Department of Computer Science
TU Munchen

2&4 Chair for Network Architectures and Services — Prof. Carle

Master Course
Computer Networks
IN2097

Prof. Dr.-Ing. Georg Carle
Christian Grothoff, Ph.D.
Dr. Nils Kammenhuber

Chair for Network Architectures and Services
Institut fur Informatik
Technische Universitat Minchen
http://www.net.in.tum.de

;ﬁ"“ Chapter 3: Transport Layer

Our goals:
o understand principles behind transport layer services:

= multiplexing/demultiplexing
= reliable data transfer
= flow control
= congestion control
o learn about transport layer protocols in the Internet:
= UDP: connectionless transport
= TCP: connection-oriented transport
= TCP congestion control

ey .
w4 Chapter 3outline

Transport-layer services
Multiplexing and demultiplexing
Connectionless transport: UDP
Connection-oriented transport: TCP
= segment structure
= reliable data transfer
= flow control
= connection management
a TCP congestion control
o SCTP
o Reliable Multicast

0O 0O 0D O

L XA .
W4q Transport services and protocols

o provide logical communication
between app processes running

netwdiml

on different hosts
o transport protocols run in end “
systems
= send side: breaks app
messages into segments,
passes to network layer
= rcv side: reassembles
segments into messages,

passes to app layer]x == o
o more than one transport protocol ;;N@B /L

available to apps
= |nternet: TCP and UDP

transport

|_network |
physical
L

e | | |
,'ﬁ‘ nternet transport- ayer protoco S

o reliable, in-order delivery

(TCP)

= congestion control
= flow control

= connection setup

a unreliable, unordered
delivery: UDP

= no-frills extension of

“best-effort” IP
o services not available:

= delay guarantees
» bandwidth guarantees

data link

[u.
transport

physical

physical J™network
(Y] | datalink | " nefwork |-« -
j_;@ physical | [“dafalink | -
A — e

L XA Q
w4q Chapter 3outline

Transport-layer services
Multiplexing and demultiplexing
Connectionless transport: UDP
Connection-oriented transport: TCP
= segment structure

= reliable data transfer

= flow control

= connection management

o TCP congestion control

o SCTP

o Reliable Multicast

| R A

%4 Multiplexing/demultiplexing

Demultiplexing at rcv host:

delivering received segm
to correct socket

ents

Multiplexing at send host:

gathering data from multiple
sockets, enveloping data with
header (later used for
demultiplexing)

[] =socket O = process
(P1) application 2
transport '?ans ort transport
network network network
link ink link
physical physicat physical
host 1 host 2 host 3

ey, . .
W4q How demultiplexing works

o host receives IP datagrams

= each datagram has source IP
address, destination IP
address
= each datagram carries 1
transport-layer segment
= each segment has source,
destination port number
o host uses IP addresses & port
numbers to direct segment to
appropriate socket

+«— 32 bits ———

source port # dest port #

other header fields

application
data
(message)

TCP/UDP segment format

¥4 Connectionless demultiplexing

L XA .
24q Connectionless demux (cont)

o Create sockets with port numbers:
DatagramSocket mySocketl = new DatagramSocket(12534);
DatagramSocket mySocket2 = new DatagramSocket(12535);

o UDP socket identified by two-tuple:

(dest IP address, dest port number)
o When host receives UDP segment:
= checks destination port number in segment
= directs UDP segment to socket with that port number

o IP datagrams with different source IP addresses and/or source
port numbers directed to same socket

DatagramSocket serverSocket = new DatagramSocket(6428);

SP: 6428 SP: 6428
DP: 9157 DP: 5775

SP: 9157 SP: 5775

client |DP: 6428 server DP: 6428 Client

IP: A IP: C IP:B

Source Port (SP) provides “return address”

-y : :
;4(.‘ Connection-oriented demux
Z 4

ey . .
24q Connection-oriented demux (cont)

o TCP socket identified by 4-tuple:
= source IP address
= source port number
= dest IP address
= dest port number

o recv host uses all four values to direct segment to appropriate
socket

o Server host may support many simultaneous TCP sockets:
= each socket identified by its own 4-tuple
o Web servers have different sockets for each connecting client

= non-persistent HTTP will have different socket for each
request

DO
SP: 5775
DP: 80
S-IP: B
D-IP:C
L
SP: 9157 SP: 9157
client DP: 80 server DP: 80 Client
IP: A S-IP: A P:C S-IP: B IP:B
D-IP:C D-IP:C

gﬁ".‘ Connection-oriented demux: Threaded Web Server

L XA Q
w4q Chapter 3outline

P
i) il
SP: 5775
DP: 80
S-IP:B
D-IP:C
L
SP: 9157 SP: 9157
client DP: 80 server DP: 80 Client
IP: A S-IP: A P C S-IP: B IP:B
D-IP:C D-IP:C

Transport-layer services
Multiplexing and demultiplexing
Connectionless transport: UDP
Connection-oriented transport: TCP
= segment structure
= reliable data transfer
= flow control
= connection management
o TCP congestion control
o SCTP
o Reliable Multicast

| S S A

X A
;i(. UDP: User Datagram Protocol [rrc 76g]

a “no frills,” “bare bones” Internet
transport protocol

-y .
gi:‘ UDP: more

o “best effort” service, UDP

i 2
segments may be: Why is there a UDP~

Q no connection

) IOSF establishment (which can
= :S:;vered out of order to add delay)

o simple: no connection
state at sender, receiver
o small segment header
a No congestion control:

UDP can blast away as fast
as desired

o connectionless:

* no handshaking between
UDP sender, receiver

= each UDP segment
handled independently of

others

o often used for streaming
multimedia apps

= |oss tolerant

+«— 32 bits ———

" rate sensitive Length, in | Source port# | dest port#
o other UDP uses bytes of UDP T~ length checksum

= DNS segment,

including

= SNMP header
o reliable transfer over

UDP: add reliability at Application

application layer data

= application-specific (message)

error recovery!

UDP segment format

gﬁ".‘ UDP checksum

Goal: detect “errors” (e.g., flipped bits) in transmitted segment

Sender:

o treat segment contents as sequence of 16-bit integers

o checksum: addition (1's complement sum) of segment contents
o sender puts checksum value into UDP checksum field

Receiver:

o compute checksum of received segment

a check if computed checksum equals checksum field value:
= NO - error detected

= YES - no error detected. But maybe errors nonetheless?
More later

L XA Q
w4q Chapter 3outline

Transport-layer services
Multiplexing and demultiplexing
Connectionless transport: UDP
Principles of reliable data transfer: Pipelining
Connection-oriented transport: TCP

= segment structure

= reliable data transfer

= flow control

= connection management
Principles of congestion control
TCP congestion control
SCTP
Reliable Multicast

0000 o

0O 0 0 o

%4 Pipelined protocols

Pipelining: sender allows multiple, “in-flight”, yet-to-be-
acknowledged pkts
= range of sequence numbers must be increased
= buffering at sender and/or receiver

data packet—s

+— ACK packets

(@) a stop-and-wait protocal in operati (b) a pipelined protocel in

aTwo generic forms of pipelined protocols: go-Back-N, selective repeat

24 Pipelining: increased utilization

sender receiver

first packet bit transmitted, t = 0 —fx------------- oo
last bit transmitted, t=L /R

first packet bit arrives

last packet bit arrives, send ACK

last bit of 2" packet arrives, send ACK
last bit of 3 packet arrives, send ACK

RTT

ACK arrives, send nexJ
packet, t=RTT +L/R

L Increase utilization
/ by a factor of 3!

3*L/R _ .024

= 0.0008

sender” RTT+L/R 30008

;A'"‘ Go-Back-N

Sender:
o k-bit seq # in pkt header
o “window” of up to N, consecutive unack’ed pkts allowed

send_lbase nextsegnum already usable, not
v ‘lr ack’'ed yet sent
LT 1 25 R
t_ window size —*
N

o ACK(n): ACKs all pkts up to, including seq # n - “cumulative
ACK”

» may receive duplicate ACKs (see receiver)
a timer for each in-flight pkt
o timeout(n): retransmit pkt n and all higher seq # pkts in window

L XA Q
w4q Chapter 3outline

0 o060 0o

00 0o

Transport-layer services
Multiplexing and demultiplexing
Connectionless transport: UDP

Principles of reliable data transfer
Connection-oriented transport: TCP

= segment structure

= reliable data transfer

= flow control

= connection management
Principles of congestion control
TCP congestion control
SCTP
Reliable Multicast

ey .
;‘I.‘ TCP: OVEerview recs: 793, 1122, 1323, 2018, 2581
N

a full duplex data:

= bi-directional data flow in
same connection

= MSS: maximum segment
size
o connection-oriented:

= handshaking (exchange of
control msgs) init's sender,
receiver state before data
exchange

a flow controlled:

= sender will not overwhelm
receiver

o Congestion controlled:
- === m \Wijll not overwhelm network

Q point-to-point:
= one sender, one receiver
a reliable, in-order byte steam:
* no “message boundaries”
o pipelined:
= TCP congestion and flow
control set window size
o send & receive buffers

socket
door —

XA
w4q TCP segment structure

URG: urgent data

— 32bits ——

(generally not used)™_| source port #

PSH: push data now
(generally not used)—|

dest port #

sequence number

ACK: ACK #

va|id\\ikmnwledgement number

head r::d PRIS|F| Receive window
cheeksum

Urg data pnter

RST, SYN, FIN:— |

Optjehs (variable length)

connection estab
(setup, teardown

commands) application
Internet data
checksum (variable length)
(as in UDP)

counting

by bytes

of data

(not segments!)

bytes
rcevr willing
to accept

;ﬁ"“ TCP seq. #'s and ACKs

Seq. #'s:
= byte stream
“number” of first
byte in segment’s
data
ACKs:
= seq # of next byte
expected from
other side
= cumulative ACK

Q: how receiver handles
out-of-order segments
= A: TCP spec
doesn’t say, - up to
implementor

Seq=4;
, ACK=
K79, data = i,
host ACKs
. receipt of
,Ag‘da‘a:‘c ‘C', echoes
pCKE back ‘C’
~19,
sed™
host ACKs
receipt Sen_
of echoed £4=43, ACk=gg
‘cC \
time
simple telnet scenario l

L XA Q
w4q Chapter 3outline

Transport-layer services
Multiplexing and demultiplexing
Connectionless transport: UDP
Principles of reliable data transfer
Connection-oriented transport: TCP

= segment structure

= reliable data transfer

= flow control

= connection management
Principles of congestion control
TCP congestion control
SCTP
Reliable Multicast

0000 0o

0O 0 0 o

ey
V4% 0
,'Q. TCP sender events:

data rcvd from app:
o Create segment with seq #

a seq # is byte-stream number
of first data byte in segment

o start timer if not already
running (think of timer as for
oldest unacked segment)

O expiration interval:
TimeOutlnterval

timeout:

o retransmit segment that
caused timeout

o restart timer
Ack rcvd:

o If acknowledges previously
unacked segments

= update what is known to
be acked

= start timer if there are
outstanding segments

L XA .
gﬁ" TCP reliable data transfer

o TCP creates rdt service on o Retransmissions are
top of IP’s unreliable service triggered by:

o Pipelined segments = timeout events
o Cumulative acks = duplicate acks

o TCP uses single o Initially consider simplified
retransmission timer TCP sender:

= ignore duplicate acks

= ignore flow control,
congestion control

gﬁ".‘ TCP Round Trip Time and Timeout

;ﬁ"“ TCP Round Trip Time and Timeout

Q: how to set TCP timeout Q: how to estimate RTT?
value? o SampleRTT: measured time
0 longer than RTT from segment transmission
= but RTT varies until ACK receipt
o too short: premature timeout * jgnore
" unnecessary retransmissions
retransmissions o SampleRTT will vary, want

o too long: slow reaction to
segment loss

estimated RTT “smoother”

= average several
recent
measurements, not

just current
SampleRTT

EstimatedRTT = (1- a)*EstimatedRTT + a*SampleRTT

o Exponential weighted moving average
a influence of past sample decreases exponentially fast
o typical value: o =0.125

ey . .
;i(. Example RTT estimation:

;ﬁ"“ TCP Round Trip Time and Timeout

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

350 -

300 +

RTT (milliseconds)
N
a
3

N
=}
3

150 +

100
1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

—&—SampleRTT —#—Esti RTT

Setting the timeout

o EstimtedRTT plus “safety margin”
= |arge variation in EstimatedRTT -> larger safety margin
a first estimate of how much SampleRTT deviates from EstimatedRTT:

DevRTT = (1-B)*DevRTT +
p*|SampleRTT-EstimatedRTT|

(typically, B = 0.25)

Then set timeout interval:

Timeoutlnterval = EstimatedRTT + 4*DevRTT

ey
;i(.‘ TCP sender (simplified)

NextSegNum = InitialSegNum
SendBase = InitialSeqNum
loop (forever) {

switch(event)

event: data received from application above
create TCP segment with sequence number NextSeqNum
if (timer currently not running)

start timer Comment:
pass segment to IP » SendBase-1: last
NextSegNum = NextSegNum + length(data) cumulatively
ack’ed byte

event: timer timeout
retransmit not-yet-acknowledged segment with
smallest sequence number

Example:
* SendBase-1 = 71;
y= 73, so the rcvr

start timer
wants 73+ ;
event: ACK received, with ACK field value of y y > SendBase, so
if (y > SendBase) { that new data is
SendBase =y acked

if (there are currently not-yet-acknowledged segments)
start timer }
} /* end of loop forever */

-ay o .
gox“ TCP: retransmission scenarios
2\

@ Host A Host B@ @ Host A

Seq=gy T
.8 b
] Yies datg §
(9]
5 ’“)0 g
g e 5
(o2
E X &
l loss &
i
2, 8 byteg data Se_ncilsgse 1
- >
SendBase 3
5 =120 £
C\(:lo %
o
5]
SendBase @
=100 SendBase n
=120 premature timeout
time

lost ACK scenario

X . :
Yo § TCP retransmission scenarios (more)

@ Host A Host B @

timeout

loss
SendBase ‘P@/

=120

time
Cumulative ACK scenario

5 -
,'Q‘ TCP ACK generation [RFcC 1122, RFC 2581]

a

Event at Receiver TCP Receiver action

Arrival of in-order segment with Delayed ACK. Wait up to 500ms
expected seq #. All data up to for next segment. If no next segment,
expected seq # already ACKed send ACK

Arrival of in-order segment with Immediately send single cumulative
expected seq #. One other ACK, ACKing both in-order segments
segment has ACK pending

Arrival of out-of-order segment Immediately send duplicate ACK,
higher-than-expect seq. # . indicating seq. # of next expected byte

Gap detected

Arrival of segment that Immediate send ACK, provided that
partially or completely fills gap segment starts at lower end of gap

ey, .
;:(. Fast Retransmit

o Time-out period often o If sender receives 3 ACKs for
relatively long: the same data, it supposes
= long delay before that segment after ACKed
resending lost packet data was lost:
o Detect lost segments via = fast retransmit: resend
duplicate ACKs. segment before timer

= Sender often sends many expires

segments back-to-back
= If segment is lost, there

will likely be many

duplicate ACKs.

;ﬁ"“ Resending a segment after triple duplicate ACK

Host A Host B

g 2
\X

timeout

fese,.'d
2nd S
S9meny

time

ey . . .
4 Fastretransmit algorithm:

event: ACK received, with ACK field value of y
if (y > SendBase) {
SendBase =y
if (there are currently not-yet-acknowledged segments)
start timer
}

else {
increment count of dup ACKs received fory
if (count of dup ACKs received fory = 3) {
resend segment with sequence number y
}

a duplicate ACK for fast retransmit
already ACKed segment

L XA R
w4q Chapter 3outline

Transport-layer services
Multiplexing and demultiplexing
Connectionless transport: UDP
Principles of reliable data transfer
Connection-oriented transport: TCP

= segment structure

= reliable data transfer

= flow control

= connection management
Principles of congestion control
TCP congestion control
SCTP
Reliable Multicast

0 000 0o

0O 0 0 D

;A'"‘ TCP Flow Control

a receive side of TCP connection
has a receive buffer:

— RevWindow —

707
%; 5 %% application

/‘7 ’ i%gb process
7
b——— RevBuffer ————#

data from
P

a app process may be slow at reading
from buffer

o speed-matching service: matching
the send rate to the receiving app’s
drain rate

flow control
sender won't overflow
receiver’s buffer by
transmitting too much,
too fast

ey ; .
gi:‘ TCP Flow control: how it works

— RevWindow —

data from
i

i
b——— RevBuffer ————#

(Suppose TCP receiver discards o
out-of-order segments)

o spare room in buffer

= RcvWindow Q

= RcvBuffer-[LastByteRcvd -
LastByteRead]

application
" process

Rcvr advertises spare room by
including value of RcvWindow in

segments

Sender limits unACKed data to
RcvWindow

= guarantees receive buffer
doesn’t overflow

ey .
w4 Chapter 3outline

Transport-layer services
Multiplexing and demultiplexing
Connectionless transport: UDP
Principles of reliable data transfer
Connection-oriented transport: TCP

= segment structure

= reliable data transfer

= flow control

= connection management
Principles of congestion control
TCP congestion control
SCTP
Reliable Multicast

[R A S A

0O 0O 0 o

L XA .
w4 TCP Connection Management

Recall: TCP sender, receiver
establish “connection” before
exchanging data segments

O initialize TCP variables:

= seq. #S
= buffers, flow control info (e.g.
RcvWindow)
a client: connection initiator
Socket clientSocket = new
Socket("'hostname™, " port number™);
o server: contacted by client

Socket connectionSocket =
welcomeSocket.accept();

Three way handshake:

Step 1: client host sends TCP SYN
segment to server

= specifies initial seq #

= no data
Step 2: server host receives SYN,
replies with SYNACK segment

= server allocates buffers

= specifies server initial seq. #

Step 3: client receives SYNACK,
replies with ACK segment, which may
contain data

=y, ,
¥4 TCP Connection Management (cont.)

Closing a connection:

client closes socket:
clientSocket.close();

@ client

Step 1: client end system sends close
TCP FIN control segment to
server

Step 2: server receives FIN,
replies with ACK. Closes
connection, sends FIN.

timed wait

closed

Fin

cK

E close
/
k

server@

L XA .
24q TCP Connection Management (cont.)

Step 3: client receives FIN,
replies with ACK.

= Enters “timed wait” - will @ client
respond with ACK to closing
received FINs FiN

Step 4: server, receives ACK.
Connection closed.

Note: with small modification,
can handle simultaneous
FINs.

IS
=
o
9]
£

closed

cr .

L closing
/
N‘

server@

closed

='ay, ,
%4 TCP Connection Management (cont)

e | e

wait 30 seconds
' 4

Initiates 3 TCP connbction
/ send SN
TIME_WAIT SYN_SENT

recae FIN receive SYN & ACK

send ACK send ACK
FIN_WAIT 2 ESTABLISHED

\ <l
, ent application

recenE ACK " initintas close connection

sendnotng ——{ FINJWAITY [e— send FIN - _m :

. wcone ACK -~
TCP client o/
lifecycle

LAST_ACK.

send FIN

CLOSE_WAIT
LY
Ay
N,

raceive FIN ™~ =
and ACK —{ ESTABLISHED

E/

TCP server
lifecycle

server application
creates a listen socket

receive SYN
|send SYN & ACK

;

recaive ACK
sand nothing

L XA R
w4q Chapter 3outline

Transport-layer services
Multiplexing and demultiplexing
Connectionless transport: UDP
Principles of reliable data transfer
Connection-oriented transport: TCP

= segment structure

= reliable data transfer

= flow control

= connection management
Principles of congestion control
TCP congestion control
SCTP
Reliable Multicast

0 000 0o

0O 00 o

ey . . XA . .
e Principles of Congestion Control X | Causes/costs of congestion: scenario 1

Congestion: o two senders, two receivers
o informally: “too many sources sending too much data too 0 one router, infinite buffers PR e orinal dats
fast for network to handle” 0 no retransmission

unlimited shared
output link buffers

a different from flow control!
o manifestations:
= |ost packets (buffer overflow at routers)
» |long delays (queueing in router buffers)
o atop-10 problem!

Cr24 — - : o large delays
= 3 ’ when congested
< © o maximum
achievable
} throughput
Ci2 ci2 ghp

;:(.‘ Causes/costs of congestion: scenario 2 gi:“ Causes/costs of congestion: scenario 3

a one router, finite buffers
o sender retransmission of lost packet

Ci2-4

5

Host A A - Original data Aout o)

I" | A\, - original data, plus RN <<

retransmitted data
Host B finite shared output link 7
buffers h
® N
— Another “cost” of congestion:

awhen packet dropped, any “upstream transmission capacity used
for that packet was wasted!

ey, .
;i(.‘ Approaches towards congestion control

L XA Q
w4q Chapter 3outline

Two broad approaches towards congestion control:

End-end congestion control: ~ Network-assisted congestion
a no explicit feedback from control:
network o routers provide feedback to

o congestion inferred from end systems
end-system observed = single bit indicating
loss, delay congestion (SNA, DEChit,
o approach taken by TCP TCP/IP ECN, ATM)
= explicit rate sender should
send at

Transport-layer services
Multiplexing and demultiplexing
Connectionless transport: UDP
Principles of reliable data transfer
Connection-oriented transport: TCP

= segment structure

= reliable data transfer

= flow control

= connection management
Principles of congestion control
TCP congestion control
SCTP
Reliable Multicast

0000 0o

a
]
a
a

v TCP congestion control: additive increase,
2\ multiplicative decrease

ey, . . .
24q TCP Congestion Control: details

o Approach: increase transmission rate (window size), probing
for usable bandwidth, until loss occurs
= additive increase: increase CongWin by 1 MSS every
RTT until loss detected
= multiplicative decrease: cut CongWin in half after loss

‘4 Kbytes —

Saw tooth
behavior: probing
for bandwidth

6 Kbytes —|

8 Kbytes —

congestion window size

time

o sender limits transmission:

the amount of unacked data at
sender is limited by CongWin:

LastByteSent-LastByteAcked

< CongWin
o Roughly:
CongWin
rate = =Ong N
RTT Bytes/sec

o CongWin is dynamic, function of
perceived network congestion

o Self-clocking: sender may send
additional segments when acks
arrive

How does sender perceive

congestion?
o loss event = timeout
or 3 duplicate acks

o TCP sender reduces rate
(CongWin) after loss
event

three mechanisms:
= AIMD
= slow start

= conservative after
timeout events

gﬁ".‘ TCP Slow Start

a When connection begins, CongWin =1 MSS

= Example:
MSS = 1000 bytes, RTT = 100 msec

= jnitial rate ~ CongWin/RTT = 80 kbit/s
o available bandwidth may be >> MSS/RTT
= desirable to quickly ramp up to respectable rate

o When connection begins, increase rate
exponentially fast until first loss event

;ﬁ"“ TCP Slow Start (more)

o When connection begins,
increase rate exponentially until
first loss event:

= double CongWin every RTT

= done by incrementing
CongWin for every ACK
received

o Summary: initial rate is slow but
ramps up exponentially fast

@ Host A Host B@
W

Ur segments

«—RTT—

time

ey . L .
w4 Refinement: inferring loss

o After 3 dup ACKs:
— Philosophy:

L XA .
%
w4q Refinement

= CongWin is cut in half

= window then grows linearly 0 3 dup ACKs indicates

_ network capable of
o But after timeout event: dellve”ng some Segments
= CongWin instead setto 1 Q timeout indicates a
MSS; “more alarming”

» window then grows congestion scenario
exponentially

= to a threshold, then grows
linearly

o Q: When should the
exponential increase
switch to linear?

o A: When CongWin

gets to 1/2 of its
value before timeout.

Implementation:
o Variable Threshold
o Atloss event,

Transmission round

_| Thresheld

TCP Series 2 Reno

Threshold

TCP Series 1 Tahoe

Threshold is set to 27
1/2 of CongWin just 0
before loss event 01

a TCP Reno: Fast
Recovery after 3 dup
Acks

1T 1T T 1T 1T T 17 1T 1T © T
345 6 7 8 9101112131415

Transrrission round

;g'.‘ Summary: TCP Congestion Control

a When CongWin is below Threshold, sender in slow-start
phase, window grows exponentially.

a When CongWin is above Threshold, sender is in
congestion-avoidance phase, window grows linearly.

o When a triple duplicate ACK occurs,
Threshold setto CongWin/2
and CongWin set to Threshold (Fast Recovery, TCP Reno)

a When timeout occurs, Threshold set to CongWin/2 and
CongWin is setto 1 MSS.

-y :
%4 TCP sender congestion control

State Event TCP Sender Action Comment
Slow Start ACK receipt | CongWin = CongWin + MSS, Resulting in a doubling of
(SS) for previously | If (CongWin > Threshold) CongWin every RTT
unacked data | set state to “Congestion
Avoidance”
Congestion ACK receipt | CongWin = CongWin+MSS * Additive increase, resulting
Avoidance for previously | (MSS/CongWin) in increase of CongWin by
(CA) unacked data 1 MSS every RTT
SSor CA Loss event Threshold = CongWin/2, Fast recovery,
detected by | CongWin = Threshold, implementing multiplicative
triple set state to “Congestion decrease. CongWin will not
duplicate Avoidance” drop below 1 MSS.
ACK
SSor CA Timeout Threshold = CongWin/2, Enter slow start
CongWin =1 MSS,
set state to “Slow Start”
SSorCA Duplicate Increment duplicate ACK count | CongWin and Threshold
ACK for segment being acked not changed

X 4
e TCPsummary

o Connection-oriented: SYN, SYNACK; FIN
o Retransmit lost packets; in-order data: sequence no., ACK no.

o ACKs: either piggybacked, or no-data pure ACK packets
if no data travelling in other direction

o Don't overload receiver: RcvWin
= RcvWin advertised by receiver
a Don't overload network: CongWin
= CongWin affected by receiving ACKs
a Sender buffer = min {RcvWin, CongWin }
o Congestion control:
= Slow start: exponential growth of CongWin
= Congestion avoidance: linear growth of CongWin
» Timeout; duplicate ACK: shrink CongWin
o Continuously adjust RTT estimation

;ﬁ"“ TCP throughput

o What's the average throughout
of TCP as a function of window
size and RTT?

= |gnore slow start
= Let W be the window size

when loss occurs.
= When window is W,
throughput is W/RTT

= Just after loss, window
drops to W/2, throughput to

WI/2RTT.

= Average throughout:

0.75 W/RTT

CongWin

ey, .
;ﬁ" TCP Fairness

;ﬁ"“ Why is TCP fair?

Fairness goal: if K TCP sessions share same bottleneck link of
bandwidth R, each should have average rate of R/K

TCP connection 1

connection 2

bottleneck
router

capacity R

Two competing sessions:
o Additive increase gives slope of 1, as throughout increases
o multiplicative decrease decreases throughput proportionally

equal bandwidth share

loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2

congestion avoidance: additive increase

Connection 2 throughput o

Connection 1 throughput R

L X A .
yog Fairness (more)

ey .
w4q Chapter 3outline

Fairness and UDP

o Multimedia apps often do not
use TCP

= do not want rate throttled
by congestion control

o Instead use UDP:

= pump audio/video at
constant rate, tolerate
packet loss

o Research area: TCP friendly

Fairness and parallel TCP

connections

o nothing prevents app from
opening parallel connections
between 2 hosts.

o Web browsers do this

o Example: link of rate R
supporting 9 connections;

= new app asks for 1 TCP,
gets rate R/10

= new app asks for 11 TCPs,
gets R/2 !

Transport-layer services
Multiplexing and demultiplexing
Connectionless transport: UDP
Principles of reliable data transfer
Connection-oriented transport: TCP

= segment structure

= reliable data transfer

= flow control

= connection management
Principles of congestion control
TCP congestion control
SCTP
Reliable Multicast

0 000 0o

| S A

ey
;i(. Internet Protocol Stack

a The Internet Protocol Stack

Session, Presentation, Application
Layer

Application

Transport Layer

UDP

TCP

SCTP

Network Layer

Physical + Data Link Layer

Network Interface
(Ethernet, PPP, ...)

a Why another transport layer protocol?

ey
%
w4 Contents

o Limitations of UDP and TCP

o The Stream Control Transmission Protocol (SCTP)
= Association setup / stream setup
= Message types
= Partial Reliability
= Multi-Homing support
= Congestion control

X A
;i(. User Datagram Protocol

o Message oriented

= Sending application writes a N byte message
= Receiving application reads a N byte message

o Unreliable

= Lost packets will not be retransmitted

o Unordered delivery

= Packets may be re-ordered in the network

Hello World
Hello World

Application
UDP
P
Network Interface

&

World
Hello

Application

UDP

IP

Network Interface

ey 0 .
;4:.‘ Transmission Control Protocol
N

o Connection/Stream oriented. Not message oriented

Application-level Message boundaries not preserved
§ §

o Reliable transmission
= Lost packets are retransmitted
= Retransmission will be repeated until acknowledgment is received

a In-order delivery
= Segmentsn+1,n+ 2, n+ 3, will be delivered after segment n

o Congestion control
= TCP tries to share bandwidth equally between all end-points

ey
V4%
,'Q. Problems

o Certain applications pose problems to UDP and TCP
o TCP: Head-of-line blocking with video streaming
= Frames 2,3,4 arrived but cannot be shown because frame 1 is
missing
= Video will stop until frame 1 is delivered
o UDP:
= Unordered delivery: Second image is delivered after first image
= Packet loss: Certain frames get lost = low video/audio quality
= No congestion control
o Example: Internet-Telephony
= Two types of traffic:
« Signalling traffic: should be delivered reliable + in-order (TCP)
« Voice traffic: should not suffer from head-of-line blocking (UDP)
= Need to manage two sockets
o SCTP can deal with these problems

»ay;
w4q SCTP Features at a glance

o Connection and message oriented
= SCTP builds an “association” between two peers
= Association can contain multiple “streams”
= Messages are sent over one of the streams

Peer

SCTP Association

o Partial reliability
= “Lifetime” defined for each message
« Retransmission of a message is performed during its lifetime
= Messages can be delivered unreliable, full reliable or partial reliable

o Multi-Homing
= SCTP can use multiple IP addresses

;A".‘ SCTP Message Format

o Common header format
= 12 byte header
= included in every SCTP message

Ports address the application

Source Port | Destination Port
— = Packet
Z Verification tag header
Checksum s
Data (,Chunks") ...

Checksum on the complete
SCTP message: Common
header and “chunks”

Random number which
Identifies a given association:
Used to distinguish new from old connections

;ﬁ"“ SCTP Chunk Format

o Data and signaling information is transported in chunks
= One or more chunks in a SCTP message
= Each chunk type has a special meaning:

« INIT, INIT-ACK, COOKIE, COOKIE-ACK
= Connection setup

* DATA = Transports user data
» SACK = Acknowledge Data

o Common chunk format

lo |16 3
Chunk Type [Chunk Flags | Chunk Length _| Chunk header

Chunk Data ...

o Additional formats are defined for specific chunk types

ey, .
;:(. Connection Setup

a TCP connection setup

Client
SYN
SYN/
/
ACK

o Known Problem: TCP SYN-Flooding

Server

Create State for
TCP connection: Store
client information

%@ SYN Flodding

Client 1 \ o
NS
N SYN/ACK
< sa.
Client2 |5 ‘\ 1en
N SYN/ACK = Client 2
_ Client 3
SYN
. ~
Client3 |35 SYNIACK
S

o Clients send SYN-Packets but do not respond to SYN-ACK
= Usually done by a single client that performs IP address spoofing
= Works because only a single forged packet is necessary

= Server has to store state until a TCP timeout occurs
= Leads to resource exhaustion

= Server cannot accept any more connections

iﬁ".‘ SCTP Association Setup

o Solution to SYN-Flood problem: Cookies

Client Server

INIT-ACK

W

Cookie-ACK

I e

Association is established

No SYN-floods with spoofed
addresses possible

Generate client specific cookie
Send cookie = forget client

Check if cookie is valid =
Create state only on valid
cookie

ey ..
1/
,'A‘ Data Transmission

o Application data is transmitted in Data Chunks
= A data chunk is associated to a stream (Stream Identifier S)

o 1 2 3
0123456789012 34567 890123456 7893%01
e
| Type = 0 | reserved|U|B|E| Length |
o
| TSN |
o
| Stream Identifier & | Stream Seguence Number n
o
| Payload Protocol Identifier |
e

! /
! User Data (seg n of Stream S) i
! /

LT s T T T T I s Tk T T e

o TSN (Transport Sequence Number)

= Global Sequence Number

= Similar to TCP sequence number, used for retransmissions
o Stream sequence number

= Necessary for per-stream transmission reliability

4 Transmission reliability (1)

a TCP
= Packets are transmitted fully reliable = retransmitted until received
= Packets are delivered in-order to the application
= Slow start and congestion avoidance for congestion control
a UDP
= Packets are transmitted fully unreliable = never retransmitted
= No re-ordering = packet order may be changed at the receiver
= No congestion control
o SCTP can do both and more, in a stream-specific way

Peer

SCTP Association

W4 Transmission reliability (2)

o Why multiple streams?
= Solves head of line blocking
= No firewall issues (only one port for several streams)

= Partial Reliability Extension (PR-SCTP) for different reliability
levels

o PR-SCTP
= Allows to set a lifetime parameter for each stream
= Lifetime specifies how long the sender should try to
retransmit a packet

= Allows to mix reliable and unreliable streams

Fully reliable streams
(TCP like)

Partial reliable stream

unreliable stream (UDP like)

SCTP Association

ey . . R
;i(. Multi-Homing: Association setup

o SCTP chooses one IP address at association setup
= |P address can be specified by user

UMTS-Provider

Server g
o IP addr
SCTP Association

DSL DSL IP addr is used to setup the connection
UMTS IP addr is announce as backup IP at association setup

w4q Multi-Homing

o Heartbeat messages are periodically sent to check link
availability

UMTS-Provider

Server IP g
_

w4 Multi-Homing

;ﬁ"“ SCTP Example Scenario

o Changes occur when the default link is found to be broken
= |s identified because of packet loss (data or heartbeat)
= Consequence: SCTP will resume on the backup link

No new association setup necessary
UMTS-Provider
A

Server IP M
1

SCTP Association

* Real-time transmission of video streams and control data

in vehicular scenario

% &

Server: vehicle with
embedded PC (Linux)

Client: Unix/Windows

L X A .
;:(. Protocol Architecture

;ﬁ"“ Leightweight - RTP

L-RTP implementation:
- Timestamping for synchronisation

- Packet loss detection

- Buffering
buffer
receiver variable rate
S
process

>
data in buffer

constant rate
[

video frames

playout

gﬁ".‘ SCTP Deployment

a SCTP has attractive features
= but to which extent is it used?

o Why do we use HTTP over TCP for Video Streaming?
o Why is IP Multicast not generally deployed?
= Because HTTP over TCP streaming just works ,good enough*

o Firewall and NAT issues
= Most home routers simply can't translate SCTP

o Implementations
= Currently no native Windows support (only userspace lib)

o BUT: mandatory for some newly developed protocols such as
IPFIX (IP Flow Information Export)

L XA Q
w4q Chapter 3outline

Transport-layer services
Multiplexing and demultiplexing
Connectionless transport: UDP
Principles of reliable data transfer
Connection-oriented transport: TCP

= segment structure

= reliable data transfer

= flow control

= connection management
Principles of congestion control
TCP congestion control
SCTP
Reliable Multicast

0000 0o

0 00D

ey . .
w4q Many Uses of Multicasting

o Teleconferencing

Distributed Games

O

o Software/File Distribution

o Video Distribution
a

= multicast transport is done differently for each application

Replicated Database Updates

;ﬁ"“ Multicast Application Modes

o Point-to-Multipoint:
Single Source, Multiple Receivers

o Multipoint-to-Multipoint:
Multiple Sources, Multiple Receivers

o Sources are receivers

o Sources are not receivers

w4 Classification of Multicast Applications

Transport Fully reliable Real-time
service type multicast multicast
Singlesource: Multicast- Audio-visual
1:N - FTP; conference;
Software Continuous
update Media
Dissemination
Multiple CSCwW; DIS;
Sources _
_ Distributed VR
M:N)
computing

¢« CSCW: Computer Supported Cooperative Wor
« DIS: Distributed Interactive Simulation
¢ VR: Virtual Reality

;4:'“ Where Does Multicast Loss Occur
as

o Example measurements
(April 96, Yajnik, Kurose, Towsely, Univ. Mass., Amherst)

/Germ.:
0.2%)\0.1%

Source:
radio free vat, Berkeley

ey .
;4(.‘ Simultaneous Packet Loss
Z 4

o Q: distribution of number of receivers losing packet?

o Example dataset:
47% packets lost somewhere
5% shared loss

o Similar results across different datasets

o Models of packet loss (for protocol design, simulation, analysis):
= star: end-end loss independent
= full topology: measured per link loss independent

» modified star: source-to-backbone plus star
= good fit for example data set

A :
2@ Temporal Loss Correlation

Q: do losses occur singly or in “bursts”?
a occasional long periods of 100% loss
a generally isolated losses
0 occasional longer bursts

Prob. for burst

of length b Schematic temporal loss correlation:

0.1

0 H“I |
5

1

Length of burst loss: b

%4 Reliable Multicast Challenge

o How to transfer data reliably from source to R receivers
a scalability: 10s - 100s - 1000s - 10000s - 100000s of receivers

o heterogeneity

= different capabilities of receivers (processing power, buffer,
protocol capabilities)

= different network conditions for receivers (bottleneck
bandwidths, loss rates, delay)

o feedback implosion problem

ey . . . 8
e ARQ: Alternatives for Basic Mechanisms

o Who retransmits
= source
= network
= other group member.
o Who detects loss
= sender based: waiting for all ACKs

= receiver based: NACK, more receivers - faster loss
detection.

o How to retransmit
= Unicast
= Multicast
= Subgroup-multicast

X/
w4q Approaches

o shift responsibilities to receivers (in contrast to TCP: sender is
responsible for large share of functionality)

o feedback suppression (some feedback is usually required)

o multiple multicast groups (e.g. for heterogeneity problems; can
be used statically or dynamically)

o local recovery (can be used to reduce resource cost and
latency)

o server-based recovery

a forward error correction (FEC)
= FEC for unicast: frequently no particular gain
» FEC for multicast: gain may be tremendous!

;4:'“ Classification of Multicast Error Control
/.

Multicast Error Recovery

/\

Centralized Error Recovery Distributed Error Recovery
(CER): (DER): retransmission
Source retransmits by server or receiver

o\

grouped (local):

: _ ungrouped
Multicast group is (global):
partitioned into subgroups All group
members

participate in error
recovery

;g'.‘ Reliable Multicast: Building Blocks

L XA .
gﬁ" Feedback Processing

a Elements from Unicast:
= | oss detection

¢ Sender-based (ACK): 1 ACK per receiver and per packet;
Sender needs a table of per-receiver ACK

» Receiver-based (NAK): distributed over receivers;
potentially only 1 NAK per lost packet

= Loss recovery: ARQ vs. FEC

o Additional new Elements for Multicast:
= Mechanisms for control message Implosion Avoidance
= Mechanisms to deal with heterogeneous receivers

Assume: R Receivers, independent packet loss probability p
Calculate feedback per packet:

= average number of ACKs: R - pR

= average number of NAKs: pR

= more ACKs than NAKs

O O

Processing: higher throughput for receiver-based loss detection

Reliability needs ACKs
(No NAK does not mean successful reception)

= use NAK for loss signalling
= use ACKs at low frequency to ensure reliability

[]

102

L XA R
24q NAK Implosion

receivers

o Shared loss: All receivers loose same packet: All send NAK
= NAK implosion

o Implosion avoidance techniques
= Cluster/Hierarchy
= Token
= Timers
For redundant feedback additionally:

= Feedback suppression (e.g. multicast NAKs, receiver back
off randomly)

Drawback of implosion avoidance techniques : delay
o Fast NAKs (risk of NAK implosion):
= Fast retransmission
= Smaller sender/receiver buffer

;&:’.‘ Sender Oriented Reliable Multicast
.

o Sender:
multicasts all (re)transmissions

= selective repeat

)] sender
= use of timeouts for loss detection
= ACK table =@
o receiver: ACKs received packets (}' v
v &
o Note: group membership important
o Example (historic): X
Xpress Transport Protocol (XTP)
- extension of unicast protocol .
receivers

i‘:’“ Receiver Oriented Reliable Multicast
as

o Sender: multicasts (re)transmissions
= selective repeat
= responds to NAKs
o Receiver: upon detecting packet loss
= sends pt-pt NAK
= timers to detect lost retransmission
o Note: easy to allow joins/leaves

sender

AVN

X
¢ ¢

receivers

106

ig".‘ Feedback Suppression

o randomly delay NAKs
o multicast to all receivers

+ reduce bandwidth sender
- additional complexity at receivers

(timers, etc) 4

. N W
- increase latencies (timers)

a similar to CSMA/CD (= later)

X_ X
00 €e¢ ce¢

;4:'“ Server-based Reliable Multicast
/.

o first transmisions: multicast to all
receivers and servers

o each receiver assigned to server server
o servers perform loss recovery

o servers can be subset of receivers or
provided by network

o can have more than 2 levels

Assessment:
o clear performance benefits
o how to configure

= static/dynamic

* many-many

sender

server

receivers

108

»ay;
Y4 Local Recovery

o lost packets recovered from nearby receivers

a deterministic methods
= impose tree structure on receivers with sender as root
» receiver goes to upstream node on tree

O

self-organizing methods
= receivers elect nearby receiver to act as retransmitter

O

hybrid methods

L XA .
gi:“ Issues with Server- and Local Based Recovery

o how to configure tree

o what constitutes a local group

O

how to permit joins/leaves

O

how to adapt to time-varying network conditions

iﬁ".‘ Forward Error Correction (FEC)

0 k original data packets form a Transmission Group (TG)
o h parity packets derived from the k data packets
a any k received out of k+h are sufficient
a Assessment
+ allows to recover lost packets
- overhead at end-hosts
- increased network load may increase loss probability

Network loss in FEC Block

59 B2 B A Bl
@)@l 5 0 o
12 3 B
2]

—

—
FEC FEC
Encoder Decoder

;ﬁ"“ Potential Benefits of FEC

Data Retransmission

D1
Initial Transmission D3 D2

D3-D2-D1—
p2 D1 .\Dl
b3 D3
D2 D1
D3-D2-D4—
D3 po Parity Retransmission
D1

P:D1®D2®D3/v

P

One parity packet can recover
different data packets at different receivers

P

A Influence of topology: Selected Scenarios for
oL Modeling Heterogeneity

o Loss: on shared links / on individual links
o Loss: homogeneous/heterogeneous probability

a RTT: homogeneous/heterogeneous.

N1 N3 :
N2 . Na

N5

Ay q R o .
gi:“ Scenario-specific Selection of Mechanisms

o FEC is of particular benefit in the following scenarios:
= Large groups
= No feedback
= Heterogeneous RTTs
= Limited buffer.

o ARQ is of particular benefit in the following scenarios:
= Herterogeneous loss
= Loss in shared links of multicast tree dominates

= Small groups (Statistic by AT&T: on average < 7 participants
in conference)

= Non-interactive applications.

o ARQ by local recovery:

= large groups (good for individual losses, heterogeneous
RTT).

-y .
;ﬁ‘ Chapter 3: Summary

a principles behind transport layer services:
= multiplexing, demultiplexing
= reliable data transfer
= flow control
= congestion control
a instantiation and implementation in the Internet
= UDP
= TCP
= SCTP
= Reliable multicast protocols

