

Master Course Computer Networks IN2097

Prof. Dr.-Ing. Georg Carle Christian Grothoff, Ph.D.

Chair for Network Architectures and Services Institut für Informatik Technische Universität München http://www.net.in.tum.de

Project feedback

- □ Internet Structure
- Network virtualisation

Network Architectures

Link virtualization: ATM, MPLS

ATM Adaptation Layer (AAL) [more]

Different versions of AAL layers, depending on ATM service class:
AAL1: for CBR (Constant Bit Rate) services, e.g. circuit emulation
AAL2: for VBR (Variable Bit Rate) services, e.g., MPEG video
AAL5: for data (e.g., IP datagrams)

Service: transport cells across ATM network

- □ analogous to IP network layer
- very different services than IP network layer
- □ possible Quality of Service (QoS) Guarantees

	Network chitecture	Service Model	Guarantees ?				Concestion	
Ar			Bandwidth	Loss	Order	Timing	feedback	
	Internet	best effort	none	no	no	no	no (inferred via loss)	
	ATM	CBR	constant rate	yes	yes	yes	no congestion	
	ATM	VBR	guaranteed rate	yes	yes	yes	no congestion	
	ATM	ABR	guaranteed minimum	no	yes	no	yes	
	ATM	UBR	none	no	yes	no	no	
	IN2097 - Master Course Computer Networks, WS 2011/2012							

5

- □ Advantages of ATM VC approach:
 - QoS performance guarantee for connection mapped to VC (bandwidth, delay, delay jitter)
- Drawbacks of ATM VC approach:
 - Inefficient support of datagram traffic
 - one PVC between each source/destination pair does not scale
 - SVC introduces call setup latency, processing overhead for short lived connections

- □ 5-byte ATM cell header
- □ 48-byte payload (Why?)
 - small payload \Rightarrow short cell-creation delay for digitized voice
 - halfway between 32 and 64 (compromise!)

- VCI: virtual channel ID
 - may change from link to link through network
- **PT:** Payload type: RM (resource management) vs. data cell
- **CLP:** Cell Loss Priority bit
 - CLP = 1 implies low priority cell, can be discarded if congestion
- HEC: Header Error Checksum
 - cyclic redundancy check

□ ATM Cell

Virtual Path Identifiers and Virtual Channel Identifiers

IN2097 - Master Course Computer Networks, WS 2011/2012

Physical Medium Dependent (PMD) sublayer

- SONET/SDH: transmission frame structure (like a container carrying bits);
 - bit synchronization;
 - bandwidth partitions (TDM);
 - several speeds:
 - OC3 = 155.52 Mbps
 - OC12 = 622.08 Mbps
 - OC48 = 2.45 Gbps
 - OC192 = 9.6 Gbps
- TI/T3: transmission frame structure (old telephone hierarchy):
 1.5 Mbps/ 45 Mbps
- unstructured: just cells (busy/idle)
 - transmission of idle cells when no data cells to send

Classic IP only

- 3 "networks"
 (e.g., LAN segments)
- MAC (802.3) and IP addresses

IP over ATM

- replace "network" (e.g., LAN segment) with ATM network
- ATM addresses,IP addresses

Datagram Journey in IP-over-ATM Network

□ at Source Host:

- IP layer maps between IP, ATM destination address (using ARP)
- passes datagram to AAL5
- AAL5 encapsulates data, segments cells, passes to ATM layer
- ATM network: moves cell along VC to destination
- at Destination Host:
 - AAL5 reassembles cells into original datagram
 - if CRC OK, datagram is passed to IP

Issues:

- IP datagrams into ATM AAL5 PDUs
- from IP addresses to ATM addresses
 - just like IP addresses to 802.3 MAC addresses!
 - ARP server

Multi-Protocol Label Switching

Multiprotocol label switching (MPLS)

- Initial goal: speed up IP forwarding by using fixed length label (instead of IP address) to do forwarding
 - borrowing ideas from Virtual Circuit (VC) approach
 - IP datagram still keeps IP address
 - RFC 3032 defines MPLS header
 - Label: has role of Virtual Circuit Identifier
 - Exp: experimental usage, may specify Class of Service (CoS)
 - S: Bottom of Stack end of series of stacked headers
 - TTL: time to live

- a.k.a. label-switched router
- forwards packets to outgoing interface based only on label value (don't inspect IP address)
 - MPLS forwarding table distinct from IP forwarding tables
- □ signaling protocol needed to set up forwarding
 - Label Distribution Protocol LDP (RFC 3036 → obsoleted by RFC 5036)
 - RSVP-TE (RFC 3209
 - → updated by RFCs 3936, 4420, 4874, 5151, 5420, 5711)
- forwarding possible along paths that IP alone would not allow (e.g., source-specific routing)
- MPLS supports traffic engineering
- □ must co-exist with IP-only routers

- □ Label Switched Path (LSP)
 - set up by signalling protocol
 - has sequence of labels
- □ Forwarding Equivalence Class (FEC)
 - specification of packets treated the same way by a router
 - forwarded over same LSP
 - can be specified by destination prefix, e.g. FEC 10.1.1.0/24
- Label Switching Router
 - MPLS-capable IP router; may bind labels to FEC
- □ MPLS node
 - does not need IP stack
- stacked labels
 - Iabel push; label pop

Layer2 Header Top Label Bottom Label Layer3 Header

- High Speed Switching
 - facilitates construction of nodes with wire-line speed
- Simplifying packet forwarding
 - Routing decision can be limited to edge of AS
- Traffic Engineering
 - MPLS may control paths taken by different flows, e.g. to avoid congestion points for certain flows
- Quality of Service (QoS) support
 - resources may be specified for specific flows, isolation among flows
- Network scalability
 - label stacking allows to arrange MPLS domains in a hierarchy
- □ Supporting VPNs
 - tunneling of packets from an ingress point to an egress point

□ Traffic engineering: process of mapping traffic demand onto a network

□ Purpose of traffic engineering:

- Maximize utilization of links and nodes throughout the network
- Engineer links to achieve required delay, grade-of-service
- Spread network traffic across network links, reduce impact of failure
- Ensure available spare link capacity for re-routing traffic on failure
- Meet policy requirements imposed by the network operator
- ⇒ Traffic engineering key to optimizing cost/performance

Virtual Private Networks

- VPNs

Networks perceived as being private networks by customers using them, but built over shared infrastructure owned by service provider (SP)

- □ Service provider infrastructure:
 - backbone
 - provider edge devices
- □ Customer:
 - customer edge devices (communicating over shared backbone)

- Privacy
- □ Security
- □ Works well with mobility (looks like you are always at home)
- □ Cost
 - many forms of newer VPNs are cheaper than leased line VPNs
 - ability to share at lower layers even though logically separate means lower cost
 - exploit multiple paths, redundancy, fault-recovery in lower layers
 - need isolation mechanisms to ensure resources shared appropriately
- □ Abstraction and manageability
 - all machines with addresses that are "in" are trusted no matter where they are

□ all VPN functions implemented by customer

- □ Leased-line VPN
 - configuration costs and maintenance by service provider: long time to set up, manpower
- □ CPE-based VPN
 - expertise by customer to acquire, configure, manage VPN
- □ Network-based VPN
 - Customer routers connect to service provider routers
 - Service provider routers maintain separate (independent) IP contexts for each VPN
 - sites can use private addressing
 - traffic from one VPN cannot be injected into another

