
| Please register via www.net.in.tum.de<br>"News / Weihnachtsfeier"                                                                                | <b>News</b> 11.11.11                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
|                                                                                                                                                  | Einladung zur<br>Weihnachtsfeier<br>am 20.12.2011<br>ab 18:00 Uhr in<br>Raum 03.07.023. |
| <ul> <li>Anmeldeformular zur Weihnachtsfeier</li> <li>Anrede:</li> <li>Name:</li> <li>Vorname:</li> <li>E-Mail:</li> <li>Mitbringsel:</li> </ul> |                                                                                         |











| IP addr                           | ess depletion                                 |   |
|-----------------------------------|-----------------------------------------------|---|
| <ul> <li>Allo</li> </ul>          | wing multiple hosts to share a single address | ; |
| Host m                            | obility                                       |   |
| <ul> <li>Relation</li> </ul>      | aying traffic to a host in motion             |   |
| <ul> <li>Securit</li> </ul>       | y concerns                                    |   |
| <ul> <li>Disc</li> </ul>          | arding suspicious or unwanted packets         |   |
| <ul> <li>Determination</li> </ul> | ecting suspicious traffic                     |   |
| Perform                           | nance concerns                                |   |
| <ul> <li>Con</li> </ul>           | trolling how link bandwidth is allocated      |   |
| <ul> <li>Stor</li> </ul>          | ing popular content near the clients          |   |
|                                   |                                               |   |
|                                   |                                               |   |
|                                   |                                               |   |
|                                   |                                               |   |

## Layer Violation Boxes

- Peek into application layer headers
- □ Send certain packets to a different server
- Proxy certain request without being asked
- Rewrite requests

Result: unpredictable behaviour, inexplicable failures
 c.f. RFC 3234

## Properties

### Middleboxes may

Drop, insert or modify packets.

IN2097 - Master Course Computer Networks, WS 2011/2012

- Terminate one IP packet flow and originate another.
- Transform or divert an IP packet flow in some way.
- Middleboxes are never the ultimate end-system of an application session

#### Examples

Network Address Translators

IN2097 - Master Course Computer Networks, WS 2011/2012

- Firewalls
- Traffic Shapers
- Load Balancers

# RFC 3234 - Middleboxes: Taxonomy and Issues

- A middlebox is defined as any intermediary device performing functions other than standard functions of an IP router on the datagram path between a source host and destination host.
- □ Standard IP router: transparent to IP packets
- End-to-end principle: asserts that some functions (such as security and reliability) can only be implemented completely and correctly end-to-end.
- Note: providing an incomplete version of such functions in the network can sometimes be a performance enhancement, but not a substitute for the end-to-end implementation of the function.

IN2097 - Master Course Computer Networks, WS 2011/2012

## Concerns

New middleboxes challenge old protocols. Protocols designed without consideration of middleboxes may fail, predictably or unpredictably, in the presence of middleboxes.

- Middleboxes introduce new failure modes; rerouting of IP packets around crashed routers is no longer the only case to consider. The fate of sessions involving crashed middleboxes must also be considered.
- □ **Configuration** is no longer limited to the two ends of a session; middleboxes may also require configuration and management.
- **Diagnosis** of failures and misconfigurations is more complex.
- IN2097 Master Course Computer Networks, WS 2011/2012

## RFC 3234: Middlebox Classification

- 1. Protocol layer (IP layer, transport layer, app layer, or mixture?)
- Explicit (design feature of the protocol) or implicit (add-on not by the protocol design)
- 3. Single hop vs. multi-hop (can there be several middleboxes?)
- 4. In-line (executed on the datapath) vs. call-out (ancillary box)
- 5. Functional (required by application session) vs. optimising
- 6. Routing vs. processing (change **path** or create side-effect)
- 7. Soft state (session may continue while middlebox rebuilds state) vs. hard state
- 8. Failover (may a session be redirected to alternative box?) vs. restart

### Specific Middleboxes

#### IP Firewalls

Inspects IP and Transport headers

IN2097 - Master Course Computer Networks, WS 2011/2012

- configured policies decide which packets are discarded, e.g.:
  - Disallows incoming traffic to certain port numbers
  - · Disallows traffic to certain subnets
- Does not alter forwarded packets
- Not visible as protocol end-point
- {1 IP layer, 2 implicit, 3 multihop, 4 in-line, 5 functional, 6 routing, 7 hard, 8 restart}
  - Protocol layer (IP layer, transport layer, app layer, or mixture?)
     Explicit (design feature of the protocol) or implicit
  - 3. Single hop vs. multi-hop (can there be several middleboxes?)
  - 4. In-line (executed on the datapath) vs. call-out (ancillary box)
  - 5. Functional (required by application session) vs. optimising
  - 6. Routing vs. processing (change packets or create side-effect)
  - 7. Soft state (session may continue while rebuilding state) vs. hard state
  - 8. Failover (may a session be redirected to alternative box?) vs. restart

IN2097 - Master Course Computer Networks, WS 2011/2012

## Specific Middleboxes

#### Packet classifiers

- classify packets flowing through them according to policy
- either select them for special treatment or mark them
- may alter the sequence of packet flow through subsequent hops, since they control the behaviour of traffic conditioners.
- {1 multi-layer, 2 implicit, 3 multihop, 4 in-line, 5 optimising, 6 processing, 7 soft, 8 failover or restart}
- 1. Protocol layer (IP layer, transport layer, app layer, or mixture?)
- 2. Explicit (design feature of the protocol) or implicit
- 3. Single hop vs. multi-hop (can there be several middleboxes?)
- 4. In-line (executed on the datapath) vs. call-out (ancillary box)
- 5. Functional (required by application session) vs. optimising
- 6. Routing vs. processing (change packets or create side-effect)
- Soft state (session may continue while rebuilding state) vs. hard state
   Failover (may a session be redirected to alternative box?) vs. restart

IN2097 - Master Course Computer Networks, WS 2011/2012

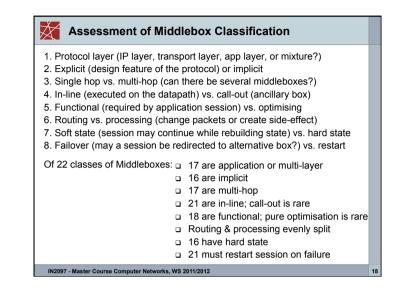
### Specific Middleboxes

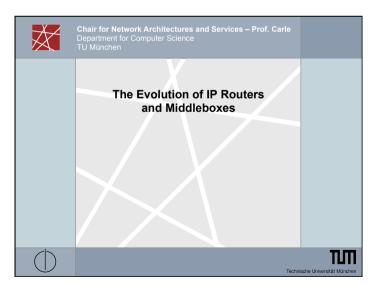
#### Proxies

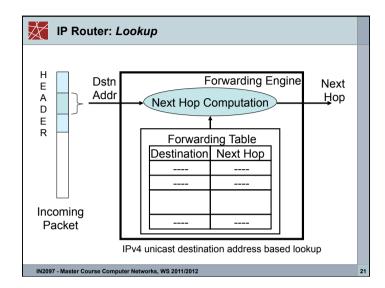
- Intermediary program that acts as client and server
- Make requests on behalf of client and then serves result
- Application Firewalls
  - Act as a protocol end point and relay (e.g., Web proxy)
  - May

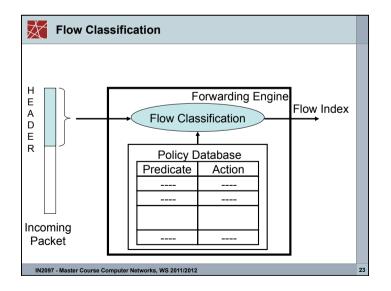
(1) implement a "safe" subset of the protocol,
 (2) perform extensive protocol validity checks,

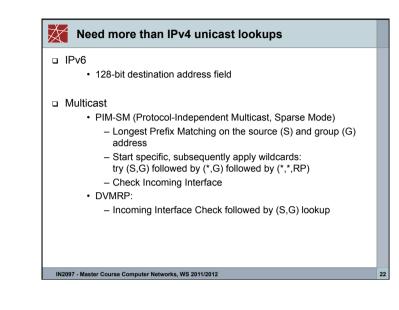
(3) use implementation methodology for preventing bugs,


(4) run in an insulated, "safe" environment, or


(5) use combination of above

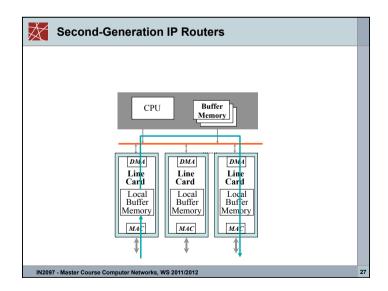

| Middlebox Types according                              | to RFC 3234                                  |   |
|--------------------------------------------------------|----------------------------------------------|---|
| 1. NAT                                                 | 12. gatekeepers /<br>session control boxes   |   |
| 2. NAT-PT                                              | 13. transcoders                              |   |
| 3. SOCKS gateway                                       |                                              |   |
| 4. IP tunnel endpoints                                 | 14. (Web or SIP) proxies                     |   |
| 5. packet classifiers, markers,                        | 15. (Web) caches                             |   |
| schedulers                                             | 16. modified DNS servers                     |   |
| 6. transport relay                                     | 17. content and applications                 |   |
| <ol><li>TCP performance enhancing proxies</li></ol>    |                                              |   |
| 8. load balancers that divert/munge<br>packets         | 18. load balancers that<br>divert/munge URLs |   |
| 9. IP firewalls                                        | 19. application-level                        |   |
| 10. application firewalls                              | interceptors                                 |   |
| 11. application-level gateways                         | 20. application-level multicast              |   |
| bold - act per packet                                  | 21. involuntary packet                       |   |
| <ul> <li>do not modify application payload</li> </ul>  | redirection                                  |   |
| - do not insert additional packets                     | 22. anonymizers                              |   |
| IN2097 - Master Course Computer Networks, WS 2011/2012 | -                                            | 1 |

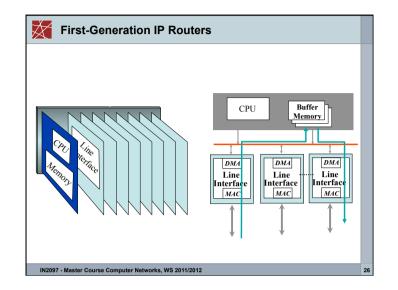

### Assessment

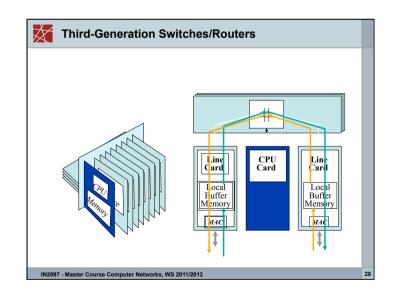

- Although the rise of middleboxes has negative impact on the end to end principle at the packet level, it is still a desirable principle of applications protocol design.
- Future application protocols should be designed in recognition of the likely presence of middleboxes (e.g. network address translation, packet diversion, and packet level firewalls)
- Approaches for failure handling needed
  - soft state mechanisms
  - rapid failover or restart mechanisms
- Common features available to many applications needed
  - Middlebox discovery and monitoring
  - Middlebox configuration and control
  - Routing preferences
  - Failover and restart handling
- Security
  IN2097 Master Course Computer Networks, WS 2011/2012

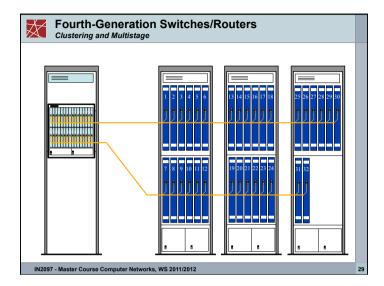








| _                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------|
| Regard traffic from AS#33 as `platinum-grade'                                                                                    |
| Access Control Lists                                                                                                             |
| deny tcp host 1.1.1.1 eq 68 host 2.2.2.2 eq 34                                                                                   |
| Committed Access Rate                                                                                                            |
| <ul> <li>Rate limit WWW traffic from interface#739 to 10Mbps</li> </ul>                                                          |
| Policy-based Routing                                                                                                             |
| <ul> <li>Route all voice traffic through specific MPLS path</li> </ul>                                                           |
| Peering Arrangements                                                                                                             |
| <ul> <li>Restrict the total amount of traffic of precedence 7 from<br/>MAC address N to 20 Mbps between 10 am and 5pm</li> </ul> |
| Accounting and Billing                                                                                                           |
| Generate hourly reports of traffic from MAC address M                                                                            |
|                                                                                                                                  |

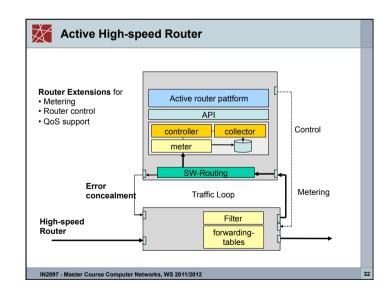
|            |                  | y and Packe      |                |                          |
|------------|------------------|------------------|----------------|--------------------------|
|            | Transm.<br>Delay | Transm.<br>Delay | Packet<br>Rate | CPU cycles<br>per packet |
| Data rate  | (1kbyte)         | (125 byte)       | (125 byte)     | (1 GHz)                  |
| 1 Mbit/s   | 8 ms             | 1 ms             | 1 Kpps         | 10^6                     |
| 10 Mbit/s  | 0,8 ms           | 100 us           | 10 Kpps        | 100.000                  |
| 100 Mbit/s | 80 us            | 10 us            | 100 Kpps       | 10.000                   |
| 1 Gbit/s   | 8 us             | 1 us             | 1 Mpps         | 1.000                    |
| 10 Gbit/s  | 0,8 us           | 100 ns           | 10 Mpps        | 100                      |
| 100 Gbit/s | 80 ns            | 10 ns            | 100 Mpps       | 10                       |
|            |                  |                  |                |                          |
|            |                  |                  |                |                          |
|            |                  |                  |                |                          |
|            |                  |                  |                |                          |
|            |                  |                  |                |                          |
|            |                  |                  |                |                          |

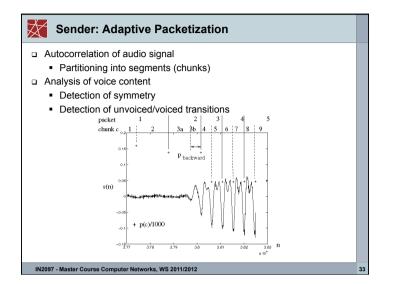


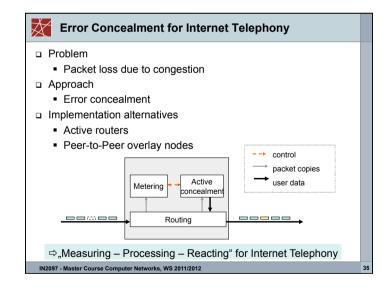


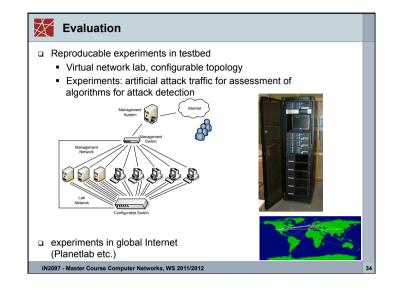





| Internet Trends and Innovative Concepts                                                                                                                                                                                                                                                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Innovative approaches</li> <li>Inspection-and-action boxes (Katz - UC Berkeley)</li> <li>Knowledge plane (Clark - MIT)</li> <li>Autonomic Networking (c.f. Dagstuhl perspectives seminar:<br/>Carle, Katz, Plattner)</li> <li>NSF GENI (Global Environment for Networking Innovations)<br/>FIND (Future Internet Network Design)</li> </ul> |
| <ul> <li>□ Relevant components</li> <li>Instrumentation of the network</li> <li>Intelligent processing</li> <li>Initiating actions based on derived information</li> <li>⇒ Concept "Measuring – Processing – Reacting"</li> </ul>                                                                                                                    |


31


- □ Example use case
  - Quality improvements for Internet telephony


IN2097 - Master Course Computer Networks, WS 2011/2012

