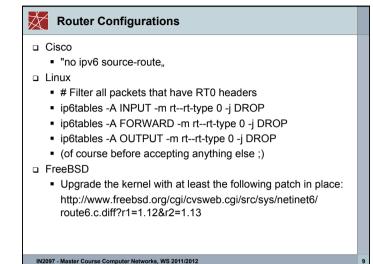
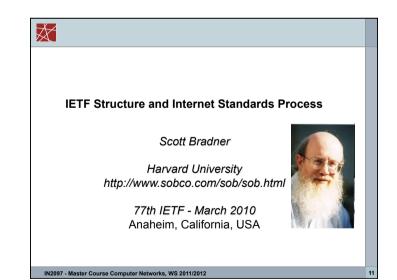

Outline
Project announcements
 Recapitulation on last lectures
Internet development
Node property fundamentals: delay, loss, throughput
IN2097 - Master Course Computer Networks, WS 2011/2012

Project announcements	
Currently 30 teams	
If you did not register so far, write Email to guenther@in.tum.de	
SVN accounts: planned available by Monday evening, Nov 7th	
Submission 1 - Project plan - due by Tuesday evening, Nov 8th	
Submission 2 - IPv6 today - due by Tuesday evening, Nov 15th	
Submission 3 - Your own Site - due by Thursday Dec 15th	

Recapitulation on last lectures	
DNS	
Tunneling	
u IPv4	
□ IPv6	
IN2097 - Master Course Computer Networks, WS 2011/2012	4




RFC 2460: IPv6 Specification

- The routing header is used by an IPv6 source to list one or more intermediate nodes to be "visited" on the way to packet's destination.
- Each extension header should occur at most once, except for the destination options header which should occur at most twice.
- IPv6 nodes must accept and attempt to process extension headers in any order and occurring any number of times in the same packet.
- c.f. Merike Kaeo, merike@doubleshotsecurity.com
 Presentation "IPv6 Routing Header Security " RIPE54
 Meeting, Tallin, Estonia, May 2007

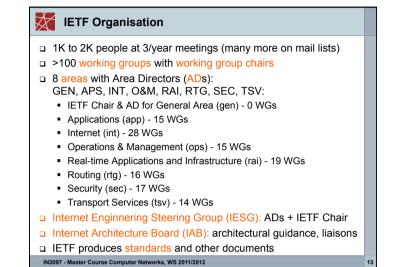
IN2097 - Master Course Computer Networks, WS 2011/2012

2

Routing Header Processing	
 Disabling IPv6 type 0 routing header process other nodes to be used for attack Dropping is required for ISP's 	U U
RFC 5095 - deprecate ["ablehnen"/"missbill	igen"j
Network Working Group	J. Abley
Request for Comments: 5095	Afilias
Updates: 2460, 4294	P. Savola
Category: Standards Track	CSC/FUNET
	G. Neville-Neil
N	eville-Neil Consulting
	December 2007
Deprecation of Type 0 Routing Headers in IPv6	
Abstract	
The functionality provided by IPv6's Type 0 Rou	2
exploited in order to achieve traffic amplifica	
path for the purposes of generating denial-of-s	
document updates the IPv6 specification to depr	
Type 0 Routing Headers, in light of this securi	ty concern.
IN2097 - Master Course Computer Networks, WS 2011/2012	

The IETF - Internet Engineering Task Force

□ Formed in 1986

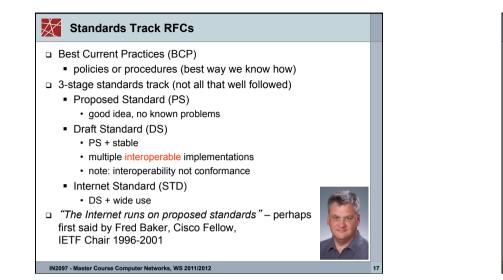

- evolved out of US government activities
- ARPA's Internet Configuration Control Board (ICCB) (1979) and Internet Activities Board (1983)
- □ Was not considered important for a long time good!!
- Not government approved great!!

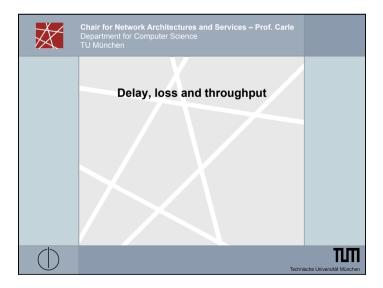
IN2097 - Master Course Computer Networks, WS 2011/2012

- but funding support from U.S. Government until 1997
- Specifications always available without charge (vs. ITU-T, IEEE)
- People not companies

"We reject kings, presidents and voting.

We believe in rough consensus and running code" Dave Clark (1992)

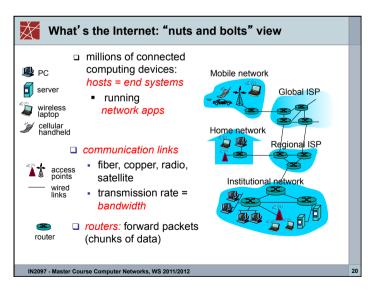



Working Groups no defined membership just participants *Rough consensus and running code...*" no formal voting - can not define constituency can do show of hands or hum - but no count does not require unanimity chair determines if there is consensus disputes resolved by discussion mailing list and face-to-face meetings final decisions must be verified on mailing list to ensure those not present are included but taking into account face-to-face discussion

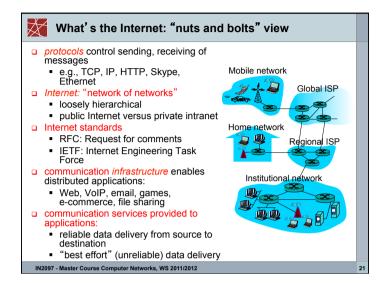
IETF Standardisation Procedure Proposals published as Internet Drafts (ID) Worked on in a Working Group (WG) WG sends to IESG request to publish an ID 'when ready' proposal reviewed by AD can be sent back to working group for more work IETF Last-Call IESG review last call comments + own technical review can be sent back to Working Group for more work

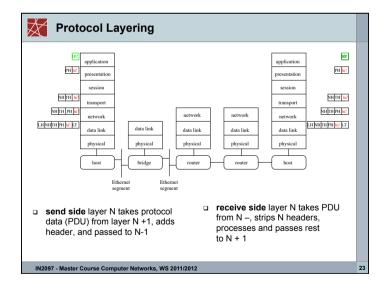
IN2097 - Master Course Computer Networks, WS 2011/2012

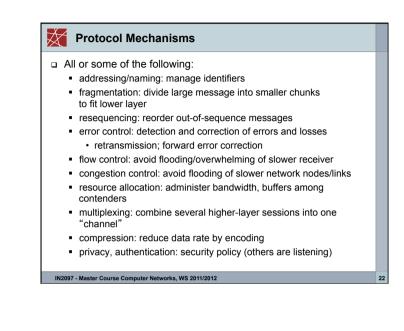
RFC Repository Contains: standards track poetry OSPF, IPv6, IPsec ... 'Twas the night before startup obsolete Standards white papers RIPv1 On packet switches with requirements infinite storage Host Requirements corporate documentation policies Ascend multilink protocol Classless Inter-Domain (mp+) Routing experimental history april fool's day jokes Netblt IP on Avian Carriers ... process documents ... updated for QoS IETF Standards Process

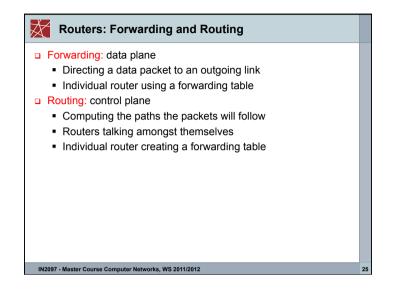

Challenge Interoperability

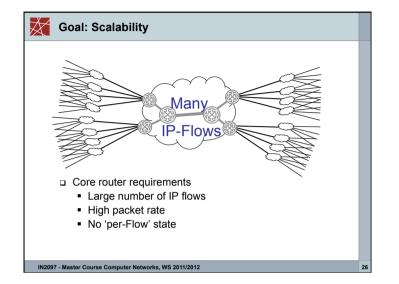
Example:


IPFIX Interoperability Test Event, 63rd IETF


- Participants
 - CISCO
 - IBM Research Zürich
 - NEC Laboratories Heidelberg
 - Fraunhofer FOKUS, Berlin
 - University team of Prof. Carle
 c.f. RFC 3333, 5477, 5815
- Lession learned:

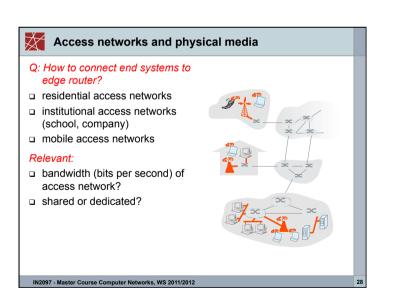

Organisation of interoperability activities is useful. We do not necessarily need to organize joint meetings, but should make more of a habit of organizing joint testing, e.g. combined with chat sessions.

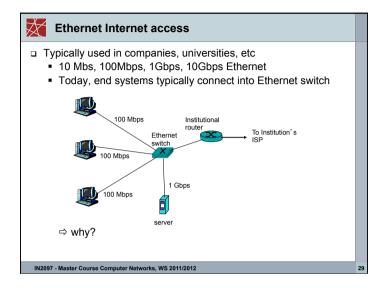


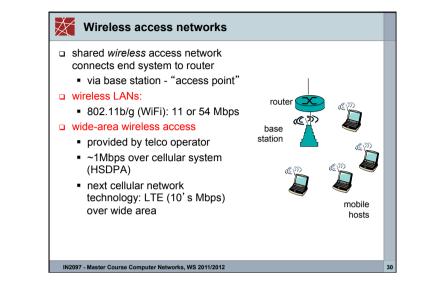


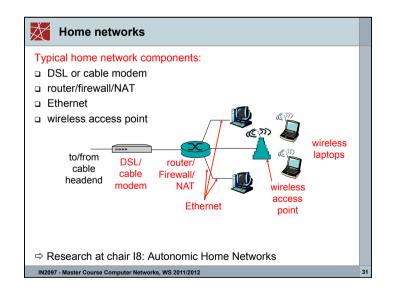
Layering Considered Harmful?

- Benefits of layering
 - need layers to manage complexity
 - don't want to reinvent Ethernet-specific protocol for each application
 - common functionality
 - "ideal" network
- but:
 - layer N may duplicate lower layer functionality (error recovery)
 - different layers may need same information
 - layer N may need to peek into layer N+x

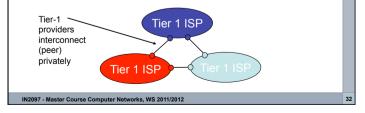


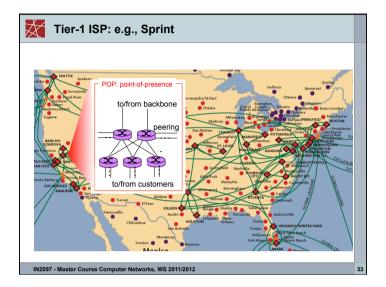

How big is the Internet?

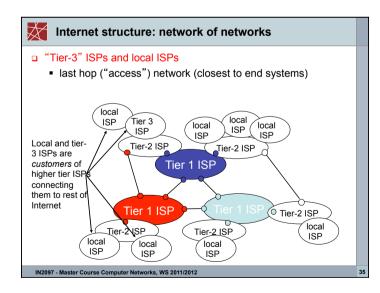

Many measures:

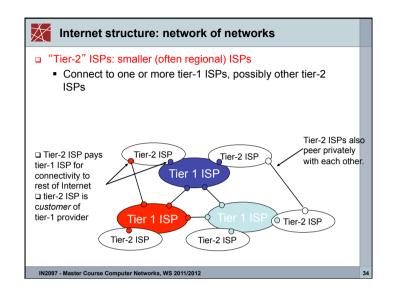

- networks (routed entities)
- domains, host names (but: several names per host!)
- directly (continuously) attached hosts ("ping' able")
- IP-connected hosts (including dialin, e.g. PPP)
- firewalled hosts
- e-mail reachable
- □ What is the German Internet?
 - Entities within Germany

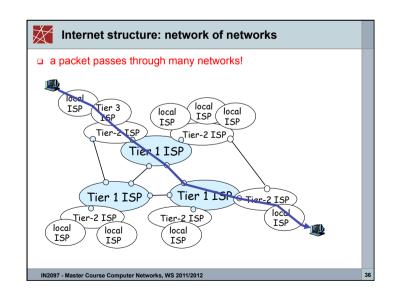
- Entities operated by Germans / German organisations
- Entities used by Germans / German organisations

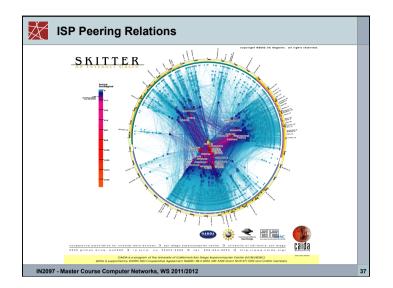


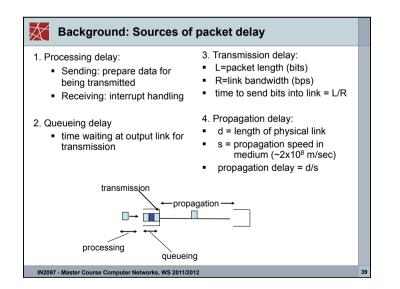

Internet structure: network of networks

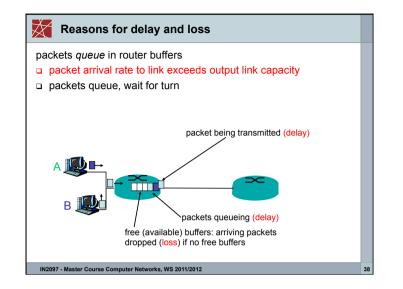

roughly hierarchical

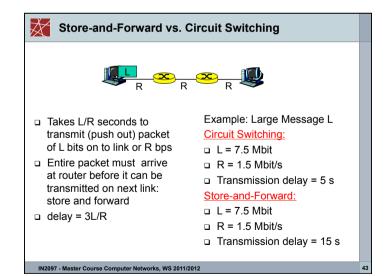

at center: "tier-1" ISPs (AT&T, Global Crossing, Level 3, NTT, Qwest, Sprint, Tata, Verizon (UUNET), Savvis, TeliaSonera), national/international coverage

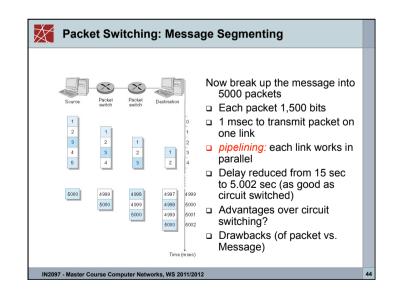

- treat each other as equals
- can reach every other network on the Internet without purchasing IP transit or paying settlements

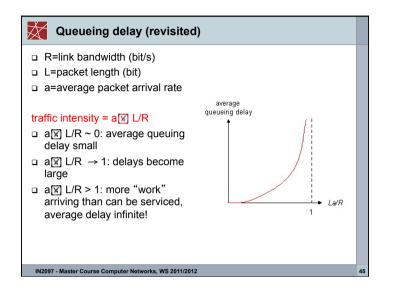


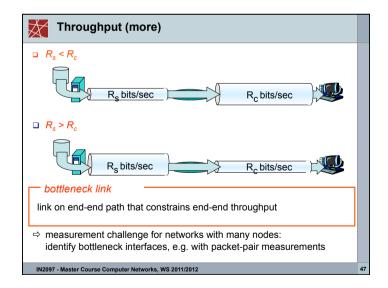


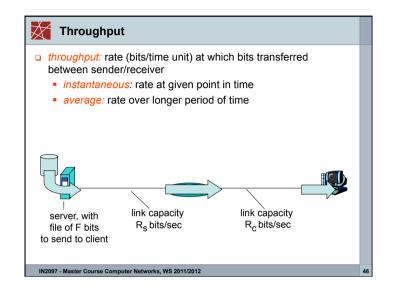







□ d _{pro}	_c = processing delay	
	typically a few microseconds (µs) or less	
	ue = queuing delay	
	depends on congestion - may be large	
	s = transmission delay	
	L/R, significant for low-speed links	
	$_{p}$ = propagation delay	
	a few microseconds to hundreds of msecs	
d_{noda}	$_{1} = d_{\text{proc}} + d_{\text{queue}} + d_{\text{trans}} + d_{\text{prop}}$	


	alysis. Au	vances in No	etwork Tech	nnology
Data rate	Delay (1bit)	Length (1bit)	Delay (1kbyte)	Length (1kbyte)
1 Mbit/s	1 us	200 m	8 ms	1600 km
10 Mbit/s	100 ns	20 m	0,8 ms	160 km
100 Mbit/s	10 ns	2 m	80 us	16 km
1 Gbit/s	1 ns	0,2 m	8 us	1600 m
10 Gbit/s	100 ps	0,02 m	0,8 us	160 m
100 Gbit/s	10 ps	0,002 m	80 ns	16 m
Assessment				
	on delay bec e; in the core	comes less im	portant	
 Distance be ⇒matters fermions 		e important ation beyond	data center	
		y less importa cation softwar		nportant


	Propagation Delay	equivalent Transmission	CPU cycles per packet	
Distance	Delay	Delay (625 byte)	P P	
100 m	500 ns	10 Gbit/s	500	<
1 km	5 us	1 Gbit/s	5.000	
10 km	50 us	100 Mbit/s	50.000	8
100 km	500 us	10 Mbit/s		80
1.000 km	5 ms	1 Mbit/s		8.00
10.000 km	50 ms	100 Kbit/s		80.00

$\not\gtrsim$	Discussion
	What is the role of header lengths?
	What is the role of header compression?
	What is the cost of tunneling?
	What are the benefits of overprovisioning?
	Can you "imagine" a visualisation of packets being transmitted over different types of links?
	12097 - Master Course Computer Networks, WS 2011/2012

Questions

- □ Why is circuit switching expensive?
- Why is packet switching cheap?
- Is best effort packet switching able to carry voice communication?
- □ What happens if we introduce "better than best effort" service?
- How can we charge fairly for Internet services: by time, by volume, or flat?
- □ Who owns the Internet?

- □ You' ve invented a new protocol. What do you do?
- How does the Internet grow? Exponentially? What is the growth perspective?

