

Chair for Network Architectures and Services – Prof. Carle Department of Computer Science TU München

Master Course Computer Networks IN2097 Lecture starts at 10:15

Prof. Dr.-Ing. Georg Carle Christian Grothoff, Ph.D.

Chair for Network Architectures and Services Department of Computer Science Technische Universität München http://www.net.in.tum.de

Outline - Introductory lession

- □ Knowing each other
 - Who studies what?
 - What ist your background?
- □ Learning Outcomes
- □ Course Outline
- Organisational Formalities
- □ Overview
- Recapitulation

□ Who is new at TUM?

□ Who studies what?

- Diploma degree?
- Master in Informatics?
- Master in Informatics English Track?
- Master in Information Systems [Wirtschaftsinformatik]?
- Master in Communications Engineering MSCE?
- Other Master courses?
- Bachelor in Informatics?
- Bachelor in Information Systems [Wirtschaftsinformatik]?
- Other courses?

□ Which previous relevant courses?

- IN0010 Grundlagen Rechnernetze und Verteilte Systeme?
- Other Courses in Computer Networks?
- iLab (Internet Lab)?
- Other Networking Lab courses?
- What else?
- □ Other related courses?
 - Network Security?
 - Peer-to-Peer Communications and Security?
- □ Other relevant skills?
 - C programming skills?
 - Setting up a (virtualized) unix / linux server?

Intended Learning Outcomes and Competences

□ Goals of the course

- Learn to take responsibility for yourself
- Think about the topics (do not repeat content of theses slides without deeper understanding)
- Learn to formulate and present technical problems
- Understand the principles
 - What is the essence to be remembered in some years?
 - What would you consider suitable questions in an exam?
- Learn from practical project performed during course

- □ Knowlege
 - Being able to reproduce facts
- Understanding
 - Being able to explain properties with own words
- □ Applying
 - apply known methods to solve questions
- □ Analyzing
 - Identifying the inherent structure of a complex system
- Synthesis
 - Creating new solutions from known elements
- □ Assessment
 - Identifying suitable criteria and perform assessment

Learning Outcomes

- what students are expected to acquire from the course

- Knowledge, Understanding, Applying
 - protocols: application layer, transport layer, network layer, data link layer
 - concepts:

measurements, signalling, QoS, resilience

- ⇒lectures, exercise questions final examination
- Applying, Analyzing, Synthesis, Assessment
 - special context: IPv6 vs. IPv4, DNS, tunneling
 - tools: svn, measurement tools, ...
 - methods: plan, configure, administer system and network, measure, program, reflect

⇒course project

- □ Part 1: Internet protocols
 - 1. Overview on Computer Networks
 - 2. Application Layer
 - 3. Transport Layer
 - 4. Network Layer
 - 5. Link Layer
- Part 2: Advanced Concepts
 - 6. Node Architectures and Mechanisms
 - 7. Quality of Service
 - 8. Measurements
 - 9. Signalling
 - 10. Resilience
 - 11. Design Principles and Future Internet

 Significant parts of Part 1 of this lecture are based on the book

Computer Networking: A Top Down Approach , 5th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2009.

 The lecture is based to a significant extent on slides by Jim Kurose and Keith Ross

Jim Kurose University of Massachusetts, Amherst

Keith Ross Polytechnic Institute of New York University

KUROSE • ROSS

- □ Time slots
 - Friday, 10:15-11.45, MI H2
 - Monday, 16:15-17.45, MI H2
- □ TUMonline: registration required (for exam registration + Email)
- Students are requested to subscribe by October 30, 2011 in groups of two for project work at

http://www.net.in.tum.de/en/teaching/ws1011/

vorlesungen/masterkurs-rechnernetze/

 \Rightarrow link to registration form for svn access

Questions and Answers / Office hours

- Prof. Dr. Georg Carle, carle@net.in.tum.de
 - After the course and upon appointment (typically Thursday 11-12)
- Christian Grothoff, Ph.D., grothoff@net.in.tum.de
 - Drop in or by appointment.
- Course Material
 - Slides made available online (may be updated during the course).

- □ Course project
 - will be graded
 - 50% of final grade
- □ Final exam
 - 50% of final grade
- Rules for concerning examination and grading will be fixed before registration for the exam

Chair for Network Architectures and Services – Prof. Carle Department of Computer Science TU München

□ DNS

u Tunneling

□ IPv4

□ IPv6

IN2097 - Master Course Computer Networks, WS 2011/2012

Chapter: Transport Layer Services

- □ Transport-layer services
- Multiplexing and demultiplexing
- Connectionless transport: UDP
- Connection-oriented transport: TCP
 - segment structure
 - reliable data transfer
 - flow control
 - connection management
- □ TCP congestion control

Two competing sessions:

- □ Additive increase gives slope of 1, as throughout increases
- multiplicative decrease decreases throughput proportionally

- Routing algorithms
 - Link state
 - Distance Vector
 - Hierarchical routing
- **D** Routing in the Internet
 - RIP
 - OSPF
 - BGP
- Broadcast and multicast routing

□ First-Generation IP Routers

 One of several NAT traversal solutions: relaying (e.g. used in Skype)

- NATed client establishes connection to relay node
- External client connects to relay node
- relay node forwards packets between two connections

Network Measurements

- □ Introduction
- □ Architecture & Mechanisms
- Protocols
 - IPFIX (Netflow Accounting)
 - PSAMP (Packet Sampling)
- Scenarios

- Standardized data export
 Monitoring Software
 HW adaptation, [filtering]
- □ OS dependent interface (BSD)
- Network interface

(a) Self-Similar Process

(b) Non-Self-Similar Process

Quality-of-Service Support

- □ Link virtualization: ATM
- □ Providing multiple classes of service
- Providing Quality-of-Service (QoS) guarantees
- QoS Architectures
 - Integrated Services
 - Differentiated Services

signaling: exchange of messages among network entities to enable (provide service) to connection/call

- □ before, during, after connection/call
 - call setup and teardown (state)
 - call maintenance (state)
 - measurement, billing (state)
- □ between
 - end-user <-> network
 - end-user <-> end-user
 - network element <-> network element
- □ examples
 - Q.921 and SS7 (Signaling System no. 7): telephone network
 - Q.2931: ATM
 - RSVP (Resource Reservation Protocol)
 - H.323: Internet telephony
 - **SIP** (Session Initiation Protocol): Internet telephony

Voice over IP Example

Caller jim@umass.edu places a call to keith@upenn.edu (1) Jim sends INVITE message to umass SIP proxy.

(2) Proxy forwards request to upenn registrar server.

(3) upenn server returns redirect response,

indicating that it should try keith@eurecom.fr

(4) umass proxy sends INVITE to eurecom registrar.

(5) eurecom registrar forwards INVITE to 197.87.54.21, which is running keith's SIP client.

(6-8) SIP response sent back

(9) media sent directly between clients.

Note: SIP ack messages not shown.

- Definition:
 - "Resilience is the persistence of <u>dependability</u> when facing <u>changes</u>."
- □ Changes can be particularly *attacks*

- Network design principles
 - common themes: indirection, virtualization, multiplexing, randomization, scalability
 - implementation principles
 - network architecture: the big picture, synthesis
- □ Future Internet approaches