
Chair for Network Architectures and Services – Prof. Carle
Department for Computer Science
TU München

Master Course
Computer Networks

IN2097

Prof. Dr.-Ing. Georg Carle
Christian Grothoff, Ph.D.
Dr. Nils Kammenhuber

Chair for Network Architectures and Services
Institut für Informatik

Technische Universität München
http://www.net.in.tum.de

Chair for Network Architectures and Services – Prof. Carle
Department for Computer Science
TU München

Architecture: the big picture

IN2097 — Master Course Computer Networks, WS 2009/20 10 3

Architecture: the big picture

Goals:

� identify, study principles that
can guide network
architecture

� “bigger” issues than specific
protocols or implementation
wisdom,

� synthesis: the really big
picture

Overview:

� Internet design principles

� rethinking the Internet design
principles

� packet switching versus
circuit switching revisited

IN2097 — Master Course Computer Networks, WS 2009/20 10 4

Key questions

� How to decompose the complex system functionality into protocol
layers?

� Which functions placed where in network, at which layers?

� Can a function be placed at multiple levels?

� Answer these questions in context of
� Internet
� Telephone network

(Nickname 1: Telco — telecommunications provider)
(Nickname 2: POTS — “plain old telephone system”)�

IN2097 — Master Course Computer Networks, WS 2009/20 10 5

Common View of the Telco Network:
Smart network, dumb endpoints

brick (dumb) �

brain (smart) �

lock (you can’t get in)�

IN2097 — Master Course Computer Networks, WS 2009/20 10 6

Common View of the IP Network:
Dumb network, smart end hosts

The Internet End-to-End principle

IN2097 — Master Course Computer Networks, WS 2009/20 10 7

Internet End-to-End Principle

� “…functions placed at the lower levels may be redundant or of little
value when compared to the cost of providing them at the higher
level…”

� “…sometimes an incomplete version of the function provided by the
communication system (lower levels) may be useful as a
performance enhancement…”

� This leads to a philosophy diametrically opposite to the telephone
world of dumb end-systems (the telephone) and intelligent networks.

IN2097 — Master Course Computer Networks, WS 2009/20 10 8

Example: Reliable File Transfer

� Solution 1: make each step reliable, and then concatenate them

OS

Appl.

OS

Appl.

Host A Host B

OK

� Solution 2: each step unreliable: end-to-end check and retry
(…the Internet way)

checksum

IN2097 — Master Course Computer Networks, WS 2009/20 10 9

Discussion

� Is solution 1 good enough?
� No — what happens if components on path

fail or misbehave (bugs)?
� Is reliable communication sufficient:

� No — what happens if disk errors?
� So need application to make final correctness check

anyway!
� Thus, full functionality can be entirely implemented at

application layer; no need for reliability from lower
layers

IN2097 — Master Course Computer Networks, WS 2009/20 10 10

Discussion

Q: Is there any reason to implement reliability at lower
layers?

A: YES: “easier” (and more efficient) to check and
recovery from errors at each intermediate hop

� e.g.: faster response to errors, localized
retransmissions

� Concrete example: Error correction on wireless links
(in spite of TCP packet loss detection)

IN2097 — Master Course Computer Networks, WS 2009/20 10 11

Trade-offs

� application has more information about the data and
semantics of required service (e.g., can check only at the
end of each data unit) �

� lower layer has more information about constraints in data
transmission (e.g., packet size, error rate)�

� Note: these trade-offs are a direct result of layering!

IN2097 — Master Course Computer Networks, WS 2009/20 10 12

Internet & End-to-End Argument

� Network layer provides one simple service: best effort
datagram (packet) delivery

� Transport layer at network edge (TCP) provides end-end
error control
� Performance enhancement used by many applications

(which could provide their own error control)�
� All other functionality …

� All application layer functionality
� Network services: DNS
� Implemented at application level

IN2097 — Master Course Computer Networks, WS 2009/20 10 13

Internet & End-to-End Argument

� Discussion: congestion control, flow control: why at
transport, rather than link or application layers?

� congestion control needed for many applications
(assumes reliable application-to-TCP data passing)�

� many applications “don’t care” about congestion control –
it’s the network’s concern

� consistency across applications — you have to use it if
you use TCP (social contract — everybody does) �

� why do it at the application level
� Flow control — application knows how/when it wants to

consume data
� Congestion control — application can do TCP-friedly

congestion control

IN2097 — Master Course Computer Networks, WS 2009/20 10 14

Internet & End-to-End Argument

� Discussion: congestion control, flow control: Why not at the
link layer?
1. Not every application needs it/wants it
2. Lots of state at each router (each connection needs to

buffer, need back pressure) — it’s hard
3. Congestion control in the entire network, e.g., load-

adaptive dynamic IP routing? — multiple reasons
against it:

� hard to do
� prone to oscillations
� didn’t work out in ARPANET → “never again” attitude

IN2097 — Master Course Computer Networks, WS 2009/20 10 15

E2E Argument: Interpretations

� One interpretation:
� A function can only be completely and correctly

implemented with the knowledge and help of the
applications standing at the communication endpoints

� Another: (more precise…) �
� A system (or subsystem level) should consider only

functions that can be completely and correctly
implemented within it.

� Alternative interpretation: (also correct …)�
� Think twice before implementing a functionality that

you believe that is useful to an application at a lower
layer

� If the application can implement a functionality
correctly, implement it a lower layer only as a
performance enhancement

IN2097 — Master Course Computer Networks, WS 2009/20 10 16

End-to-End Argument: Critical Issues

� End-to-end principle emphasizes:
� function placement
� correctness, completeness
� overall system costs

� Philosophy: if application can do it, don’t do it at a
lower layer — application best knows what it needs
� add functionality in lower layers iff

(1) used by and improves performances of many
applications, (2) does not hurt other applications

� allows cost-performance tradeoff

IN2097 — Master Course Computer Networks, WS 2009/20 10 17

End-to-End Argument: Discussion

� End-end argument emphasizes correctness &
completeness, but does not emphasize…:
� complexity: Does complexity at edges result in a

“simpler” architecture?
� evolvability: Ease of introduction of new

functionality; ability to evolve because
easier/cheaper to add new edge applications than
to change routers?

� technology penetration: Simple network layer
makes it “easier” for IP to spread everywhere

IN2097 — Master Course Computer Networks, WS 2009/20 10 18

Internet Design Philosophy (Clark’ 88) �

0. Connect existing networks
� initially ARPANET, ARPA packet radio, packet satellite network

1. Survivability
� ensure communication service even with network and router failures

2. Support multiple types of services
3. Must accommodate a variety of networks
4. Allow distributed management
5. Allow host attachment with a low level of effort
6. Be cost effective
7. Allow resource accountability

In order of importance:
Differe

nt orde
ring of

 priorit
ies wou

ld

make a d
ifferen

t archi
tecture

!

IN2097 — Master Course Computer Networks, WS 2009/20 10 19

1. Survivability

� Continue to operate even in the presence of network failures
(e.g., link and router failures)�

� as long as network is not partitioned, two endpoints should be
able to communicate

� any other failure (excepting network partition) should be
transparent to endpoints

� Decision: maintain end-to-end transport state only at end-points

� eliminate the problem of handling state inconsistency and
performing state restoration when router fails

� Internet: stateless network-layer architecture

� No notion of a session/call at network layer

� Example: Your TCP connection shouldn’t break when a router
along the path fails

� Assessment: ??

IN2097 — Master Course Computer Networks, WS 2009/20 10 20

2. Types of Services

� Add UDP to TCP to better support other apps

� e.g., “real-time” applications
� arguably main reason for separating TCP, IP

� datagram abstraction: lower common denominator on which other
services can be built

� service differentiation was considered (remember ToS field in IP
header?), but this has never happened on the large scale (Why?)�

� Assessment: ?

IN2097 — Master Course Computer Networks, WS 2009/20 10 21

3. Variety of Networks

� Very successful (why?)

� because the minimalist service; it requires from underlying network
only to deliver a packet with a “reasonable” probability of success

� …does not require:
� reliability

� in-order delivery

� The mantra: IP over everything
� Then: ARPANET, X.25, DARPA satellite network..

� Subsequently: ATM, SONET, WDM…

� Assessment: ?

IN2097 — Master Course Computer Networks, WS 2009/20 10 22

Other Goals

� Allow distributed management
� Administrative autonomy: IP interconnects networks

• each network can be managed by a different
organization

• different organizations need to interact only at the
boundaries

• … but this model complicates routing
� Assessment: ?

� Cost effective
� sources of inefficiency

• header overhead
• retransmissions
• routing

� …but “optimal” performance never been top priority
� Assessment: ?

IN2097 — Master Course Computer Networks, WS 2009/20 10 23

Other Goals (Cont) �

� Low cost of attaching a new host

� not a strong point � higher than other architecture because the
intelligence is in hosts (e.g., telephone vs. computer)�

� bad implementations or malicious users can produce considerably
harm (remember fate-sharing?)�

� Assessment: ?

� Accountability
� Assessment: ?

IN2097 — Master Course Computer Networks, WS 2009/20 10 24

What About the Future?

� Datagram not the best abstraction for:

� resource management, accountability, QoS

� new abstraction: flow (see IPv6) �
� Typically: (src, dst, #bytes) tuple

� But: “flow” not precisely defined

• when does it end? Explicit connection teardown? Timeout?
• src and dst =...? ASes? Prefixes? Hosts? Hosts&Protocol?

� IPv6: difficulties to make use of flow IDs

� routers require to maintain per-flow state
� state management: recovering lost state is hard

� in context of Internet (1988) we see the first proposal of “soft state”!

� soft-state: end-hosts responsible to maintain the state

IN2097 — Master Course Computer Networks, WS 2009/20 10 25

Summary: Internet Architecture

� packet-switched datagram network
� IP is the glue (network layer overlay)
� IP hourglass architecture

� all hosts and routers run IP
� stateless architecture

� no per flow state inside network
IP

TCP UDP

ATM

Satellite

Ethernet

IP hourglass

IN2097 — Master Course Computer Networks, WS 2009/20 10 26

Summary: Minimalist Approach

� Dumb network
� IP provide minimal functionalities to support connectivity
� addressing, forwarding, routing

� Smart end systems
� transport layer or application performs more sophisticated

functionalities
� flow control, error control, congestion control

� Advantages
� accommodate heterogeneous technologies (Ethernet, modem,

satellite, wireless, ...)�
� support diverse applications (telnet, ftp, Web, X windows)�
� decentralized network administration

IN2097 — Master Course Computer Networks, WS 2009/20 10 27

But that was yesterday

……. what about tomorrow?

IN2097 — Master Course Computer Networks, WS 2009/20 10 28

Rethinking Internet Design

What’s changed?

� operation in untrustworthy world
� endpoints can be malicious: Spam, Worms, (D)DoS, ...

� If endpoint not trustworthy, but want trustworthy network
� more mechanisms in network core

� more demanding applications

� end-to-end best effort service not enough

� new service models in network (IntServ, DiffServ)?
� new application-level service architecture built on top of network

core (e.g., CDN, P2P)?

IN2097 — Master Course Computer Networks, WS 2009/20 10 29

Rethinking Internet Design

What’s changed (cont.)?
� ISP service differentiation

� ISP doing more (than other ISPs) in core is competitive advantage

� Rise of third party involvement

� interposed between endpoints (even against will)�

� e.g., Chinese government, recording industry,
Vorratsdatenspeicherung

� less sophisticated users

All five changes motivate shift away from end-to-end!

IN2097 — Master Course Computer Networks, WS 2009/20 10 30

What’s at stake?

“ At issue is the conventional understanding of the “Internet philosophy”
� freedom of action
� user empowerment
� end-user responsibility for actions taken
� lack of control “in” the net that limit or regulate what users can do

The end-end argument fostered that philosophy because they enable the
freedom to innovate, install new software at will, and run applications
of the users choice.”

[Blumenthal and Clark, 2001]

IN2097 — Master Course Computer Networks, WS 2009/20 10 31

Technical response to changes

� Trust: emerging distinction between what is “in” network (us,
trusted) and what is not (them, untrusted).

� ingress filtering
� emergence of Internet UNI (user network interface, as in

ATM)?

� Modify endpoints

� harden endpoints against attack
� endpoints/routers do content filtering: Net-nanny

� CDN, ASPs: rise of structured, distributed applications in
response to inability to send content (e.g., multimedia, high
bw) at high quality

IN2097 — Master Course Computer Networks, WS 2009/20 10 32

Technical response to changes

� Add functions to the network core:

� filtering firewalls
� application-level firewalls

� NAT boxes

� active networking

… All operate within network, making use of application-level
information

� which addresses can do what at application level?
� If addresses have meaning to applications, NAT must

“understand” that meaning

IN2097 — Master Course Computer Networks, WS 2009/20 10 36

Epilogue: will IP take over the world?

� Reasons for success of IP:

� reachability: reach every host; adapts topology when links fail.

� heterogeneity: single service abstraction (best effort) regardless
of physical link topology

� many other claimed (or commonly accepted) reasons for IP’s
success may not be true

…. let’s take a closer look

IN2097 — Master Course Computer Networks, WS 2009/20 10 37

1. IP already dominates global communications?

� business revenues
(in US$, 2007):

� ISPs: 13B
� Broadcast TV: 29B

� Cable TV: 29.8B

� Radio broadcast: 10.6B
� Phone industry: 268B

� Router/telco switch markets:
� Core router: 1.7B; edge

routers: 2.4B

� SONET/SDH/WDM: 28B,
Telecom MSS: 4.5B

Q: IP equipment cheaper?
Economies of scale?
(lots of routers?)�

Q: per-device, IP is cheaper
(one line into house, multiple devices)�

Q: # bits carried in each network?

Q: Internet, more traffic and congestion
is spread among all users (bad?)�

IN2097 — Master Course Computer Networks, WS 2009/20 10 38

2. IP is more efficient?

� Statistical multiplexing versus circuit switching

� Link utilization:
� Avg. link utilization in Internet core: 3% to 30%

(ISPs: never run above 50%!)�

� Avg. utilization of Ethernet is currently 1%

� Avg. link utilization of long distance phone lines: 33%
� low IP link utilization: purposeful!

� predictability, stability, low delay, resilience to failure

� at higher utilization: traffic spikes induce short congestion
periods → deterioration of QoS

� At low utilization, we loose benefits of statistical multiplexing!

IN2097 — Master Course Computer Networks, WS 2009/20 10 39

3. IP is more robust?

� “Internet was built to sustain a nuclear war” — marketing vapor!

• Remember large-scale network outages, e.g. on Sep 11th 2001?

� Median IP network availability: downtime: 471 min/yr

� Avg. phone network downtime: 5 min/yr

� Convergence time with link failures:

�BGP: ≈ 3–15 min,
intra-domain: ≈ 0.1–1 s (e.g., OSPF)�

�SONET: 50 ms

� Inconsistent routing state

�human misconfigurations
�in-band signaling (signaling and data share same network)�

�routing computation “complex”

IN2097 — Master Course Computer Networks, WS 2009/20 10 40

4. IP is simpler?

� Intelligence at edge, simplicity in core
� Cisco IOS: 8M lines of code
� Telephone switch: 3M lines of code

� Linecard complexity:
� Router: 30M gates in ASICs, 1 CPU, 300M packet buffers
� Switch: 25% of gates, no CPU, no packet buffers

IN2097 — Master Course Computer Networks, WS 2009/20 10 42

Big picture: Original idea, the IP hour glass figur e

IP

TCP UDP

Applications

token

radio, copper, fiber

802.11 PPP
Eth

IP “hourglass”

IN2097 — Master Course Computer Networks, WS 2009/20 10 43

Big picture: supporting new applications
– losing the IP hour glass figure? (1)

IP

TCP UDP

Applications

token

radio, copper, fiber

802.11 PPP
Eth

IP “hourglass”

IP

TCP UDP

Applications

token

radio, copper, fiber

802.11 PPP
Eth

diffserv

intserv
multicastmobile

IP
“love handles” NAT IPSEC

Middle-age IP = “hourglass” ?

MPLS

IN2097 — Master Course Computer Networks, WS 2009/20 10 44

Big picture: supporting new applications
– losing the IP hour glass figure? (2)

IP

TCP UDP

Applications

token

radio, copper, fiber

802.11 PPP
Eth

Today:
HTTP is greatest common denominator

Original idea:
IP is greatest common denominator

IP

TCP UDP

HTTP

token

radio, copper, fiber

802.11 PPP
Eth

Other
apps

HTTP-based apps

IN2097 — Master Course Computer Networks, WS 2009/20 10 45

IP

TCP UDP

Applications

token

radio, copper, fiber

802.11 PPP
Eth

IP “hourglass”

IP

TCP UDP

overlay
services

token

radio, copper, fiber

802.11 PPP
Eth

client
server

apps

application overlays

Big picture: supporting new applications
– losing the IP hour glass figure? (3)

Chair for Network Architectures and Services – Prof. Carle
Department for Computer Science
TU München

Some advice on protocol design

� A loose collection of important thoughts
related to protocol design

� ... actually, not only protocol design, but also
• Programming in general

• Systems in general (e.g., workflows in
companies)�

• Life :)�

IN2097 — Master Course Computer Networks, WS 2009/20 10 65

Thought-triggering questions (1) �

What problem am I trying to
solve?

� Have at least one well-
defined problem in mind

� Solve other problems
without complicating the
solution?

Will my solution scale?
� Think about what

happens if you’re
successful:
your protocol will be
used by millions!

� Does the protocol
make sense in small
situations as well?

IN2097 — Master Course Computer Networks, WS 2009/20 10 66

Thought-triggering questions (2) �

How “robust” is my solution?
� adapt to failure/change

� self-stabilization: eventually adapt to failure/change
� Byzantine robustness: will work in spite of

malicious users
� What are the underlying assumptions?

� What if they are not true? catastrophe?
� maybe better to crash than degrade when problems

occur: signal problem exists
� techniques for limited spread of failures
� protocol should degrade gracefully in overload, at

least detect overload and complain

IN2097 — Master Course Computer Networks, WS 2009/20 10 67

Forward compatibility
� think about future changes,

evolution

� make fields large enough

� reserve some spare bits
� specify an options field that

can be used/augmented
later

Further thoughts

Parameters...
� Protocol parameters can be

useful

� designers can’t determine
reasonable values

� tradeoffs exist: leave
parameter choice to users

� Parameters can be bad

� users (often not well
informed) will need to
choose values

� try to make values plug-and-
play

IN2097 — Master Course Computer Networks, WS 2009/20 10 68

Simplicity vs Flexibility versus optimality

� Is a more complex protocol
reasonable?

� Is “optimal” important?
� KISS: “The simpler the

protocol, the more likely it is to
be successfully implemented
and deployed.”

� 80:20 rule:
80% of gains achievable with
20% of effort

Why are protocols overly
complex?

� design by committee
� backward compatibility
� flexibility: heavyweight swiss

army knife
� unreasonble stiving for

optimality
� underspecification
� exotic/unneeded features

IN2097 — Master Course Computer Networks, WS 2009/20 10 69

Trading accuracy for time

� If computing the exact result is too slow, maybe an
approximate solution will do
� optimal solutions may be hard: heuristics will do

(e.g., optimal multicast routing is a Steiner tree
problem) �

� faster compression using “lossy” compression
• lossy compression: decompression at

receiver will not exactly recreate original
signal

� Real-world examples?
� games like chess: can’t compute an exact

solution

IN2097 — Master Course Computer Networks, WS 2009/20 10 70

Don’t confuse specification with implementation

� A general problem of computer scientists!
� Specifications indicate external effects/interaction of protocol.

� How protocol is implemented is up to designer

� Programming language specifications: in addition to specifying
what, tend to suggest how.

� real-world example: recipe

1. Cut onions

2. Cut potatoes

3. Put onion and potatoes into pot and boil

steps 1 and 2 can obviously be interchanged……

IN2097 — Master Course Computer Networks, WS 2009/20 10 84

Where are we headed:
Current/upcoming research topics

� Network management: Measurement, automation (“managemt. plane”)

� Service management:

� Application-level networks, overlays, distributed hash tables (DHT)
� QoS: Not a solved problem end-end

� Wireless networking, mobility

� New types of networks:
� Sensor nets, body nets, home nets

� Security:

� Lack of cryptographic signatures in many protocols
� Most traffic unencrypted (…which is good for measurement…)

� Resilience: more robust networks (reacting faster / to more failures)

� “Future Internet”
� Evolutionary approach: step-by-step introduction of new protocols

� Revolutionary / clean-slate approach: Radical architecture change

� Ease of use, deployment (but what are the research problems here?)

IN2097 — Master Course Computer Networks, WS 2009/20 10 86

Future Internet

(sorry for the German labels, but most notions are in English anyway…)

IN2097 — Master Course Computer Networks, WS 2009/20 10 87

The really big picture

� Importance of user requirements

“It’s the network, stupid”

“It’s the application, stupid”

“It’s the end-user, stupid”

of course, not everyone
agrees ….

Verizon product, purchased 2007

IN2097 — Master Course Computer Networks, WS 2009/20 10 90

The end!

