Chair for Network Architectures and Services — Prof. Carle
Department of Computer Science

TU Miinchen

Master Course
Computer Networks
IN2097

Prof. Dr.-Ing. Georg Carle
Christian Grothoff, Ph.D.

Chair for Network Architectures and Services

Institut fur Informatik
Technische Universitat Minchen
http://www.net.in.tum.de

;ﬁ"“ Chapter 2: Application layer

o Principles of network applications

o Web and HTTP

o DNS

O

P2P applications

]

Summary

iﬁ"“ Chapter 2: Application Layer

Our goals:
o conceptual, implementation aspects of network application
protocols

= transport-layer service models
= client-server paradigm
= peer-to-peer paradigm
a learn about protocols by examining popular application-
level protocols
= HTTP
= DNS

o programming network applications
= socket API

ey, . .
w4q Some network applications

e-mail

web

instant messaging

remote login

P2P file sharing

multi-user network games
streaming stored video clips
voice over IP

real-time video conferencing
grid computing

0 000D 0D D0 D0 D0 Do

Y Creating a network application

;ﬁ"“ Chapter 2: Application layer

write programs that
» run on (different) end systems
= communicate over network

" e.g., web server software
communicates with browser
software

No need to write software for network-
core devices

= Network-core devices do not run
user applications

= applications on end systems
allows for rapid application
development, propagation

= think whether a counter-example exists:
what would be benefits if you could program your router?

o Principles of network applications
o Web and HTTP

o DNS

O

P2P applications

]

Summary

e Application architectures

ey . ,
;‘«"‘ Client-server architecture
N

a Client-server
o Peer-to-peer (P2P)

o Hybrid of client-server and P2P

server:
= always-on host
= permanent IP address
= server farms for scaling

clients:
= communicate with server
= may be intermittently connected
= may have dynamic IP

addresses client/server

= do not communicate directly
with each other

ey, -
;ﬁ" Pure P2P architecture

a no always-on server

o arbitrary end systems
directly communicate

o peers are intermittently
connected and change IP
addresses

Highly scalable but difficult to
manage

;ﬁ"“ Hybrid of client-server and P2P

Skype
= voice-over-IP P2P application

= centralized server: authenticates user, finds address of
remote party

= client-client connection: direct (not through server)

Instant messaging
= chatting between two users is P2P
= centralized service: client presence detection/location

* user registers its IP address with central server when it
comes online

« user contacts central server to find IP addresses of
buddies

;i{. Processes communicating

Process: program running withina | Client process: process that
host. initiates communication

o within same host, two processes | Server process: process that
communicate using waits to be contacted
inter-process communication
(defined by OS).

o processes in different hosts
communicate by exchanging
messages

o Note: applications with
P2P architectures have
client processes & server
processes

ey
gi:‘ Sockets

O process sends/receives
messages to/from its socket

o socket analogous to door

= sending process shoves
message out door

= sending process relies on
transport infrastructure on
other side of door which
brings message to socket at |buffers,
receiving process variables

host or host or
server server

controlled by
application develope

TCP with
buffers,
variables

controlled
by operating system

O API: (1) choice of transport protocol; (2) ability to fix a few
parameters

»ay; ,
4 Addressing processes

o to receive messages, process 0 identifier includes both IP

must have identifier address and port numbers
o host device has unique 32-bit associated with process on
IP address host.
o Q:does IP address of host o Example port numbers:
on which process runs suffice = HTTP server: 80
for IdentlfYIng the prOCGSS? = Mail server: 25
= A: No, many processes o to send HTTP message to
can be running on same gaia.cs.umass.edu web
host server:

= |P address:
128.119.245.12

= Port number: 80

ey . . .
24q Application-layer protocol defines

o Types of messages exchanged,
= e.g., request, response
o Message syntax:
= what fields in messages & how fields are delineated
o Message semantics
= meaning of information in fields
o Rules for when and how processes send & respond to
messages

Public-domain protocols:

o defined in RFCs

o allows for interoperability
o e.g., HTTP, SMTP
Proprietary protocols:

o e.g., Skype

;A".‘ What transport service does an application need?

Data loss

o some applications (e.g., audio) can tolerate some loss

o other applications (e.g., file transfer, telnet) require 100% reliable data
transfer

Timing

o some applications (e.g., Internet telephony, interactive games) require
low delay to be “effective”

o frequently the applications also need timestamps (e.g. specifying
playout time)

Throughput

o some applications (e.g., multimedia) require minimum amount of
throughput to be “effective”

o other applications (“elastic apps”) make use of whatever throughput
they get

Security

o Encryption, data integrity, ...

Yo Transport service requirements of common apps

Application Data loss Throughput Time Sensitive
file transfer no loss elastic no
e-mail no loss elastic no
Web documents no loss elastic no

real-time audio/video loss-tolerant audio: 5kbps-1Mbps Yes, 100’s msec
video:10kbps-5Mbps

stored audio/video |oss-tolerant same as above yes, few secs
interactive games |oss-tolerant few kbps up yes, 100’s msec
instant messaging no loss elastic yes and no

Y& Internett t protocol i
,'A‘ nternet transport protocols services

TCP service:

Q

connection-oriented: setup
required between client and server
processes

reliable transport between sending
and receiving process

flow control: sender won’t
overwhelm receiver

congestion control: throttle sender
when network overloaded

does not provide: timing, minimum
throughput guarantees, security

UDP service:

o unreliable data transfer
between sending and receiving
process

o does not provide: connection
setup, reliability, flow control,
congestion control, timing,
throughput guarantee, or
security

Q: why bother? Why is there a

ey, : L
Yog Internet apps: application, transport protocols

Application Underlying
Application layer protocol transport protocol
e-mail SMTP [RFC 2821] TCP
remote terminal access Telnet [RFC 854] TCP
Web HTTP [RFC 2616] TCP
file transfer FTP [RFC 959] TCP
streaming multimedia HTTP (e.g., Youtube), TCP or UDP
RTP [RFC 1889]
Internet telephony SIP, RTP, proprietary
(e.g., Skype) typically UDP

ubP?

&V’.‘ Chapter 2: Application layer

Q

O

O

Principles of network applications

Web and HTTP

DNS

P2P applications

Summary

L XA .
gi:‘ HTTP overview

HTTP: hypertext transfer protocol
o Web’s application layer protocol
o client/server model
= client: browser that requests,
receives, “displays” Web
objects
= server: Web server sends
objects in response to
requests

Server

Iz
PC running 47753 eQUes,
Explorer P ’@s,o
O/)se
running

Apache Web
server

Mac running
Navigator

gﬁ".‘ HTTP overview (continued)

HTTP uses TCP:

a client initiates TCP connection
(creates socket) to server at
port 80

a server accepts TCP
connection from client

a HTTP messages (application-
layer protocol messages)
exchanged between browser
(HTTP client) and Web server
(HTTP server)

a http1.0: TCP connection
closed after HTTP response

HTTP is “stateless”

0 server maintains no information
about past client requests

———aside

Protocols that maintain “state”
are complex!

O past history (state) must be
maintained

0 if server/client crashes, their
views of “state” may be
inconsistent, must be
reconciled

L XA .
gi:‘ HTTP connections

Nonpersistent HTTP (v1.0) Persistent HTTP (v1.1)

o At most one object is sent
over a TCP connection.

o Multiple objects can be sent
over single TCP connection
between client and server.

ey 7
w4 Nonpersistent HTTP

Suppose user enters URL

www . someSchool . edu/someDepartment/home . index

1a. HTTP client initiates TCP
connection to HTTP server
(process) at
www.someSchool.edu on
port 80

2. HTTP client sends HTTP
request message (containing

socket. Message indicates that
client wants object

time

jpeg images)

1b. HTTP server at host
www.someSchool.edu waiting
for TCP connection at port 80.
“accepts” connection, notifying
client

URL) into TCP connection \1’1 HTTP server receives request

message, forms response

message containing requested
someDepanment/home.inde‘)/ object, and sends message into

its socket

;ﬁ"“ Nonpersistent HTTP (cont.)

(contains text,
references to 10

/ 4. HTTP server closes TCP
5. HTTP client receives

connection.
response message
containing html file, displays
html. Parsing html file, finds
10 referenced jpeg objects

tlTe 6. Steps 1-5 repeated for each of
10 jpeg objects

ey . .]
w4 Non-Persistent HTTP: Response time

Definition of RTT: time for a small
packet to travel from client to
server and back.

Response time: @

o one RTT to initiate TCP initiate TCP

connection connection \
a one RTT for HTTP request and RTT

first few bytes of HTTP ;.Tg uem“/
response to return RTT{ \ }time to

it

o file transmission time / }irlznsml

total = 2RTT+ transmit time me vod

v
time time

L XA .
gi:‘ Persistent HTTP

Nonpersistent HTTP issues: Persistent HTTP

o requires 2 RTTs per o server leaves connection
object open after sending response

o OS overhead for each o subsequent HTTP messages
TCP connection between same client/server

a browsers often open sent over open connection
parallel TCP connections o client sends requests as soon
to fetch referenced as it encounters a referenced
objects object

o as little as one RTT for all the
referenced objects

X A
;ir. HTTP request message

o two types of HTTP messages: request, response
o HTTP request message:
= ASCII (human-readable format)

request line
(GET, POST,\‘ GET /somedir/page.html HTTP/1.1
HEAD commands) Host: www.someschool .edu
User-agent: Mozillas4.0
header|connection: close
lines | Accept-language : Fr
(extra carriage return, line feed)

Carriage return,——"

line feed
indicates end
of message

ey .
W4q HTTP request message: general format

GET /somedir/page.html HTTP/1.1
Host: www.someschool .edu
User-agent: Mozillas4.0
Connection: close
Accept-language:fr

(extra carriage return, line feed)

request
line

header
lines

Entity Body

gﬁ".‘ Uploading form input

-y
w4q Method types

Post method:

o Web page often includes form
input

a Inputis uploaded to server in
entity body

URL method:
a Uses GET method

o Inputis uploaded in URL field
of request line:

www . somesite.com/animalsearch?monkeysé&banana

HTTP/1.0 HTTP/1.1
o GET o GET, POST, HEAD
o POST o PUT
o HEAD = uploads file in entity
= asks server to leave body to path specified in
requested object out of URL field
response o DELETE
= deletes file specified in
the URL field

X A
;:(. HTTP response message

XA
gi:‘ HTTP response status codes

status line
rotocol
St(:tus code HTTP/1.1 200 OK
status phrase) Connection: close
Date: Thu, 06 Aug 1998 12:00:15 GMT
header Server: @pqche/1-3_0 (Unix)
lines Last-Modified: Mon, 22 Jun 1998
Content-Length: 6821
Content-Type: text/html
data data data data data ...
data, e.g., —
requested
HTML file

o Infirst line in server: client response message
o A few sample codes:

200 OK
= request succeeded, requested object later in this message
301 Moved Permanently

= requested object moved, new location specified later in this
message (Location:)
400 Bad Request
= request message not understood by server
404 Not Found

= requested document not found on this server
505 HTTP Version Not Supported

gﬁ".‘ Trying out HTTP (client side) for yourself

1. Telnet to your favorite Web server:

telnet cis.poly.edu 80 Opens TCP connection to port 80
(default HTTP server port) at cis.poly.edu.
Anything typed in sent
to port 80 at cis.poly.edu

2. Type in a GET HTTP request:

By typing this in (hit carriage
return twice), you send

this minimal (but complete)
GET request to HTTP server

GET /~ross/ HTTP/1.1
Host: cis.poly.edu

3. Look at response message sent by HTTP server!

-y
2@ Web caches (proxy server)

o Goal: satisfy client request
without involving origin

server
o user sets browser: Web origin

o browser sends all HTTP ';'-’
requests to cache . @ */rrpre

* object in cache: cache client7775~ 2

returns object

= else cache requests
object from origin
server, then returns
object to client

accesses via cache server

origin
server

L X A .
;ﬁ" More about Web caching

o cache acts as both client Why Web caching?
and server o reduce response time for client
o typically cache is installed request
by ISP (university, o reduce traffic on an institution’s
company, residential ISP) access link.

o Internet dense with caches:
enables “poor” content
providers to effectively deliver
content (but so does P2P file
sharing)

ey
w4q Example

Assumptions

o average object size = 100.000 bits

o avg. request rate from institution’s
browsers to origin servers = 15/sec

a delay from institutional router to any

origin server and back to router =2
sec

Consequences

o traffic intensity (utilization) on LAN
=15%

o traffic intensity (utilization) on access link
=100%

0 total delay
= Internet delay + access delay + LAN
delay

= 2 sec + minutes + milliseconds

origin
servers

1.5 Mbit/s
access link

=y
%4 Example (cont)

possible solution

Q increase bandwidth of access link
to, say, 10 Mbps

conseguence

o utilization on LAN = 15%

a utilization on access link = 15%

a Total delay = Internet delay + access
delay + LAN delay

= 2 sec + msecs + msecs
o often a costly upgrade

o @ e

10 Mbps
access link

origin
servers

ey
w4q Example (cont)

possible solution: install cache
0 suppose hit rate is 0.4
consequence

o 40% requests will be satisfied
almost immediately

o 60% requests satisfied by origin
server

o utilization of access link reduced
to 60%, resulting in negligible
delays (say 10 msec)

o total average delay
= 60%*{ Internet delay

+ access delay

origin
servers

1.5 Mbps
access link

+ LAN delay}
+ 40% * milliseconds b W
= 0.6%(2.01) sec
+ 0.4*milliseconds
~ 1.2 secs institutional
cache

iﬁ"“ Conditional GET

o Goal: don’t send object if
cache has up-to-date cached

version cache

server

o cache: specify date of cached
copy in HTTP request

L —

HTTP request msg
If-modified-since: <date>

—

object

If-modified-since:
<date>

not

O server: response contains no
object if cached copy is up-to-

-«—

date:

HTTP response
HTTP/1.0
304 Not Modified

— modified

HTTP/1.0 304 Not

Modified

HTTP request msg
If-modified-since: <date>

object

T

HTTP response
HTTP/1.0 200 OK
<data>

_ modified

;ﬁ"“ Chapter 2: Application layer

o Principles of network applications
o Web and HTTP

o DNS

O

P2P applications

O

Summary

;A'"‘ DNS: Domain Name System

People: many identifiers: Domain Name System:

= Social Secuity Number, o distributed database
name, passport # implemented in hierarchy of

Internet hosts, routers: many nz_ime SEIVers
= IP address (32 bit) - used o application-layer protocol
for addressing datagrams host, routers, name servers to

“ i communicate to resolve
* “name”, e.g.,

names (address/name
ww.yahoo.com - used by translation)

humans
_ b P add = note: core Internet
Q: map between IP addresses function, implemented as
and name ?

application-layer protocol

= complexity at network’s
“edge”

ey
gi:‘ DNS

Why not centralize DNS? DNS services
o single point of failure o hostname to IP address
o traffic volume translation
o distant centralized database @ host aliasing
o maintenance = canonical name
= alias names
doesn’t scale! o mail server aliasing

= mnemonic host name desired

= MX record allows mnemonic
host name reused for mail
server

o load distribution

= replicated Web servers: set
of IP addresses for one
canonical name

?4('.‘ Distributed, Hierarchical Database
o

Root DNS Servers

com DNS servers org DNS servers ew\ls sesrs
\ pbs.org poly.edu umass.edu
yanoo.com amazon.com DNS servers DNS serversDNS servers

DNS servers DNS servers

Client wants IP for www.amazon.com; 15t approx:

a client queries a root server to find com DNS server
o client queries com DNS server to get amazon.com DNS server

a client queries amazon.com DNS server
(authorative DNS server — configured by original source)
to get IP address for www.amazon.com

ey
V44 : m
24 DNS: Root name servers

a contacted by local name server that can not resolve name

a root name server:
= contacts authoritative name server if name mapping not known
= gets mapping
= returns mapping to local name server

a Verisign, Dulles, VA
¢ Cogent, Herndon, VA (also LA)
d U Maryland College Park, MD k RIPE London (also 16 other locations)

g US DoD Vienna, VA
h ARL Aberdeen, MD i Autonomica, Stockholm (plus
j Verisign, (21 locations) 28 other locations)
- m WIDE Tokyo (also Seoul,
» ,-5_"’ Payis, SF)
- /

13 root name
g servers worldwide

e NASA Mt View, CA
f Internet Software C. Palo Alto,
CA (and 36 other locations)

b USC-ISI Marina del Rey, CA
| ICANN Los Angeles, CA

ey, ..
;ﬁ" TLD and Authoritative Servers

o Top-level domain (TLD) servers:

= responsible for com, org, net, edu, etc, and all top-level
country domains uk, fr, ca, jp.

= organisations hosting TLD servers:
* Network Solutions maintains servers for com TLD
* Educause for edu TLD
o Authoritative DNS servers:

= organization’s DNS servers, providing authoritative
hostname to IP mappings for organization’s servers
(e.g., Web, mail).

= can be maintained by organization or service provider

ey
V8%
,'Q‘ Local Name Server

o does not strictly belong to hierarchy
o each ISP (residential ISP, company, university) has one.
= also called “default name server”

o when host makes DNS query, query is sent to its local DNS
server

= acts as proxy, forwards query into hierarchy

X 4 :
%4 DNS name resolution example

o Host at cis.poly.edu wants IP root DNS server
address for gaia.cs.umass.edu

TLD DNS server

5
i . 11
Ailterated uery. local DNS server
O contacted server dns.poly.edu
replies with name of)[
1 8
server to contact

O “l don’t know this
name, but ask this

server” requesting host
cis.poly.edu

authoritative DNS server
dns.cs.umass.edu

gaia.cs.umass.edu

L XA .
%4q DNS name resolution example

root DNS server

recursive query:

O puts burden of name
resolution on contacted ﬂ

name server TLD DNS server

O heavy load?

11
local DNS server
dns.pol)[.edu

8

1

authoritative DNS server
dns.cs.umass.edu

requesting host
cis.poly.edu

gaia.cs.umass.edu

iﬁ".‘ DNS: caching and updating records

;ﬁ"“ DNS records

a once (any) name server learns mapping, it caches mapping
= cache entries timeout (disappear) after some time
= TLD servers typically cached in local name servers
» Thus root name servers not often visited
o update/notify mechanisms
= RFC 2136
= http://www.ietf.org/html.charters/dnsind-charter.html

= notify“ mechanism: primary sends a message
to known secondaries. for fast convergence of servers

DNS: distributed db storing resource records (RR)

RR format: (name, value, type, ttl)

o Type=A
= name is hostname
= value is IP address

o Type=CNAME

= name is alias name for some
“canonical” (the real) name

= e.g.. www.ibm.com is really

o Type=NS. _ servereast.backup2.ibm.com
* name is domain (e.g. (canonical name)
foo.com)

= value is hosthame of
authoritative name server
for this domain

o Type=MX
= value is name of mailserver
associated with name

='ay,
%4 DNS protocol, messages

ey
w4 DPNS protocol, messages

DNS protocol : query and reply messages, both with same
message format

identification flags

message header

O identification: 16 bit # for
query, rep|y to query uses number of authority RRs [number of additional RRs
same #

O flags:
= query or reply
= recursion desired
= recursion available
= reply is authoritative

number of guestions number of answer RRs

Name, type fields
for a query

RRs in response
to query

records for
authoritative servers

additional “helpful”
info that may be used

identification

flags

number of questions

number of answer RRs

number of authority RRs

number of addiional RRs

ey . . -y
w4 Inserting records into DNS 4 DNS Root Servers

o example: new startup “Network Utopia” o 13 root servers (A to M)
o register name networkuptopia.com at DNS registrar (e.g., o But number of physical servers in total is higher
Network Solutions)

. o o and increasing:
= provide names, IP addresses of authoritative name server = 191 by Oct. 2009

(primary and secondary) = 229 by Oct. 2010
= registrar inserts two RRs into com TLD server: :

(networkutopia.com, dnsl.networkutopia.com,
NS)

(dnsl.networkutopia.com, 212.212.212.1, A)

o create authoritative server
Type A record for www.networkuptopia.com
Type MX record for networkutopia.com

X/ »ay .
%4 DNS and IP Anycast %4q DNS Caching
o Multiple servers can be made reachable under the same IP address o TTL not specified in the standard (RFC 1034-1035)

a Via IP anycast

o Butin practice TTLs often up to 24 hours
o E.g. F-root server (IPv4: 192.5.5.241; IPv6: 2001:500:2f::f)

o Records for TLDs are provided by root servers and typically
stored even for 48 hours

192.5.5.241
o Caching typically improves lookup performance
o Caching relieves upper nodes in the hierarchy (root + TLDs)

o Massive caching makes it difficult to:
= Dynamically react to current load
= Migrate services

= TTLs of 60 s are typical today (e.g. amazon.com)

o IP anycast used for DNS since 2002 for root servers and many TLDs
> High robustness

> New servers can be easily added without updating the DNS clients.

gﬁ".‘ Example: DNS with Low TTLs ;ﬁ"“ Dependency on DNS

2 €.g. amazon.com o DoS-Attack targeting Microsoft in January 2001
= First: router problem =» Microsoft's websites and services were down
user@host:~$ dig amazon.com on January 23rd 2001
; <<>> DiG 9.6.1-P2 <<>> amazon.com = The damage was surprisingly large

;5 global options: +cmd
;5 Got answer:
;; —>>HEADER<<- opcode: QUERY, status: NOERROR, id: 42197

;; Flags: gr rd ra; QUERY: 1, ANSWER: 3, AUTHORITY: 7,
ADDITIONAL: 9

hotCo.jp

5> QUESTION SECTION:
;amazon.com. IN A

; ANSWER SECTION:

amazon.com. 60 IN A 72.21.210.250
amazon.com. 60 IN A 207.171.166.252
amazon.com. 60 IN A 72.21.207.65

ey ey, . .
%4 Dependency on DNS w4q Chapter 2: Application layer
a Web servers are be running o Principles of network applications

o But DNS failure leads to service failure
o Web and HTTP
> Need to deploy multiple DNS authorative servers
> In different networks o DNS

O

P2P applications

O

Summary

ey, -
;ﬁ‘ Pure P2P architecture

a no always-on server

o arbitrary end systems directly
communicate

o peers are intermittently =
connected and change IP
addresses

peer-peer

o Three topics:
= File distribution

= Searching for information
» Case Study: Skype

;&:’“ File Distribution: Server-Client vs P2P
as

Question : How much time to distribute file from one server to N
peers?

u,: server upload
bandwidth
u;: peer i upload
bandwidth

d;: peer i download
bandwidth

ey . . :
;4(.‘ File distribution time: server-client
Z 4

0 server sequentially sends N Server
copies.
distribution time is at least:
NF/ugtime
o client i takes F/d;time to
download

minimum download time: F/d;,

Time to distribute F
to N clients using = d. = max { NF/ug, F/d_;.) }
client/server approach

increases linearly in N
(for large N)

gﬁ" File distribution time: P2P

o server must send one copy: F/ug
time

o client i takes F/d; time to
download

o NF bits must be downloaded
(aggregate)

fastest possible upload rate:
ug + Su;

degp = max {Flu, F/d_. , NF/(u, + Zu)}

=y, , :
. Server-clientvs. P2P: example

Client upload rate = u, F/u=1 hour, ug=10u, d.,, 2 U
3.5
° = P2P
E 31 Client-Server
S 2%
5
a2 2
k7
8 15
g
E 1]
£
S 057
0 T T T T T T

gi:‘ File distribution: BitTorrent

0 P2P file distribution

tracker: tracks peers
participating in torrent

obtain list
of peers

trading

I

chunks

torrent: group of
peers exchanging
chunks of a file

ey .
4 BitTorrent (1)

o file divided into 256KB chunks.
o peer joining torrent:
= has no chunks, but will accumulate
them over time

= registers with tracker to get list of
peers, connects to subset of peers
(“neighbors”)

o while downloading, peer uploads
chunks to other peers.

o peers may come and go

o once peer has entire file, it may
(selfishly) leave or (altruistically)
remain

L XA R
W4 BitTorrent (2)

Pulling Chunks

o at any given time, different
peers have different subsets
of file chunks

o periodically, a peer (Alice)
asks each neighbor for list of
chunks that they have.

o Alice sends requests for her
missing chunks

= rarest first

Sending Chunks: tit-for-tat

O Alice sends chunks to four
neighbors currently sending
her chunks at the highest rate

= re-evaluate top 4 every 10
secs
O every 30 secs: randomly
select another peer, starts
sending chunks
= newly chosen peer may
join top 4
= “optimistically unchoke”

ey . e
;ﬁ" BitTorrent: Tit-for-tat

(1) Alice “optimistically unchokes” Bob
(2) Alice becomes one of Bob’s top-four providers; Bob reciprocates
(3) Bob becomes one of Alice’s top-four providers

2 /@
@ @ ; " @
................... . @
~ -

.
=
ks

i

With higher upload rate,
can find better trading

@ partners & get file faster!

%@ Distributed Hash Table (DHT)

o DHT = distributed P2P database

o Database has (key, value) pairs;
= key: social security number; value: human name
= Kkey: content identifier; value: IP address

o Peers query DB with key
= DB returns values that match the key

o Peers can also insert (key, value) peers

ey ..
;2(. DHT Identifiers

o Assign integer identifier to each peer in range [0,2"-1].
= Each identifier can be represented by n bits.

o Require each key to be an integer in same range.

o To get integer keys, hash original key.
» eg, key = h(“Led Zeppelin IV”)
= This is why they call it a distributed “hash” table

L XA .
w4 How to assign keys to peers?

o Central issue:
= Assigning (key, value) pairs to peers.
o Rule: assign key to the peer that has the closest ID.
o Convention in lecture: closest is the immediate successor of the
key.
o Example: n=4; peers: 1,3,4,5,8,10,12,14;
= key = 13, then successor peer = 14
= key = 15, then successor peer = 1

gﬁ".‘ Circular DHT (1)

%@ Circle DHT (2)

10
8

o Each peer only aware of immediate successor and predecessor.

a “Overlay network”

Who's resp
for key 1110 ?

O(N) messages
on avg to resolve
query, when there
are N peers

1114

Define closest
as closest
successor

;ﬁ" Circular DHT with Shortcuts

Ny
%
w4 Peer Churn

1 Who's resp
for key 1110?
1
4
1
5
10
8

o Each peer keeps track of IP addresses of predecessor,
successor, short cuts.

o Shortcuts reduce required number of query messages
(e.g. from 6 to 2).

o Possible to design shortcuts so O(log N) neighbors, O(log N)
messages in query

1

*To handle peer churn, require
3 each peer to know the IP address
of its two successors.
4 - Each peer periodically pings its
two successors to see if they
1 are still alive.

10
8

o Peer 5 abruptly leaves

o Peer 4 detects; makes 8 its immediate successor; asks 8 who its
immediate successor is; makes 8’s immediate successor its second
successor.

a What if peer 13 wants to join?

gﬁ".‘ P2P Case study: Skype

ey
W4 Peers asrelays

a inherently P2P: pairs of users
communicate.

o proprietary application-layer
protocol (inferred via reverse
engineering)

o hierarchical overlay with Skype
Supernodes login server

o Index maps usernames to IP
addresses; distributed over
Supernodes

a Problem when both Alice and Bob
are behind “NATSs”.
= NAT prevents an outside peer
from initiating a call to insider
peer
o Solution:
= Using Alice’s and Bob’s
Supernodes, Relay is chosen
= Each peer initiates session
with relay.
= Peers can now communicate
through NATSs via relay

&V’.‘ Chapter 2: Application layer

;ﬁ"“ Chapter 2: Summary

a Principles of network applications

Web and HTTP

O

o DNS

O

P2P applications

O

Summary

network application level issues
o application architectures

= client-server

= P2P

= hybrid
application service requirements:
= reliability, bandwidth, delay
Internet transport service model
= connection-oriented, reliable: TCP
= unreliable, datagrams: UDP
specific protocols:

= HTTP

= DNS

= P2P: BitTorrent, Skype
socket programming

O

O

O

O

;g'.‘ Chapter 2: Summary

Most importantly: learned about protocols
a typical request/reply message exchange:
= client requests info or service
= server responds with data, status code
o message formats:
= headers: fields giving info about data
» data: info being communicated
o Important themes:
control vs. data messages
= in-band, out-of-band
centralized vs. decentralized
stateless vs. stateful
reliable vs. unreliable message transfer
“‘complexity at network edge”

O

[I S i

