

Chair for Network Architectures and Services – Prof. Carle Department for Computer Science TU München

Master Course Computer Networks IN2097

Prof. Dr.-Ing. Georg Carle Christian Grothoff, Ph.D.

Chair for Network Architectures and Services Institut für Informatik Technische Universität München http://www.net.in.tum.de

Technische Universiteit München

Chair for Network Architectures and Services – Prof. Carle Department for Computer Science TU München

Providing multiple Classes of Service

\bigcirc

TLIT Technische Universitet, Münche

X **Providing Multiple Classes of Service** Traditional Internet approach: making the best of best effort service one-size fits all service model Alternative approach: multiple classes of service partition traffic into classes network treats different classes of traffic differently (analogy: VIP service vs regular service) □ granularity: differential service among multiple classes, not among **₽**→/ 0111 individual connections □ history: ToS bits in IP header

\mathbf{X}

Scheduling And Policing Mechanisms

- scheduling: choose next packet to send on link
- FIFO (first in first out) scheduling: send in order of arrival to queue

⇒real-world example?

- discard policy: if packet arrives to full queue: who to discard?
 - Tail drop: drop arriving packet
 - · priority: drop/remove on priority basis
 - random: drop/remove randomly

Scheduling Policies: still more

round robin scheduling:

- □ multiple classes
- cyclically scan class queues, serving one from each class (if available)

Scheduling Policies: more

Priority scheduling: transmit highest priority queued packet

- □ multiple *classes*, with different priorities
 - class may depend on marking or other header info, e.g. IP source/dest, port numbers, etc..

IN2097 - Master Course Computer Networks, WS 2010/2011

11

Scheduling Policies: still more

Weighted Fair Queuing:

- generalized Round Robin
- a each class gets weighted amount of service in each cycle
- \square when all classes have queued packets, class i will receive a bandwidht ratio of $w_i / \Sigma w_i$

IN2097 - Master Course Computer Networks, WS 2010/2011

12

10

- (Long term) Average Rate: how many packets can be sent per unit time (in the long run)
 - crucial question: what is the interval length: 100 packets per sec or 6000 packets per min have same average!
- Peak Rate: e.g., 6000 packets per min. (ppm) avg.; 1500 pps peak rate
- (Max.) Burst Size: max. number of packets sent consecutively

IN2097 - Master Course Computer Networks, WS 2010/2011

\mathbf{X}

Policing Mechanisms (more)

token bucket, WFQ combined provide guaranteed upper bound on delay, i.e., QoS guarantee

13

Policing Mechanisms

<u>Token Bucket:</u> limit input to specified Burst Size and Average Rate.

- □ bucket can hold b tokens \Rightarrow limits maximum burst size
- □ tokens generated at rate *r* token/sec unless bucket full
- over interval of length t: number of packets admitted less than or equal to (r t + b).

IN2097 - Master Course Computer Networks, WS 2010/2011

IETF Differentiated Services

- □ want "qualitative" service classes
 - "behaves like a wire"
 - relative service distinction: Platinum, Gold, Silver
- scalability: simple functions in network core, relatively complex functions at edge routers (or hosts)
 - in contrast to IETF Integrated Services: signaling, maintaining per-flow router state difficult with large number of flows
- don't define define service classes, provide functional components to build service classes

Classification and Conditioning

- Packet is marked in the Type of Service (TOS) in IPv4, and Traffic Class in IPv6
- 6 bits used for Differentiated Service Code Point (DSCP) and determine PHB that the packet will receive
- □ 2 bits can be used for congestion notification: Explicit Congestion Notification (ECN), RFC 3168

Edge-router Packet Marking

IN2097 - Master Course Computer Networks, WS 2010/2011

19

Classification and Conditioning

May be desirable to limit traffic injection rate of some class:

- □ user declares traffic profile (e.g., rate, burst size)
- traffic metered, shaped or dropped if non-conforming

Forwarding (PHB)

IN2097 - Master Course Computer Networks, WS 2010/2011

- PHB result in a different observable (measurable) forwarding performance behavior
- PHB does not specify what mechanisms to use to ensure required PHB performance behavior
- Examples:
 - Class A gets x% of outgoing link bandwidth over time intervals of a specified length
 - Class A packets leave first before packets from class B

Forwarding (PHB)

PHBs being developed:

- Expedited Forwarding: packet departure rate of a class equals or exceeds specified rate
 - logical link with a minimum guaranteed rate
- Assured Forwarding: e.g. 4 classes of traffic
 - each class guaranteed minimum amount of bandwidth and a minimum of buffering
 - packets each class have one of three possible drop preferences; in case of congestion routers discard packets based on drop preference values

IN2097 - Master Course Computer Networks, WS 2010/2011

Chair for Network Architectures and Services – Prof. Carle Department for Computer Science TU München

The Evolution of IP Routers

Tachnische Universität Mür

21

First-Generation IP Routers

Need more than IPv4 unicast lookups

Multicast

- PIM-SM (Protocol-Independent Multicast, Sparse Mode)
 - Longest Prefix Matching on the source (S) and group (G) address
 - Start specific, subsequently apply wildcards: try (S,G) followed by (*,G) followed by (*,*,RP)
 - Check Incoming Interface
- DVMRP:
 - Incoming Interface Check followed by (S,G) lookup

□ IPv6

128-bit destination address field

IN2097 - Master Course Computer Networks, WS 2010/2011

Required Lookup Performance

Line	Line Rate	Pkt-size=40B	Pkt-size=240B
T1	1.5Mbps	4.68 Kpps	0.78 Kpps
OC3	155Mbps	480 Kpps	80 Kpps
OC12	622Mbps	1.94 Mpps	323 Kpps
OC48	2.5Gbps	7.81 Mpps	1.3 Mpps
OC192	10 Gbps	31.25 Mpps	5.21 Mpps

Gigabit Ethernet (84B packets): 1.49 Mpps

IN2097 - Master Course Computer Networks, WS 2010/2011

41

Method: CAMs (Content-Addressable Memories)

Method: Compacting Forwarding Tables

- Optimize the data structure to store 40,000 routing table entries in about 150-160kBytes.
- Rely on the compacted data structure to be residing in the primary or secondary cache of a fast processor.
- Achieves e.g. 2Mpps on a Pentium.

Disadvantages

- Only 60% actually cached
- Scalability to larger tables
- Handling updates is complex

Advantages

 Good software solution for low speeds and small routing tables.

IN2097 - Master Course Computer Networks, WS 2010/2011

