

Master Course Computer Networks IN2097

Prof. Dr.-Ing. Georg Carle Christian Grothoff, Ph.D.

Chair for Network Architectures and Services
Institut für Informatik
Technische Universität München
http://www.net.in.tum.de

6: Node Architectures

- 6.1 Virtual Circuit and Datagram Networks
- □ 6.2 What's inside a Router
- □ 6.3 Link virtualization: ATM, MPLS

Chapter 6: Node Architectures

Our goals:

- understand main components of node architectures
- understand differences of packet-oriented and circuit-oriented protocol architectures
- understand principles for switching and virtualisation
- understand instantiations and implementations

IN2097 - Master Course Computer Networks, WS 2010/2011

.

X

Classification of Switches

- Packet vs. circuit switches
 - packets have headers and samples don't
- Connectionless vs. connection oriented
 - connection oriented switches need a call setup
 - setup is handled in control plane by switch controller
 - connectionless switches deal with self-contained datagrams

	Connectionless (router)	Connection-oriented (switching system)
Packet switch	Internet router	ATM switching system
Circuit switch		Telephone switching system

Requirements

- □ Capacity of a switch is the maximum rate at which it can move information, assuming all data paths are simultaneously active
- □ Primary goal: maximize capacity
 - subject to cost and reliability constraints
- Circuit switch must reject call if can't find a path for samples from input to output
 - goal: minimize call blocking
- □ Packet switch must reject a packet if it can't find a buffer to store it awaiting access to output trunk
 - goal: minimize packet loss
- Don't reorder packets

IN2097 - Master Course Computer Networks, WS 2010/2011

5

Connection setup

- □ In addition to routing and forwarding, 3rd important function in some network architectures:
 - ATM, frame relay, X.25
- before datagrams flow, two end hosts and intervening switches/routers establish virtual connection
 - switches/routers get involved
- network vs transport layer connection service:
 - network: between two hosts (may also involve intervening switches/routers in case of VCs)
 - transport: between two processes

IN2097 - Master Course Computer Networks, WS 2010/2011

.

Network service model

Q: What *service model* for "channel" transporting datagrams from sender to receiver?

Example services for individual datagrams:

- guaranteed delivery
- guaranteed delivery with less than 40 msec delay

Example services for a flow of datagrams:

- □ in-order datagram delivery
- guaranteed minimum bandwidth to flow
- restrictions on changes in inter-packet spacing

Network layer service models

Network	Service	Guarantees ?				Congestion
Architecture	Model	Bandwidth	Loss	Order	Timing	feedback
Internet	best effort	none	no	no	no	no (inferred via loss)
ATM	CBR	constant rate	yes	yes	yes	no congestion
ATM	VBR	guaranteed rate	yes	yes	yes	no congestion
ATM	ABR	guaranteed minimum	no	yes	no	yes
ATM	UBR	none	no	yes	no	no

IN2097 - Master Course Computer Networks, WS 2010/2011

7

IN2097 - Master Course Computer Networks, WS 2010/201

Network layer connection and connection-less service

- datagram network provides network-layer connectionless service
- □ VC network provides network-layer connection service
- analogous to the transport-layer services, but:
 - service: host-to-host
 - no choice: network provides one or the other
 - implementation: in network core

IN2097 - Master Course Computer Networks, WS 2010/2011

9

\nearrow

Virtual circuits

"source-to-destination path behaves much like telephone circuit"

- performance-wise
- network actions along source-to-destination path
- □ call setup, teardown for each call before data can flow
- each packet carries VC identifier (not destination host address)
- every router on source-to-destination path maintains "state" for each passing connection
- □ link, router resources (bandwidth, buffers) may be *allocated* to VC (dedicated resources = predictable service)

IN2097 - Master Course Computer Networks, WS 2010/2011

...

VC implementation

a VC consists of:

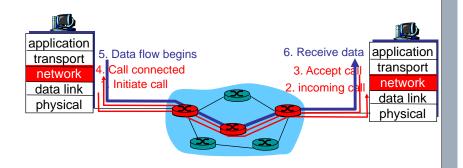
- 1. path from source to destination
- 2. VC numbers, one number for each link along path
- 3. entries in forwarding tables in routers along path
- packet belonging to VC carries VC number (rather than destination address)
- VC number can be changed on each link.
 - New VC number comes from forwarding table

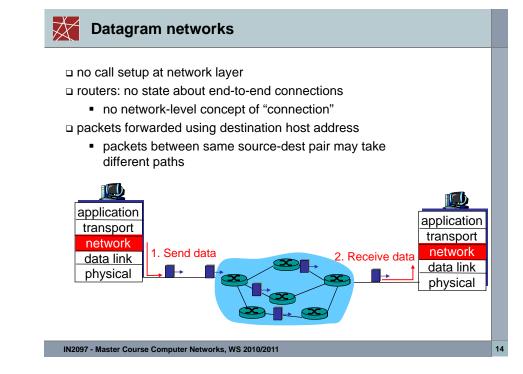
Forwarding table

VC number

12
32
interface
number

Forwarding table in northwest router:


Incoming interface	Incoming VC #	Outgoing interface	Outgoing VC #
1	12	3	22
2	63	1	18
3	7	2	17
1	97	3	87


Routers maintain connection state information!

Virtual circuits: signaling protocols

- used to setup, maintain teardown VC
- □ used in ATM, frame-relay, X.25
- □ not used in today's Internet

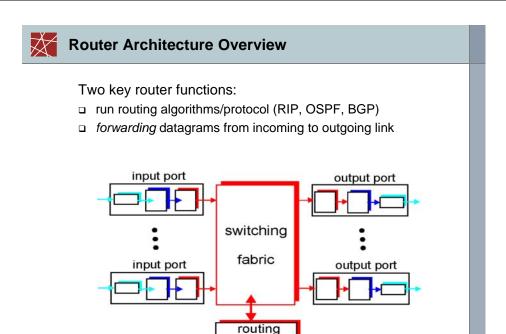
Datagram or VC network: why?

Internet (datagram)

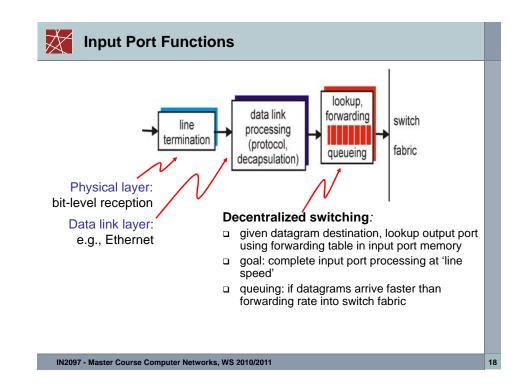
□ data exchange among computers

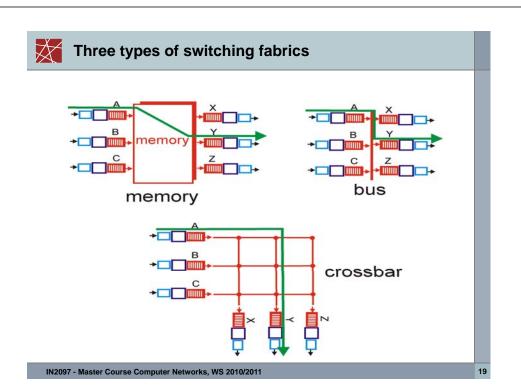
IN2097 - Master Course Computer Networks, WS 2010/2011

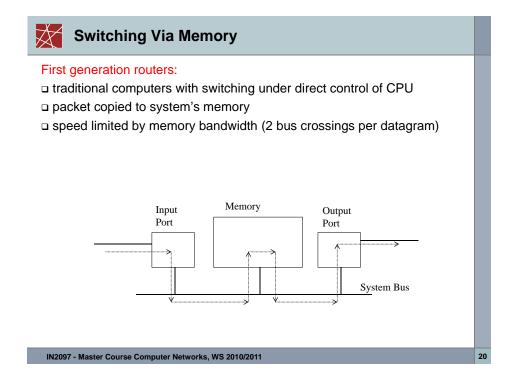
- "elastic" service, no strict timing req.
- □ "smart" end systems (computers)
 - can adapt, perform control, error recovery
 - simple inside network, complexity at "edge"
- □ many link types
 - different characteristics
 - uniform service difficult


ATM (VC)

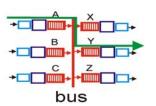
- evolved from telephony
- □ human conversation:
 - strict timing, reliability requirements
 - need for guaranteed service
- □ "dumb" end systems
 - telephones
 - complexity inside network




6: Node Architectures


- 6.1 Virtual Circuit and Datagram Networks
- □ 6.2 What's inside a Router
- □ 6.3 Link virtualization: ATM, MPLS

processor



Switching Via a Bus

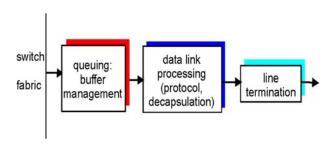
- datagram from input port memory to output port memory via a shared bus
- bus contention: switching speed limited by bus bandwidth
- 32 Gbps bus, Cisco 5600: sufficient speed for access and enterprise routers

IN2097 - Master Course Computer Networks, WS 2010/2011

21

X

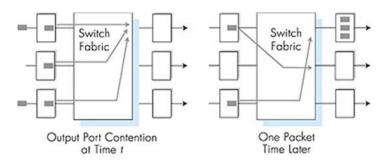
Switching Via An Interconnection Network


- overcome bus bandwidth limitations
- Banyan networks, other interconnection nets initially developed to connect processors in multiprocessor
- advanced design: fragmenting datagram into fixed length cells, switch cells through the fabric.
- □ Cisco 12000: switches 60 Gbps through the interconnection network

IN2097 - Master Course Computer Networks, WS 2010/2011

--

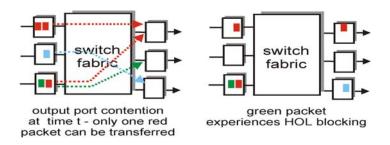
X


Output Ports

- Buffering required when datagrams arrive from fabric faster than the transmission rate
- Scheduling discipline chooses among queued datagrams for transmission

X

Output port queueing


- buffering when arrival rate via switch exceeds output line speed
- queueing (delay) and loss due to output port buffer overflow!

IN2097 - Master Course Computer Networks, WS 2010/2011

Input Port Queuing

- Fabric slower than input ports combined -> queueing may occur at input queues
- □ Head-of-the-Line (HOL) blocking: queued datagram at front of queue prevents others in queue from moving forward
- queueing delay and loss due to input buffer overflow!

IN2097 - Master Course Computer Networks, WS 2010/2011

25

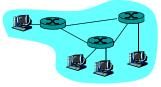
6: Node Architectures

- 6.1 Virtual Circuit and Datagram Networks
- □ 6.2 What's inside a Router
- □ 6.3 Link virtualization: ATM, MPLS

IN2097 - Master Course Computer Networks, WS 2010/2011

26

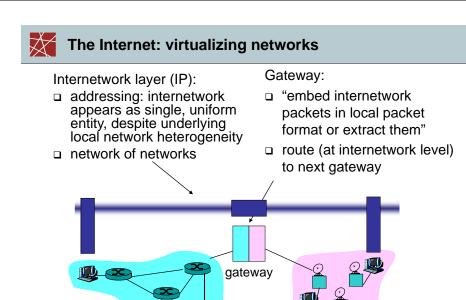
Virtualization of networks


- □ Virtualization of resources: powerful abstraction in systems engineering:
- □ computing examples: virtual memory, virtual devices
 - Virtual machines: e.g., java
 - IBM VM operation system from 1960's/70's
- □ layering of abstractions: don't sweat the details of the lower layer, only deal with lower layers abstractly

The Internet: virtualizing networks

- □ 1974: multiple unconnected nets
 - ARPAnet
 - data-over-cable networks
 - packet satellite network (Aloha protocol)
 - packet radio network

- ... differing in:
 - addressing conventions
 - packet formats
 - error recovery
 - routing


ARPAnet

satellite net

"A Protocol for Packet Network Intercommunication", V. Cerf, R. Kahn, IEEE Transactions on Communications May, 1974, pp. 637-648.

IN2097 - Master Course Computer Networks, WS 2010/2011

IN2097 - Master Course Computer Networks, WS 2010/2011

X

Cerf & Kahn's Internetwork Architecture

- What is virtualized?
- two layers of addressing: internetwork and local network
- new layer (IP) makes everything homogeneous at internetwork layer
- underlying local network technology
 - cable
 - satellite
 - 56K telephone modem
 - today: ATM, MPLS
- ... "invisible" at internetwork layer. Looks like a link layer technology to IP!

IN2097 - Master Course Computer Networks, WS 2010/2011

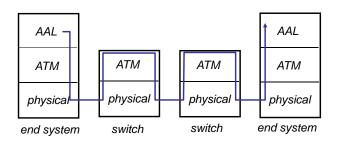
ATM and MPLS

ARPAnet

IN2097 - Master Course Computer Networks, WS 2010/2011

- □ ATM, MPLS separate networks in their own right
 - different service models, addressing, routing from Internet

satellite net


- □ viewed by Internet as logical link connecting IP routers
 - just like dialup link is really part of separate network (telephone network)
- □ ATM, MPLS: of technical interest in their own right

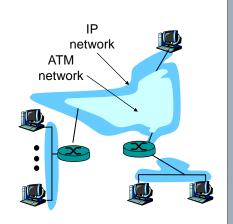
Asynchronous Transfer Mode: ATM

- 1990's/00 standard for high-speed (155Mbps to 622 Mbps and higher) Broadband Integrated Service Digital Network architecture
- □ Goal: integrated, end-end transport of carry voice, video, data
 - meeting timing/QoS requirements of voice, video (versus Internet best-effort model)
 - "next generation" telephony: technical roots in telephone world
 - packet-switching (fixed length packets, called "cells") using virtual circuits

- adaptation layer: only at edge of ATM network
 - data segmentation/reassembly
 - roughly analogous to Internet transport layer
- ATM layer: "network" layer
 - cell switching, routing
- physical layer

IN2097 - Master Course Computer Networks, WS 2010/2011

33

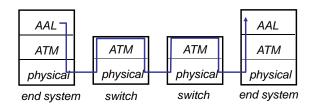

ATM: network or link layer?

Vision: end-to-end transport: "ATM from desktop to desktop"

ATM is a network technology

Reality: used to connect IP backbone routers

- "IP over ATM"
- ATM as switched link layer, connecting IP routers


IN2097 - Master Course Computer Networks, WS 2010/2011

3

X

ATM Adaptation Layer (AAL)

- □ ATM **Adaptation Layer** (AAL): "adapts" upper layers (IP or native ATM applications) to ATM layer below
- □ AAL present **only in end systems**, not in switches
- □ AAL layer segment (header/trailer fields, data) fragmented across multiple ATM cells
 - analogy: TCP segment in many IP packets



X

ATM Adaptation Layer (AAL) [more]

Different versions of AAL layers, depending on ATM service class:

- □ AAL1: for CBR (Constant Bit Rate) services, e.g. circuit emulation
- □ AAL2: for VBR (Variable Bit Rate) services, e.g., MPEG video
- AAL5: for data (eg, IP datagrams)

IN2097 - Master Course Computer Networks, WS 2010/2011

3

Service: transport cells across ATM network

- analogous to IP network layer
- very different services than IP network layer

	Network chitecture	Service Model	Guarantees ?				Congestion
Ar			Bandwidth	Loss	Order	Timing	feedback
_	Internet	best effort	none	no	no	no	no (inferred via loss)
	ATM	CBR	constant	yes	yes	yes	no
			rate				congestion
	ATM	VBR	guaranteed	yes	yes	yes	no
			rate				congestion
	ATM	ABR	guaranteed minimum	no	yes	no	yes
	ATM	UBR	none	no	yes	no	no

IN2097 - Master Course Computer Networks, WS 2010/2011

3/

ATM Layer: Virtual Circuits

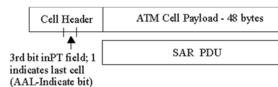
- VC transport: cells carried on VC from source to dest
 - call setup, teardown for each call before data can flow
 - each packet carries VC identifier (not destination ID)
 - every switch on source-dest path maintain "state" for each passing connection
 - link,switch resources (bandwidth, buffers) may be allocated to VC: to get circuit-like perf.
- □ Permanent VCs (PVCs)
 - long lasting connections
 - typically: "permanent" route between to IP routers
- □ Switched VCs (SVC):
 - dynamically set up on per-call basis

IN2097 - Master Course Computer Networks, WS 2010/2011

20

ATM VCs

- Advantages of ATM VC approach:
 - QoS performance guarantee for connection mapped to VC (bandwidth, delay, delay jitter)
- Drawbacks of ATM VC approach:
 - Inefficient support of datagram traffic
 - one PVC between each source/dest pair) does not scale (N*2 connections needed)
 - SVC introduces call setup latency, processing overhead for short lived connections


ATM Layer: ATM cell

- 5-byte ATM cell header
- □ 48-byte payload
 - Why?: small payload -> short cell-creation delay for digitized voice
 - halfway between 32 and 64 (compromise!)

Cell header

Cell format

ATM cell header

- VCI: virtual channel ID
 - will change from link to link thru net
- PT: Payload type (e.g. RM cell versus data cell)
- CLP: Cell Loss Priority bit
 - CLP = 1 implies low priority cell, can be discarded if congestion
- HEC: Header Error Checksum
 - cyclic redundancy check

IN2097 - Master Course Computer Networks, WS 2010/2011

41

X

ATM Physical Layer (more)

Two pieces (sublayers) of physical layer:

- Transmission Convergence Sublayer (TCS): adapts ATM layer above to PMD sublayer below
- Physical Medium Dependent: depends on physical medium being used

TCS Functions:

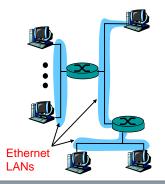
- Header checksum generation: 8 bits CRC
- Cell delineation
- With "unstructured" PMD sublayer, transmission of idle cells when no data cells to send

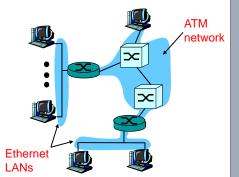
IN2097 - Master Course Computer Networks, WS 2010/2011

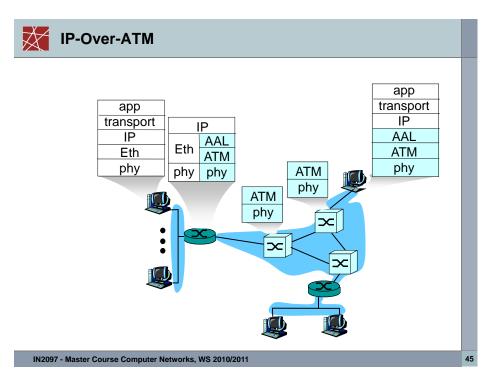
ATM Physical Layer

Physical Medium Dependent (PMD) sublayer

- SONET/SDH: transmission frame structure (like a container carrying bits);
 - bit synchronization;
 - bandwidth partitions (TDM);
 - several speeds: OC3 = 155.52 Mbps; OC12 = 622.08 Mbps;
 OC48 = 2.45 Gbps, OC192 = 9.6 Gbps
- □ **TI/T3**: transmission frame structure (old telephone hierarchy): 1.5 Mbps/ 45 Mbps
- unstructured: just cells (busy/idle)


IP-Over-ATM


Classic IP only


- □ 3 "networks" (e.g., LAN segments)
- MAC (802.3) and IP addresses

IP over ATM

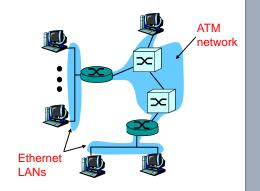
- replace "network" (e.g., LAN segment) with ATM network
- ATM addresses, IP addresses

Datagram Journey in IP-over-ATM Network

□ at Source Host:

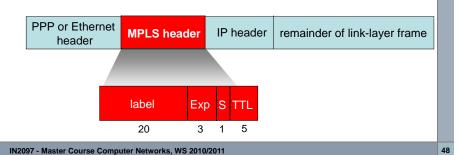
- IP layer maps between IP, ATM dest address (using ARP)
- passes datagram to AAL5
- AAL5 encapsulates data, segments cells, passes to ATM layer
- □ ATM network: moves cell along VC to destination
- at Destination Host:
 - AAL5 reassembles cells into original datagram
 - if CRC OK, datagram is passed to IP

IN2097 - Master Course Computer Networks, WS 2010/2011


AC

IP-Over-ATM

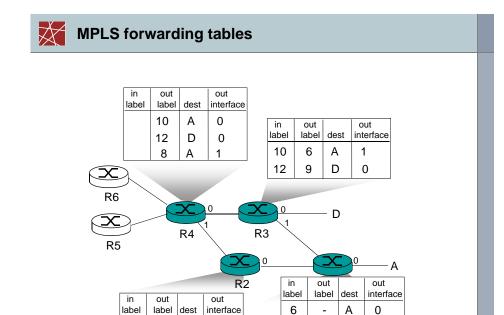
Issues:


- □ IP datagrams into ATM AAL5 PDUs
- from IP addresses to ATM addresses
 - just like IP addresses to 802.3 MAC addresses!

X

Multiprotocol label switching (MPLS)

- initial goal: speed up IP forwarding by using fixed length label (instead of IP address) to do forwarding
 - borrowing ideas from Virtual Circuit (VC) approach
 - but IP datagram still keeps IP address!



MPLS capable routers

- □ a.k.a. label-switched router
- □ forwards packets to outgoing interface based only on label value (don't inspect IP address)
 - MPLS forwarding table distinct from IP forwarding tables
- signaling protocol needed to set up forwarding
 - RSVP-TE
 - forwarding possible along paths that IP alone would not allow (e.g., source-specific routing) !!
 - use MPLS for traffic engineering
- □ must co-exist with IP-only routers

IN2097 - Master Course Computer Networks, WS 2010/2011

49

IN2097 - Master Course Computer Networks, WS 2010/2011

6 A

0

8