

| Project announcements                                                          |   |
|--------------------------------------------------------------------------------|---|
| Currently 30 teams                                                             |   |
|                                                                                |   |
| <ul> <li>SVN accounts: available by today - Monday evening, Nov 7th</li> </ul> |   |
| Submission 1 - Project plan - due by Tuesday evening, Nov 8th                  |   |
| Submission 2 - IPv6 today - due by Tuesday evening, Nov 15th                   |   |
| Submission 3 - Your own Site - due by Thursday Dec 15th                        |   |
|                                                                                |   |
|                                                                                |   |
| IN2097 - Master Course Computer Networks, WS 2011/2012                         | 3 |

## **Outline**Project announcements Node property fundamentals: delay, loss, throughput Internet Strucuture Network virtualisation













|                                                    |                                 |                                  |                      |                    | _  |
|----------------------------------------------------|---------------------------------|----------------------------------|----------------------|--------------------|----|
| Impact Ar                                          | nalysis: Adv                    | vances in No                     | etwork Tech          | nology             |    |
| Data rate                                          | Delay<br>(1bit)                 | Length<br>(1bit)                 | Delay<br>(1kbyte)    | Length<br>(1kbyte) |    |
| 1 Mbit/s                                           | 1 us                            | 200 m                            | 8 ms                 | 1600 km            |    |
| 10 Mbit/s                                          | 100 ns                          | 20 m                             | 0,8 ms               | 160 km             |    |
| 100 Mbit/s                                         | 10 ns                           | 2 m                              | 80 us                | 16 km              |    |
| 1 Gbit/s                                           | 1 ns                            | 0,2 m                            | 8 us                 | 1600 m             |    |
| 10 Gbit/s                                          | 100 ps                          | 0,02 m                           | 0,8 us               | 160 m              |    |
| 100 Gbit/s                                         | 10 ps                           | 0,002 m                          | 80 ns                | 16 m               |    |
| Assessment                                         |                                 |                                  |                      |                    |    |
| <ul> <li>Transmiss</li> <li>⇒ over tim</li> </ul>  | ion delay bec<br>e; in the core | comes less im                    | portant              |                    |    |
| <ul> <li>Distance b</li> <li>⇒matters f</li> </ul> | ecomes mor<br>for communic      | e important<br>ation beyond      | data center          |                    |    |
| <ul> <li>Network as</li> <li>⇒ Latency</li> </ul>  | dapter latenc<br>/ of communi   | y less importa<br>cation softwar | int<br>re becomes ir | nportant           |    |
| IN2097 - Master Course Co                          | mouter Networks WS              | 2011/2012                        |                      |                    | 11 |



|           | Propagation | equivalent       |            |          |
|-----------|-------------|------------------|------------|----------|
|           | Delay       | Transmission     | per packet | per byte |
| Distance  | ,           | Delay (625 byte) | . (1 GHz)  | (1 GHz)  |
| 100 m     | 500 ns      | 10 Gbit/s        | 500        | <1       |
| 1 km      | 5 us        | 1 Gbit/s         | 5.000      | 8        |
| 10 km     | 50 us       | 100 Mbit/s       | 50.000     | 80       |
| 100 km    | 500 us      | 10 Mbit/s        |            | 800      |
| 1.000 km  | 5 ms        | 1 Mbit/s         |            | 8.000    |
| 10.000 km | 50 ms       | 100 Kbit/s       |            | 80 000   |





















## Discussion Can you "imagine" a visualisation of packets being transmitted over different types of links? What is the role of statistical multiplexing What are the benefits of overprovisioning? What is the cost of tunneling? What is the role of header lengths? What is the role of compact headers / header compression?













![](_page_7_Figure_1.jpeg)

![](_page_7_Figure_2.jpeg)

![](_page_7_Figure_3.jpeg)

![](_page_8_Figure_0.jpeg)

![](_page_8_Figure_1.jpeg)

## VPNs: why?

- Privacy
- Security
- Works well with mobility (looks like you are always at home)
- Cost: many forms of newer VPNs are cheaper than leased line VPNs
  - ability to share at lower layers even though logically separate means lower cost
  - exploit multiple paths, redundacy, fault-recovery in lower layers
  - need isolation mechanisms to ensure resources shared appropriately
- Abstraction and manageability: all machines with addresses that are "in" are trusted no matter where they are

3/

![](_page_8_Figure_11.jpeg)

![](_page_9_Figure_0.jpeg)

![](_page_9_Picture_1.jpeg)

## Drawbacks

- Leased-line VPN: configuration costs, maintainance by SP: long time, much manpower
- CPE-based VPN: expertise by customer to acquire, configure, manage VPN

## **Network-based VPN**

- Customer's routers connect to SP routers
- SP routers maintain separate (independent) IP contexts for each VPN
  - sites can use private addressing

IN2097 - Master Course Computer Networks, WS 2011/2012

traffic from one VPN cannot be injected into another

 $\bigstar$ Tunneling Forwarding based or original header Original header Data Provider edge router (PE) Encapsulation Forwarding based on the new header = tunneling New header Original header Data Provider edge router (PE) Decapsulation ĪIIII Forwarding based on original header Original header Data IN2097 - Master Course Computer Networks, WS 2011/2012

![](_page_10_Picture_0.jpeg)

| Virtualization of networks                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Virtualization of resources: powerful abstraction in systems engineering:</li> <li>computing examples: virtual memory, virtual devices</li> <li>Virtual machines: e.g., java</li> <li>IBM VM operation system from 1960' s/70' s</li> <li>layering of abstractions: don't sweat the details of the lower layer, only deal with lower layers abstractly</li> </ul> |
| IN2097 - Master Course Computer Networks, WS 2011/2012                                                                                                                                                                                                                                                                                                                     |

![](_page_10_Figure_2.jpeg)

![](_page_10_Figure_3.jpeg)

![](_page_11_Figure_0.jpeg)

|--|

X

- ATM, MPLS separate networks in their own right
- different service models, addressing, routing from Internet
- viewed by Internet as logical link connecting IP routers
   just like dialup link is really part of separate network (telephone network)
- ATM, MPLS: of technical interest in their own right

IN2097 - Master Course Computer Networks, WS 2011/2012

![](_page_11_Figure_6.jpeg)

## Asynchronous Transfer Mode: ATM

- 1990' s/00 standard for high-speed (155Mbps to 622 Mbps and higher) Broadband Integrated Service Digital Network architecture
- <u>Goal:</u> integrated, end-end transport of carry voice, video, data
  - meeting timing/QoS requirements of voice, video (versus Internet best-effort model)
  - "next generation" telephony: technical roots in telephone world
  - packet-switching (fixed length packets, called "cells") using virtual circuits

![](_page_12_Figure_0.jpeg)

![](_page_12_Figure_1.jpeg)

![](_page_12_Figure_2.jpeg)

![](_page_12_Figure_3.jpeg)

|                                 | Layer                                         |                                            |       |                  |        |                           |
|---------------------------------|-----------------------------------------------|--------------------------------------------|-------|------------------|--------|---------------------------|
| Service: tra analogo very diffe | insport cells<br>us to IP net<br>erent servic | s across AT<br>work layer<br>ses than IP i | M net | work<br>rk layei | -      |                           |
| Network                         | Service                                       |                                            | Guara | antees ?         | •      | Congestion                |
| Architecture                    | Model                                         | Bandwidth                                  | Loss  | Order            | Timing | feedback                  |
| Internet                        | best effort                                   | none                                       | no    | no               | no     | no (inferred<br>via loss) |
| ATM                             | CBR                                           | constant<br>rate                           | yes   | yes              | yes    | no<br>congestion          |
| ATM                             | VBR                                           | guaranteed rate                            | yes   | yes              | yes    | no<br>congestion          |
| ATM                             | ABR                                           | guaranteed<br>minimum                      | no    | yes              | no     | yes                       |
| ATM                             | UBR                                           | none                                       | no    | yes              | no     | no                        |
| IN2097 - Master C               | ourse Computer N                              | etworks. WS 2011/20                        | 012   |                  |        |                           |

| Å  | ATM VCs                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| •  | <ul> <li>Advantages of ATM VC approach:</li> <li>QoS performance guarantee for connection mapped to VC (bandwidth, delay, delay jitter)</li> <li>Drawbacks of ATM VC approach:</li> <li>Inefficient support of datagram traffic</li> <li>one PVC between each source/dest pair) does not scale (N*2 connections needed)</li> <li>SVC introduces call setup latency, processing overhead for short lived connections</li> </ul> |    |
| IN | 2097 - Master Course Computer Networks, WS 2011/2012                                                                                                                                                                                                                                                                                                                                                                           | 55 |

# ATM Layer: Virtual Circuits VC transport: cells carried on VC from source to dest call setup, teardown for each call *before* data can flow each packet carries VC identifier (not destination ID) every switch on source-dest path maintain "state" for each passing connection link,switch resources (bandwidth, buffers) may be allocated to VC: to get circuit-like perf. Permanent VCs (PVCs) long lasting connections typically: "permanent" route between to IP routers Switched VCs (SVC): dynamically set up on per-call basis

![](_page_13_Figure_3.jpeg)

![](_page_14_Figure_0.jpeg)

![](_page_14_Figure_1.jpeg)

![](_page_14_Picture_2.jpeg)

![](_page_14_Figure_3.jpeg)

![](_page_15_Figure_0.jpeg)

![](_page_15_Figure_1.jpeg)

![](_page_15_Figure_2.jpeg)

| o pieces (subidyers) or priysical idyer.                                                                        |
|-----------------------------------------------------------------------------------------------------------------|
| Transmission Convergence Sublayer (TCS): adapts ATM lay above to PMD sublayer below                             |
| Physical Medium Dependent: depends on physical medium being used                                                |
| S Functions:                                                                                                    |
| Header checksum generation: 8 bits CRC                                                                          |
| <ul> <li>Cell delineation</li> </ul>                                                                            |
| <ul> <li>With "unstructured" PMD sublayer, transmission of idle<br/>cells when no data cells to send</li> </ul> |
|                                                                                                                 |
|                                                                                                                 |
|                                                                                                                 |
|                                                                                                                 |

![](_page_16_Figure_0.jpeg)

![](_page_16_Picture_1.jpeg)

![](_page_16_Figure_2.jpeg)

## Datagram Journey in IP-over-ATM Network

## at Source Host:

- IP layer maps between IP, ATM dest address (using ARP)
- passes datagram to AAL5
- AAL5 encapsulates data, segments cells, passes to ATM layer
- ATM network: moves cell along VC to destination

## at Destination Host:

- AAL5 reassembles cells into original datagram
- if CRC OK, datagram is passed to IP

![](_page_17_Figure_0.jpeg)

| MPLS capable routers                                                                                                     |  |
|--------------------------------------------------------------------------------------------------------------------------|--|
| a.k.a. label-switched router                                                                                             |  |
| <ul> <li>forwards packets to outgoing interface based only on label value<br/>(don't inspect IP address)</li> </ul>      |  |
| <ul> <li>MPLS forwarding table distinct from IP forwarding tables</li> </ul>                                             |  |
| <ul> <li>signaling protocol needed to set up forwarding</li> <li>RSVP-TE</li> </ul>                                      |  |
| <ul> <li>forwarding possible along paths that IP alone would not allow<br/>(e.g., source-specific routing) !!</li> </ul> |  |
| <ul> <li>use MPLS for traffic engineering</li> </ul>                                                                     |  |
| must co-exist with IP-only routers                                                                                       |  |
|                                                                                                                          |  |
|                                                                                                                          |  |
|                                                                                                                          |  |

![](_page_17_Figure_2.jpeg)

![](_page_17_Figure_3.jpeg)

![](_page_18_Picture_0.jpeg)

![](_page_18_Picture_1.jpeg)

## Questions

- Why is circuit switching expensive?
- Why is packet switching cheap?
- □ Is best effort packet switching able to carry voice communication?
- □ What happens if we introduce "better than best effort" service?
- How can we charge fairly for Internet services: by time, by volume, or flat?
- □ Who owns the Internet?
- □ You' ve invented a new protocol. What do you do?
- How does the Internet grow? Exponentially? What is the growth perspective?

IN2097 - Master Course Computer Networks, WS 2011/2012

![](_page_18_Picture_12.jpeg)

74

![](_page_19_Figure_0.jpeg)

![](_page_19_Figure_1.jpeg)

![](_page_19_Figure_2.jpeg)

![](_page_19_Figure_3.jpeg)

![](_page_20_Picture_0.jpeg)

![](_page_20_Picture_1.jpeg)

![](_page_20_Picture_2.jpeg)

![](_page_20_Picture_3.jpeg)