

Chair for Network Architectures and Services – Prof. Carle Department for Computer Science TU München

Master Course Computer Networks IN2097

Prof. Dr.-Ing. Georg Carle Christian Grothoff, Ph.D.

Chair for Network Architectures and Services
Institut für Informatik
Technische Universität München
http://www.net.in.tum.de

- Project announcements
- Recapitulation on last lectures
- Internet development
- □ Node property fundamentals: delay, loss, throughput

Project announcements

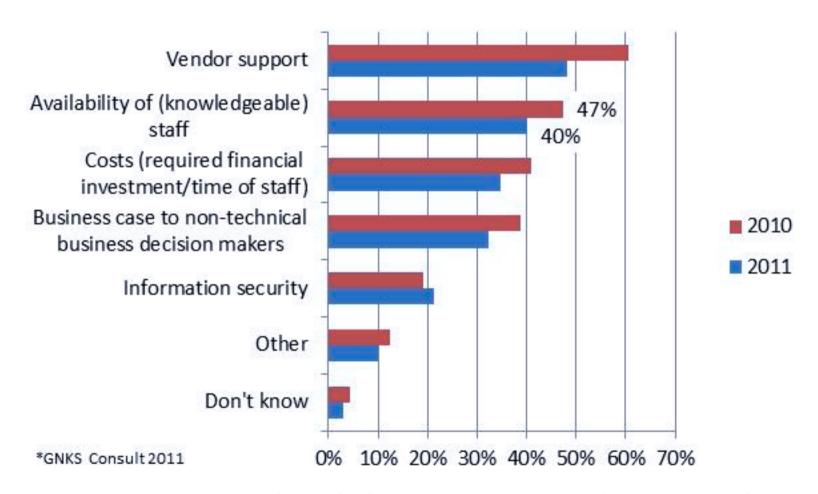
- Currently 30 teams
- □ If you did not register so far, write Email to guenther@in.tum.de
- □ SVN accounts: planned available by Monday evening, Nov 7th
- □ Submission 1 Project plan due by Tuesday evening, Nov 8th
- □ Submission 2 IPv6 today due by Tuesday evening, Nov 15th
- Submission 3 Your own Site due by Thursday Dec 15th

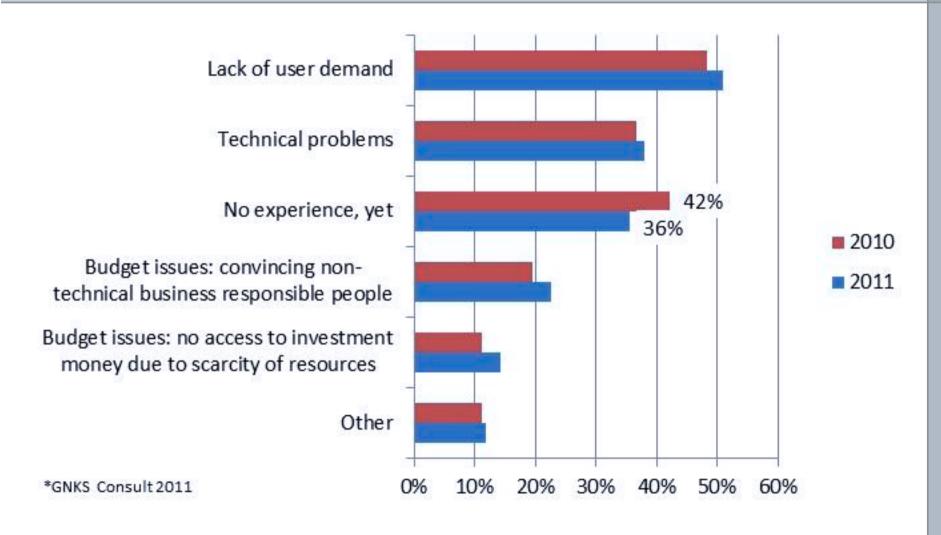
Recapitulation on last lectures

- □ DNS
- □ Tunneling
- □ IPv4
- □ IPv6

Chair for Network Architectures and Services – Prof. Carle Department for Computer Science TU München

IPv6 Deployment


Standardisation


Biggest hurdles when deploying IPv6

 Maarten Botterman, GNKS Consult: Results of the 2011 Global IPv6 Deployment Monitoring Survey - Presentation at RIPE-63

Biggest problems with IPv6 in practice

RFC 2460: IPv6 Specification

- □ The routing header is used by an IPv6 source to list one or more intermediate nodes to be "visited" on the way to packet's destination.
- Each extension header should occur at most once, except for the destination options header which should occur at most twice.
- □ IPv6 nodes must accept and attempt to process extension headers in any order and occurring any number of times in the same packet.

c.f. Merike Kaeo, merike@doubleshotsecurity.com
 Presentation "IPv6 Routing Header Security " - RIPE54
 Meeting, Tallin, Estonia, May 2007

Router Configurations

- □ Cisco
 - "no ipv6 source-route,"
- □ Linux
 - # Filter all packets that have RT0 headers
 - ip6tables -A INPUT -m rt--rt-type 0 -j DROP
 - ip6tables -A FORWARD -m rt--rt-type 0 -j DROP
 - ip6tables -A OUTPUT -m rt--rt-type 0 -j DROP
 - (of course before accepting anything else ;)
- □ FreeBSD
 - Upgrade the kernel with at least the following patch in place: http://www.freebsd.org/cgi/cvsweb.cgi/src/sys/netinet6/ route6.c.diff?r1=1.12&r2=1.13

Routing Header Processing

- Disabling IPv6 type 0 routing header processing still allows other nodes to be used for attack
- Dropping is required for ISP's
- □ RFC 5095 deprecate ["ablehnen"/"missbilligen"]

Network Working Group

Request for Comments: 5095

Updates: 2460, 4294

Category: Standards Track

J. Abley

Afilias

P. Savola

CSC/FUNET

G. Neville-Neil

Neville-Neil Consulting

December 2007

Deprecation of Type 0 Routing Headers in IPv6
Abstract

The functionality provided by IPv6's Type 0 Routing Header can be exploited in order to achieve traffic amplification over a remote path for the purposes of generating denial-of-service traffic. This document updates the IPv6 specification to deprecate the use of IPv6 Type 0 Routing Headers, in light of this security concern.

IETF Structure and Internet Standards Process

Scott Bradner

Harvard University http://www.sobco.com/sob/sob.html

77th IETF - March 2010 Anaheim, California, USA

The IETF - Internet Engineering Task Force

- □ Formed in 1986
 - evolved out of US government activities
 - ARPA's Internet Configuration Control Board (ICCB) (1979) and Internet Activities Board (1983)
- Was not considered important for a long time good!!
- Not government approved great!!
 - but funding support from U.S. Government until 1997
- □ Specifications always available without charge (vs. ITU-T, IEEE)
- People not companies

"We reject kings, presidents and voting.

We believe in rough consensus and running code"

Dave Clark (1992)

IETF Organisation

- □ 1K to 2K people at 3/year meetings (many more on mail lists)
- >100 working groups with working group chairs
- 8 areas with Area Directors (ADs):GEN, APS, INT, O&M, RAI, RTG, SEC, TSV:
 - IETF Chair & AD for General Area (gen) 0 WGs
 - Applications (app) 15 WGs
 - Internet (int) 28 WGs
 - Operations & Management (ops) 15 WGs
 - Real-time Applications and Infrastructure (rai) 19 WGs
 - Routing (rtg) 16 WGs
 - Security (sec) 17 WGs
 - Transport Services (tsv) 14 WGs
- Internet Enginnering Steering Group (IESG): ADs + IETF Chair
- Internet Architecture Board (IAB): architectural guidance, liaisons
- IETF produces standards and other documents

Working Groups

- no defined membership
 - just participants
- "Rough consensus and running code..."
 - no formal voting can not define constituency
 - can do show of hands or hum but no count
 - does not require unanimity
 - chair determines if there is consensus
 - disputes resolved by discussion
 - mailing list and face-to-face meetings
 - final decisions must be verified on mailing list
 - to ensure those not present are included
 - but taking into account face-to-face discussion
- sessions are being streamed & recorded

14

IETF Standardisation Procedure

- Proposals published as Internet Drafts (ID)
- Worked on in a Working Group (WG)
- WG sends to IESG request to publish an ID 'when ready'
- proposal reviewed by AD
 - can be sent back to working group for more work
- □ IETF Last-Call
- □ IESG review
 - last call comments + own technical review
 - can be sent back to Working Group for more work
- publication as RFC

RFC Repository Contains:

- □ standards track
 - OSPF, IPv6, IPsec ...
- □ obsolete Standards
 - RIPv1
- □ requirements
 - Host Requirements
- policies
 - Classless Inter-Domain Routing
- □ april fool's day jokes
 - IP on Avian Carriers ...
 - ... updated for QoS

- poetry
 - Twas the night before startup
- □ white papers
 - On packet switches with infinite storage
- □ corporate documentation
 - Ascend multilink protocol (mp+)
- experimental history
 - Netblt
- process documents
 - IETF Standards Process

Standards Track RFCs

- □ Best Current Practices (BCP)
 - policies or procedures (best way we know how)
- □ 3-stage standards track (not all that well followed)
 - Proposed Standard (PS)
 - good idea, no known problems
 - Draft Standard (DS)
 - PS + stable
 - multiple interoperable implementations
 - note: interoperability not conformance
 - Internet Standard (STD)
 - DS + wide use
- "The Internet runs on proposed standards" perhaps first said by Fred Baker, Cisco Fellow, IETF Chair 1996-2001

Challenge Interoperability

Example:

IPFIX Interoperability Test Event, 63rd IETF

- Participants
 - CISCO
 - IBM Research Zürich
 - NEC Laboratories Heidelberg
 - Fraunhofer FOKUS, Berlin
 - University team of Prof. Carle
 - c.f. RFC 3333, 5477, 5815

Organisation of interoperability activities is useful. We do not necessarily need to organize joint meetings, but should make more of a habit of organizing joint testing, e.g. combined with chat sessions.

Chair for Network Architectures and Services – Prof. Carle Department for Computer Science TU München

Delay, loss and throughput

What's the Internet: "nuts and bolts" view

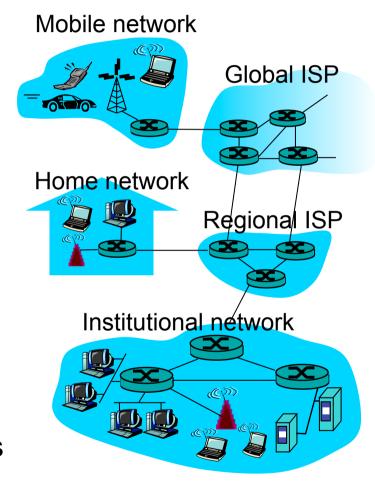
server

wireless laptop

cellular handheld millions of connected computing devices: hosts = end systems

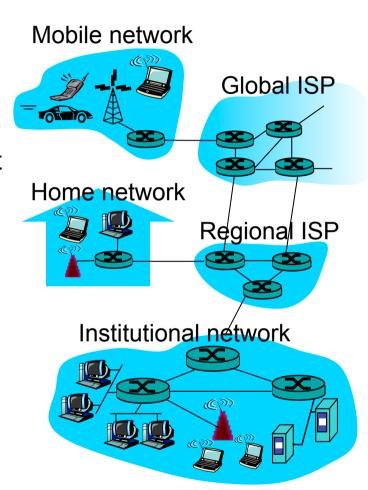
> running network apps

communication links



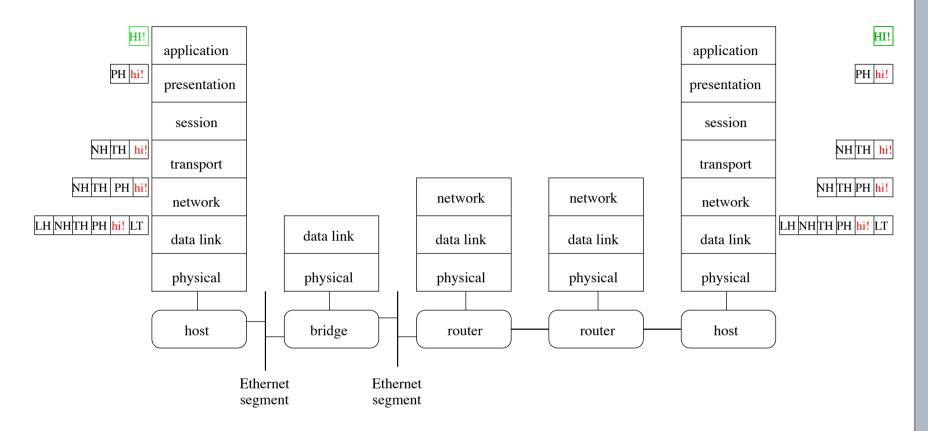
wired links

- fiber, copper, radio, satellite
- transmission rate = bandwidth


routers: forward packets (chunks of data)

What's the Internet: "nuts and bolts" view

- protocols control sending, receiving of messages
 - e.g., TCP, IP, HTTP, Skype, Ethernet
- Internet: "network of networks"
 - loosely hierarchical
 - public Internet versus private intranet
- Internet standards
 - RFC: Request for comments
 - IETF: Internet Engineering Task Force
- communication infrastructure enables distributed applications:
 - Web, VoIP, email, games, e-commerce, file sharing
- communication services provided to applications:
 - reliable data delivery from source to destination
 - "best effort" (unreliable) data delivery



Protocol Mechanisms

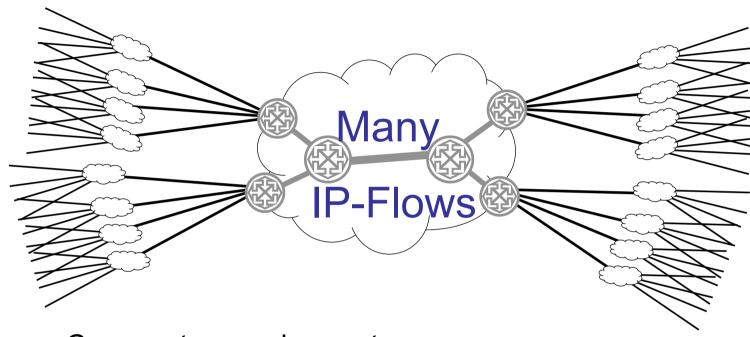
- □ All or some of the following:
 - addressing/naming: manage identifiers
 - fragmentation: divide large message into smaller chunks to fit lower layer
 - resequencing: reorder out-of-sequence messages
 - error control: detection and correction of errors and losses
 - retransmission; forward error correction
 - flow control: avoid flooding/overwhelming of slower receiver
 - congestion control: avoid flooding of slower network nodes/links
 - resource allocation: administer bandwidth, buffers among contenders
 - multiplexing: combine several higher-layer sessions into one "channel"
 - compression: reduce data rate by encoding
 - privacy, authentication: security policy (others are listening)

Protocol Layering

- send side layer N takes protocol data (PDU) from layer N +1, adds header, and passed to N-1
- □ receive side layer N takes PDU from N –, strips N headers, processes and passes rest to N + 1

Layering Considered Harmful?

- Benefits of layering
 - need layers to manage complexity
 - don't want to reinvent Ethernet-specific protocol for each application
 - common functionality
 - "ideal" network
- □ but:
 - layer N may duplicate lower layer functionality (error recovery)
 - different layers may need same information
 - layer N may need to peek into layer N+x



Routers: Forwarding and Routing

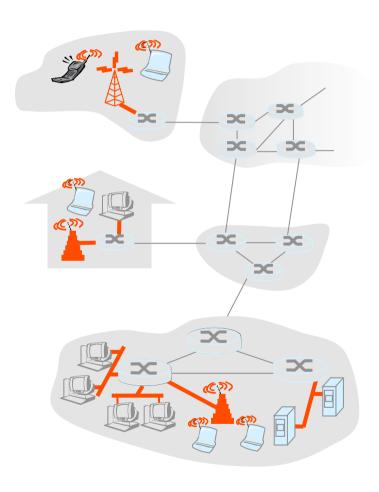
- Forwarding: data plane
 - Directing a data packet to an outgoing link
 - Individual router using a forwarding table
- Routing: control plane
 - Computing the paths the packets will follow
 - Routers talking amongst themselves
 - Individual router creating a forwarding table

Goal: Scalability

- Core router requirements
 - Large number of IP flows
 - High packet rate
 - No 'per-Flow' state

How big is the Internet?

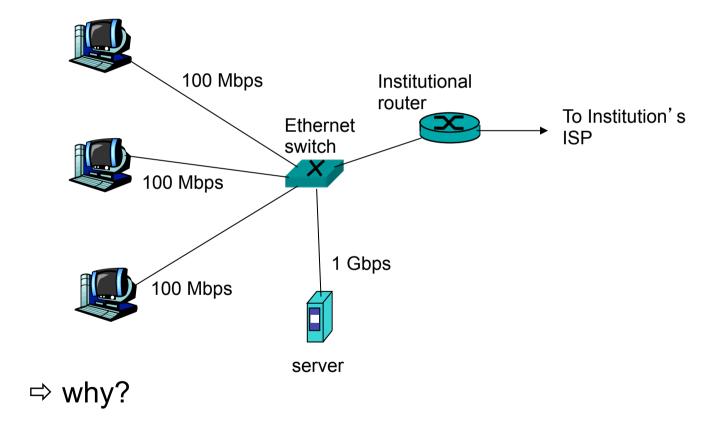
- Many measures:
 - networks (routed entities)
 - domains, host names (but: several names per host!)
 - directly (continuously) attached hosts ("ping' able")
 - IP-connected hosts (including dialin, e.g. PPP)
 - firewalled hosts
 - e-mail reachable
- What is the German Internet?
 - Entities within Germany
 - Entities operated by Germans / German organisations
 - Entities used by Germans / German organisations


Access networks and physical media

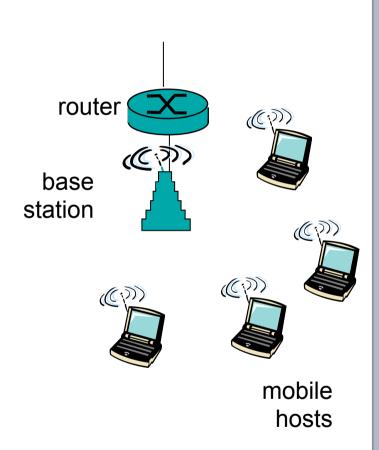
Q: How to connect end systems to edge router?

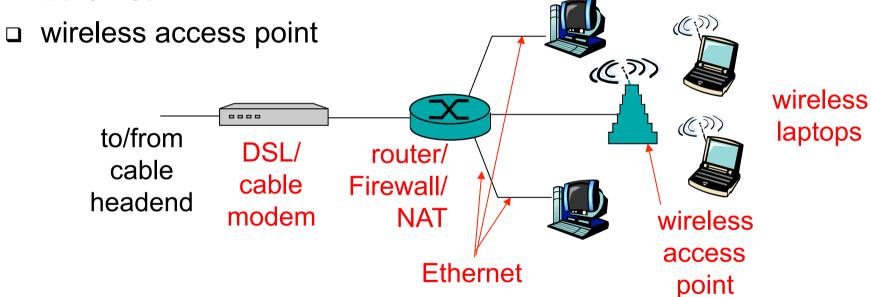
- residential access networks
- institutional access networks (school, company)
- mobile access networks

Relevant:


- bandwidth (bits per second) of access network?
- □ shared or dedicated?

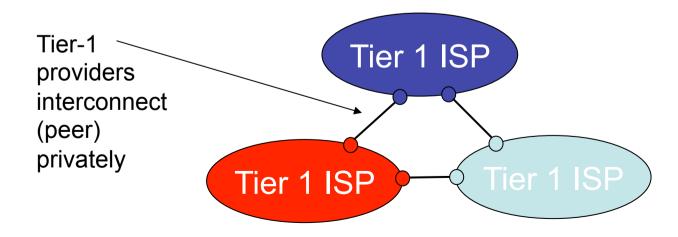
Ethernet Internet access


- □ Typically used in companies, universities, etc
 - 10 Mbs, 100Mbps, 1Gbps, 10Gbps Ethernet
 - Today, end systems typically connect into Ethernet switch

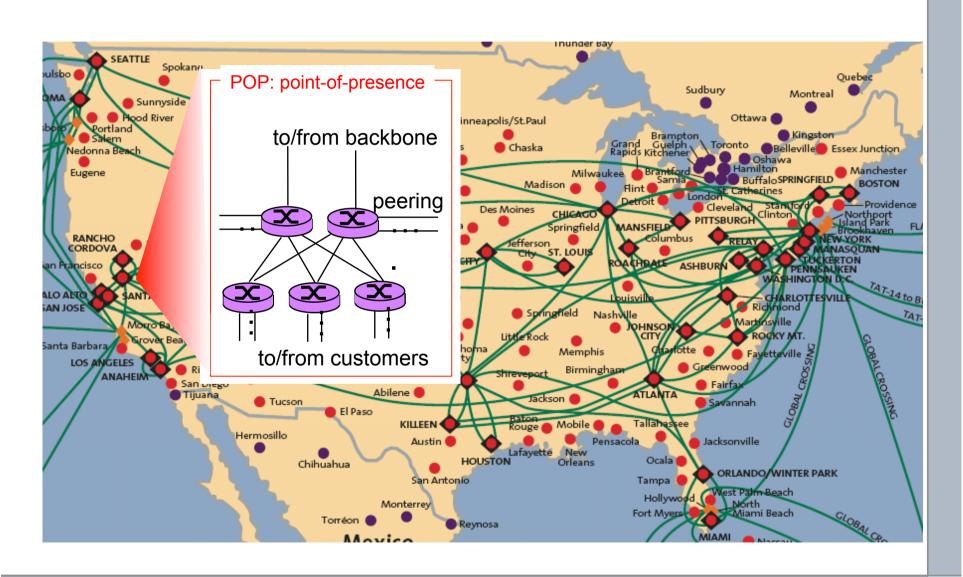

Wireless access networks

- shared wireless access network connects end system to router
 - via base station "access point"
- wireless LANs:
 - 802.11b/g (WiFi): 11 or 54 Mbps
- wide-area wireless access
 - provided by telco operator
 - ~1Mbps over cellular system (HSDPA)
 - next cellular network technology: LTE (10's Mbps) over wide area

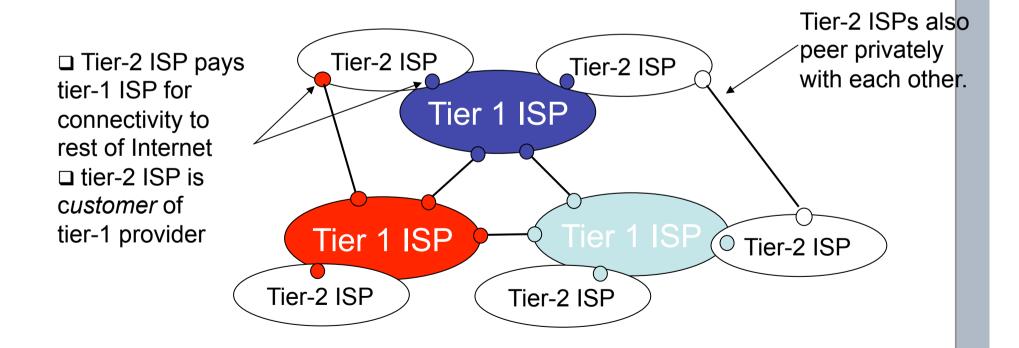
Typical home network components:


- □ DSL or cable modem
- □ router/firewall/NAT
- Ethernet

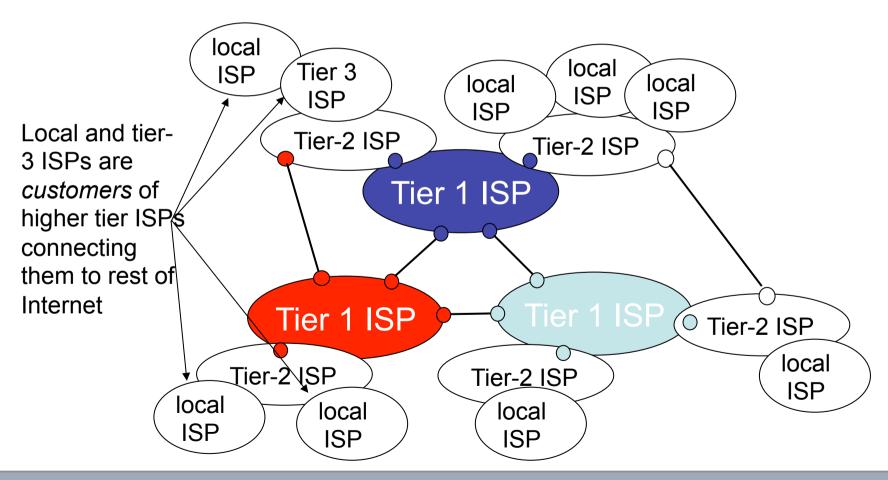
⇒ Research at chair I8: Autonomic Home Networks

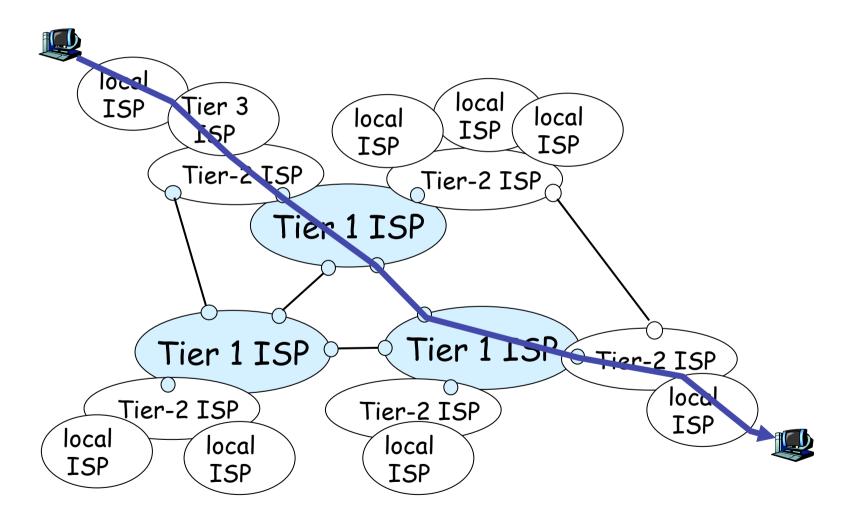


- roughly hierarchical
- at center: "tier-1" ISPs (AT&T, Global Crossing, Level 3, NTT, Qwest, Sprint, Tata, Verizon (UUNET), Savvis, TeliaSonera), national/international coverage
 - treat each other as equals
 - can reach every other network on the Internet without purchasing IP transit or paying settlements

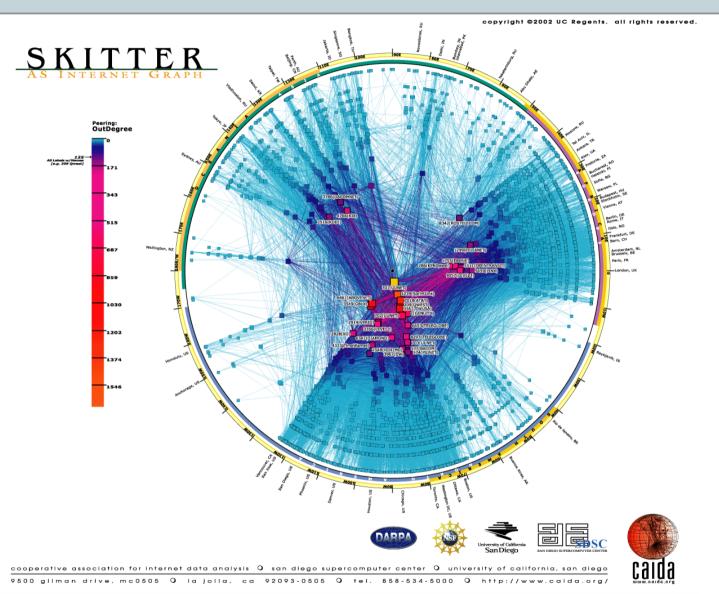


Tier-1 ISP: e.g., Sprint


- □ "Tier-2" ISPs: smaller (often regional) ISPs
 - Connect to one or more tier-1 ISPs, possibly other tier-2
 ISPs

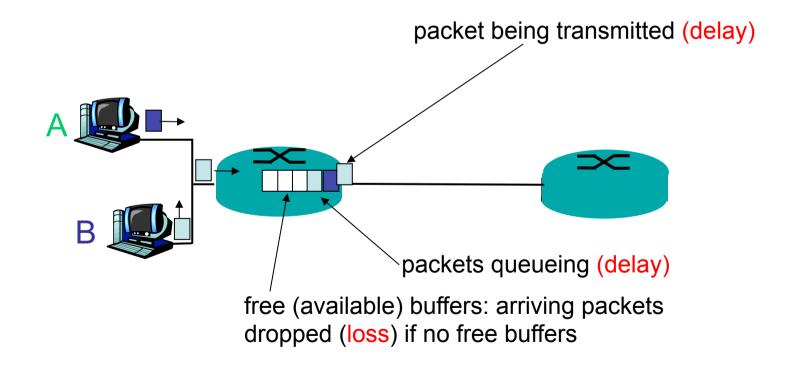

"Tier-3" ISPs and local ISPs

last hop ("access") network (closest to end systems)



a packet passes through many networks!

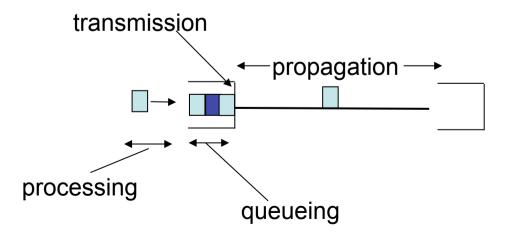
ISP Peering Relations


CAIDA is a program of the University of California's San Diego Supercomputer Center (UCSD/SDSC) skitter is supported by DARPA NGI Cooperative Agreement N66001-98-2-8922, NSF ANIR Grant NCR-9711092 and CAIDA members

Reasons for delay and loss

packets queue in router buffers

- packet arrival rate to link exceeds output link capacity
- packets queue, wait for turn



Background: Sources of packet delay

- 1. Processing delay:
 - Sending: prepare data for being transmitted
 - Receiving: interrupt handling
- 2. Queueing delay
 - time waiting at output link for transmission

- 3. Transmission delay:
- L=packet length (bits)
- R=link bandwidth (bps)
- time to send bits into link = L/R
- 4. Propagation delay:
- d = length of physical link
- s = propagation speed in medium (~2x10⁸ m/sec)
- propagation delay = d/s

Nodal delay

- \Box d_{proc} = processing delay
 - typically a few microseconds (µs) or less
- \Box d_{queue} = queuing delay
 - depends on congestion may be large
- \Box d_{trans} = transmission delay
 - = L/R, significant for low-speed links
- \Box d_{prop} = propagation delay
 - a few microseconds to hundreds of msecs

$$d_{\text{nodal}} = d_{\text{proc}} + d_{\text{queue}} + d_{\text{trans}} + d_{\text{prop}}$$

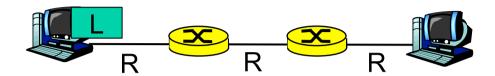
Impact Analysis: Advances in Network Technology

Data rate	Delay (1bit)	Length (1bit)	Delay (1kbyte)	Length (1kbyte)
1 Mbit/s	1 us	200 m	8 ms	1600 km
10 Mbit/s	100 ns	20 m	0,8 ms	160 km
100 Mbit/s	10 ns	2 m	80 us	16 km
1 Gbit/s	1 ns	0,2 m	8 us	1600 m
10 Gbit/s	100 ps	0,02 m	0,8 us	160 m
100 Gbit/s	10 ps	0,002 m	80 ns	16 m

Assessment

- Transmission delay becomes less important
 ⇒ over time; in the core
- Distance becomes more important
 ⇒ matters for communication beyond data center
- Network adapter latency less important
 ⇒ Latency of communication software becomes important

Propagation Delay


- □ Propagation speed: 2x10⁸ m/sec
- \Box Transmission of 625 byte (= 5000 bit): t= L/R=5000 / 1Gbit/s = 5 us

	Propagation Delay	Transmission	CPU cycles per packet	per byte
Distance		Delay (625 byte)	(1 GHz)	(1 GHz)
100 m	500 ns	10 Gbit/s	500	<1
1 km	5 us	1 Gbit/s	5.000	8
10 km	50 us	100 Mbit/s	50.000	80
100 km	500 us	10 Mbit/s		800
1.000 km	5 ms	1 Mbit/s		8.000
10.000 km	50 ms	100 Kbit/s		80.000

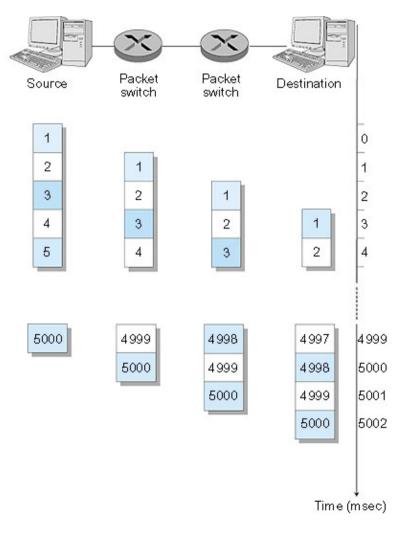
□ Suggestion for homework exercise: plot graphs

Store-and-Forward vs. Circuit Switching

- Takes L/R seconds to transmit (push out) packet of L bits on to link or R bps
- Entire packet must arrive at router before it can be transmitted on next link: store and forward
- □ delay = 3L/R

Example: Large Message L

Circuit Switching:


- \Box L = 7.5 Mbit
- \square R = 1.5 Mbit/s
- □ Transmission delay = 5 s

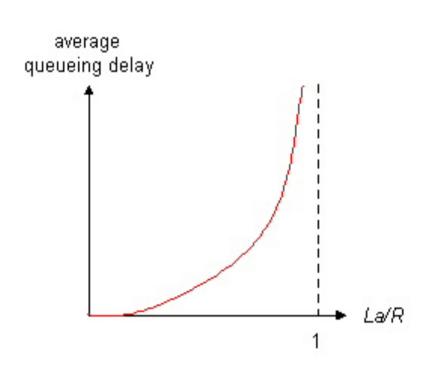
Store-and-Forward:

- \Box L = 7.5 Mbit
- \square R = 1.5 Mbit/s
- □ Transmission delay = 15 s

Packet Switching: Message Segmenting

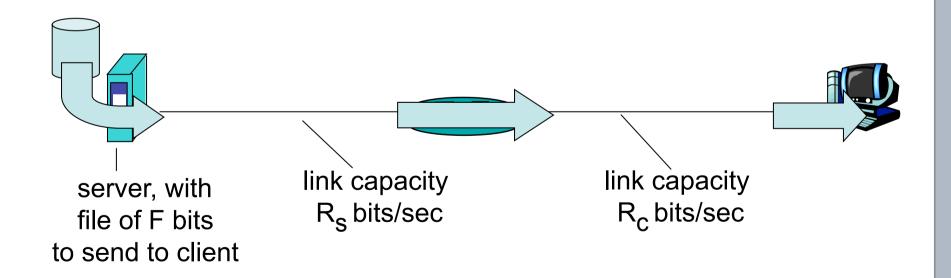
Now break up the message into 5000 packets

- □ Each packet 1,500 bits
- 1 msec to transmit packet on one link
- pipelining: each link works in parallel
- □ Delay reduced from 15 sec to 5.002 sec (as good as circuit switched)
- Advantages over circuit switching?
- Drawbacks (of packet vs. Message)

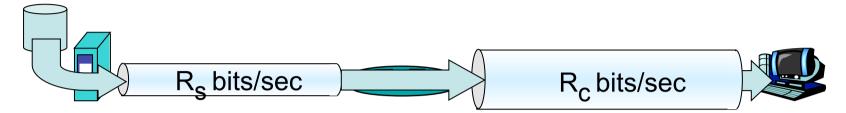


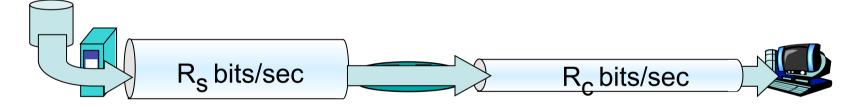
Queueing delay (revisited)

- □ R=link bandwidth (bit/s)
- □ L=packet length (bit)
- □ a=average packet arrival rate


traffic intensity = a L/R

- a L/R ~ 0: average queuing delay small
- □ a L/R → 1: delays become large
- □ a L/R > 1: more "work"
 arriving than can be serviced,
 average delay infinite!


- throughput: rate (bits/time unit) at which bits transferred between sender/receiver
 - instantaneous: rate at given point in time
 - average: rate over longer period of time



Throughput (more)

bottleneck link

link on end-end path that constrains end-end throughput

⇒ measurement challenge for networks with many nodes: identify bottleneck interfaces, e.g. with packet-pair measurements

- What is the role of header lengths?
- What is the role of header compression?
- What is the cost of tunneling?
- What are the benefits of overprovisioning?
- Can you "imagine" a visualisation of packets being transmitted over different types of links?

- Why is circuit switching expensive?
- Why is packet switching cheap?
- Is best effort packet switching able to carry voice communication?
- □ What happens if we introduce "better than best effort" service?
- □ How can we charge fairly for Internet services: by time, by volume, or flat?
- Who owns the Internet?
- □ You've invented a new protocol. What do you do?
- How does the Internet grow? Exponentially? What is the growth perspective?

Chair for Network Architectures and Services – Prof. Carle Department for Computer Science TU München

Thank you for your attention!

Your Questions?

