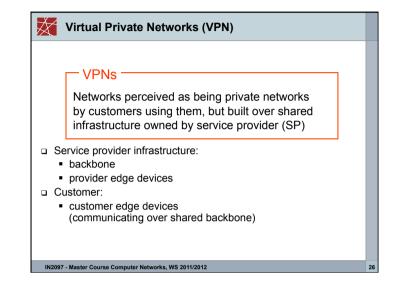

- AAL5 encapsulates data, segments cells, passes to ATM layer
- ATM network: moves cell along VC to destination
- □ at Destination Host:
 - AAL5 reassembles cells into original datagram
 - if CRC OK, datagram is passed to IP

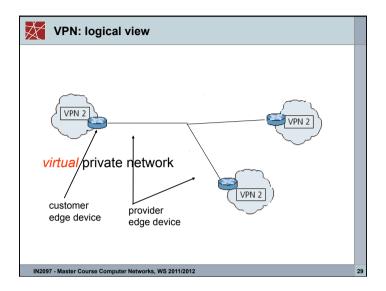

Multiprotocol label switching (MPLS)	
 Initial goal: speed up IP forwarding by using fixed length label (instead of IP address) to do forwarding borrowing ideas from Virtual Circuit (VC) approach IP datagram still keeps IP address RFC 3032 defines MPLS header Label: has role of Virtual Circuit Identifier Exp: experimental usage, may specify Class of Service (CoS) S: Bottom of Stack - end of series of stacked headers TTL: time to live 	
PPP or Ethernet MPLS header IP header remainder of link-layer frame	I
label Exp. S TTL	
20 3 1 5 bit IN2097 - Master Course Computer Networks, WS 2011/2012	

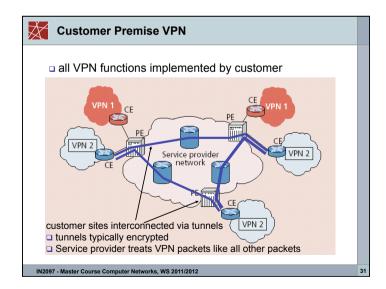


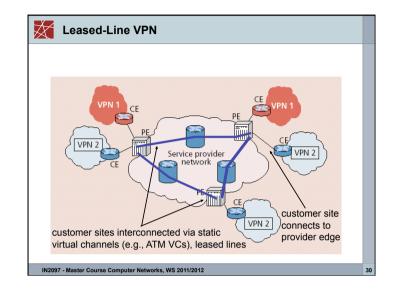

a.k.a. label-switched router
forwards packets to outgoing interface based only on label val (don't inspect IP address)
 MPLS forwarding table distinct from IP forwarding tables
signaling protocol needed to set up forwarding
Label Distribution Protocol LDP
(RFC 3036 \rightarrow obsoleted by RFC 5036)
 RSVP-TE (RFC 3209
→ updated by RFCs 3936, 4420, 4874, 5151, 5420, 5711
forwarding possible along paths that IP alone would not allow
(e.g., source-specific routing)
MPLS supports traffic engineering
must co-exist with IP-only routers



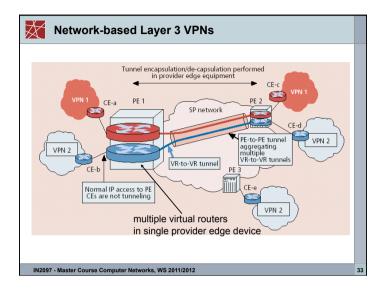

Benefits of MPLS	
High Speed Switching	
 facilitates construction of nodes with wire-line speed 	
Simplifying packet forwarding	
Routing decision can be limited to edge of AS	
Traffic Engineering	
 MPLS may control paths taken by different flows, 	
e.g. to avoid congestion points for certain flows	
Quality of Service (QoS) support	
 resources may be specified for specific flows, 	
isolation among flows	
Network scalability	
 label stacking allows to arrange MPLS domains in a 	
hierarchy	
Supporting VPNs	
 tunneling of packets from an ingress point to an egress point 	
IN2097 - Master Course Computer Networks, WS 2011/2012	23

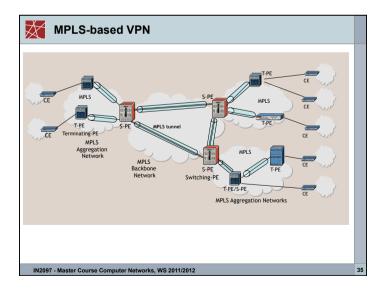


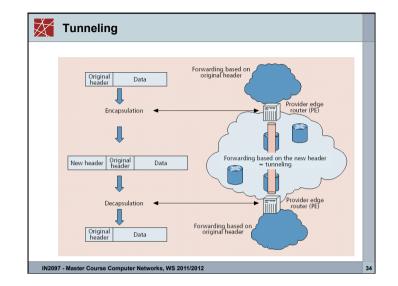



Y 4		
\mathbf{X}	VDNa · W/	
(X 🗆	VPNs: WI	
\times		

- Privacy
- Security
- Works well with mobility (looks like you are always at home)
- Cost
 - many forms of newer VPNs are cheaper than leased line VPNs
 - ability to share at lower layers even though logically separate means lower cost
 - exploit multiple paths, redundancy, fault-recovery in lower layers
 - need isolation mechanisms to ensure resources shared appropriately
- Abstraction and manageability
 - all machines with addresses that are "in" are trusted no matter where they are


```
IN2097 - Master Course Computer Networks, WS 2011/2012
```





	Leased-line VPN
	 configuration costs and maintenance by service provider: long time to set up, manpower
	CPE-based VPN
	 expertise by customer to acquire, configure, manage VPN
	Network-based VPN
	 Customer routers connect to service provider routers
	 Service provider routers maintain separate (independent) IF contexts for each VPN
	 sites can use private addressing
	 traffic from one VPN cannot be injected into another
11	V2097 - Master Course Computer Networks, WS 2011/2012

