Chair for Network Architectures and Services — Prof. Carle
Department for Computer Science
TU Miinchen

Master Course
Computer Networks
IN2097

Prof. Dr.-Ing. Georg Carle
Christian Grothoff, Ph.D.
Dr. Nils Kammenhuber

Chair for Network Architectures and Services
Institut fur Informatik
Technische Universitat Miinchen
http:/Awww.net.in.tum.de

Chair for Network Architectures and Services — Prof. Carle
Department for Computer Science
TU Miinchen

Architecture: the big picture

L X A

Y@ Architecture: the big picture

Goals:

a identify, study principles that
can guide network
architecture

o “bigger” issues than specific
protocols or implementation
wisdom,

a synthesis: the really big
picture

Overview:

a Internet design principles

a rethinking the Internet design
principles

a packet switching versus
circuit switching revisited

L X A o
Wi Key questions

a How to decompose the complex system functionality into protocol
layers?

a Which functions placed where in network, at which layers?

a Can a function be placed at multiple levels?

a Answer these questions in context of
= Internet

= Telephone network
(Nickname 1: Telco — telecommunications provider)
(Nickname 2: POTS — “plain old telephone system”)

Common View of the Telco Network:

[7 X
o | Smart network, dumb endpoints

a’z Common View of the IP Network:
ol | Dumb network, smart end hosts

\ brain (smart)

1
brick (dumb)

Ioc/:k (you can’t get in)]

The Internet End-to-End principle

iﬁ% Internet End-to-End Principle

o “...functions placed at the lower levels may be redundant or of little
value when compared to the cost of providing them at the higher
level...”

o “...sometimes an incomplete version of the function provided by the
communication system (lower levels) may be useful as a
performance enhancement...”

o This leads to a philosophy diametrically opposite to the telephone
world of dumb end-systems (the telephone) and intelligent networks.

,?g"‘ Example: Reliable File Transfer

Host A Host B
OK
-] OS || crecksumr— 0S S
= - = =

o Solution 1: make each step reliable, and then concatenate them

a Solution 2: each step unreliable: end-to-end check and retry
(...the Internet way)

Discussion

a Is solution 1 good enough?
= No — what happens if components on path
fail or misbehave (bugs)?
o Is reliable communication sufficient:
= No — what happens if disk errors?
o So need application to make final correctness check
anyway!
a Thus, full functionality can be entirely implemented at
application layer; no need for reliability from lower
layers

—
v, A
%

Discussion

Q: Is there any reason to implement reliability at lower
layers?

A: YES: “easier” (and more efficient) to check and
recovery from errors at each intermediate hop

o e.g.: faster response to errors, localized
retransmissions

a Concrete example: Error correction on wireless links
(in spite of TCP packet loss detection)

ey,
¢ Trade-offs

o application has more information about the data and
semantics of required service (e.g., can check only at the
end of each data unit)|

o lower layer has more information about constraints in data
transmission (e.g., packet size, error rate)

o Note: these trade-offs are a direct result of layering!

,?f'“ Internet & End-to-End Argument

a Network layer provides one simple service: best effort
datagram (packet) delivery

o Transport layer at network edge (TCP) provides end-end
error control

= Performance enhancement used by many applications
(which could provide their own error control)

a All other functionality ...
= All application layer functionality
= Network services: DNS

= Implemented at application level

iﬁ% Internet & End-to-End Argument

o Discussion: congestion control, flow control: why at
transport, rather than link or application layers?

o congestion control needed for many applications
(assumes reliable application-to-TCP data passing)

o many applications “don’t care” about congestion control —
it's the network’s concern

O consistency across applications — you have to use it if
you use TCP (social contract — everybody does)

a why do it at the application level
= Flow control — application knows how/when it wants to
consume data
= Congestion control — application can do TCP-friedly
congestion control

,?g"‘ Internet & End-to-End Argument

o Discussion: congestion control, flow control: Why not at the

link layer?

1. Not every application needs it/wants it

2. Lots of state at each router (each connection needs to
buffer, need back pressure) — it's hard

3. Congestion control in the entire network, e.g., load-
adaptive dynamic IP routing? — multiple reasons
against it:

« hard to do

« prone to oscillations
« didn’t work out in ARPANET — “never again” attitude

ey n
y41g E2E Argument: Interpretations

a One interpretation:
= A function can only be completely and correctly
implemented with the knowledge and help of the
applications standing at the communication endpoints
a Another: (more precise...)
= A system (or subsystem level) should consider only
functions that can be completely and correctly
implemented within it.
a Alternative interpretation: (also correct ...)
= Think twice before implementing a functionality that
you believe that is useful to an application at a lower
layer
= |f the application can implement a functionality
correctly, implement it a lower layer only as a
performance enhancement

Y4q End-to-End Argument: Critical Issues

o End-to-end principle emphasizes:
= function placement
= correctness, completeness
= overall system costs

o Philosophy: if application can do it, don’t do it at a
lower layer — application best knows what it needs
= add functionality in lower layers iff
(1) used by and improves performances of many
applications, (2) does not hurt other applications
o allows cost-performance tradeoff

;g'.‘ End-to-End Argument: Discussion

o End-end argument emphasizes correctness &
completeness, but does not emphasize...:

= complexity: Does complexity at edges result in a
“simpler” architecture?

= evolvability: Ease of introduction of new
functionality; ability to evolve because
easier/cheaper to add new edge applications than
to change routers?

= technology penetration: Simple network layer
makes it “easier” for IP to spread everywhere

,?f'“ Internet Design Philosophy (Clark’ 88) 1

- ould
ing of P""°rme\sw
ordee‘;\\t %rch'\’fec)‘“re‘

In order of importance: pifferen cfr

t
. ke a di
0. Connect existing networks ~ m&
» initially ARPANET, ARPA packet radio, packet satellite network
1. Survivability
~ ensure communication service even with network and router failures
2. Support multiple types of services
3. Must accommodate a variety of networks
4. Allow distributed management
5. Allow host attachment with a low level of effort
6. Be cost effective
7

. Allow resource accountability

iﬁ% 1. Survivability

iﬁﬁ 2. Types of Services

a Continue to operate even in the presence of network failures
(e.g., link and router failures)

= as long as network is not partitioned, two endpoints should be
able to communicate

= any other failure (excepting network partition) should be
transparent to endpoints

o Decision: maintain end-to-end transport state only at end-points

= eliminate the problem of handling state inconsistency and
performing state restoration when router fails

o Internet: stateless network-layer architecture
= No notion of a session/call at network layer

= Example: Your TCP connection shouldn’t break when a router
along the path fails

a Assessment: ??

o Add UDP to TCP to better support other apps
= e.g., ‘real-time” applications
o arguably main reason for separating TCP, IP

o datagram abstraction: lower common denominator on which other
services can be built

= service differentiation was considered (remember ToS field in IP
header?), but this has never happened on the large scale (Why?)
o Assessment: ?

70: 3. Variety of Networks

2

ey
e Other Goals

a Very successful (why?)

= because the minimalist service; it requires from underlying network
only to deliver a packet with a “reasonable” probability of success

a ...does not require:
= reliability
= in-order delivery
0o The mantra: IP over everything
= Then: ARPANET, X.25, DARPA satellite network..
= Subsequently: ATM, SONET, WDM...
o Assessment: ?

o Allow distributed management
= Administrative autonomy: IP interconnects networks

« each network can be managed by a different
organization

« different organizations need to interact only at the
boundaries

¢ ... but this model complicates routing
= Assessment: ?

o Cost effective
= sources of inefficiency
« header overhead
« retransmissions
* routing
= ...but “optimal” performance never been top priority
= Assessment: ?

’i Other Goals (Cont) 1

0

,?iﬁ What About the Future?

a Low cost of attaching a new host
= not a strong point = higher than other architecture because the
intelligence is in hosts (e.g., telephone vs. computer)
= bad implementations or malicious users can produce considerably
harm (remember fate-sharing?)
= Assessment: ?

o Accountability
= Assessment: ?

o Datagram not the best abstraction for:
= resource management, accountability, QoS
o new abstraction: flow (see IPv6)
= Typically: (src, dst, #bytes) tuple
= But: “flow” not precisely defined
« when does it end? Explicit connection teardown? Timeout?
« src and dst =...? ASes? Prefixes? Hosts? Hosts&Protocol?
= |Pv6: difficulties to make use of flow IDs
Q routers require to maintain per-flow state
o state management: recovering lost state is hard
o in context of Internet (1988) we see the first proposal of “soft state”!
= soft-state: end-hosts responsible to maintain the state

iﬁ% Summary: Internet Architecture

o

packet-switched datagram network
IP is the glue (network layer overlay)
IP hourglass architecture

= all hosts and routers run IP
o stateless architecture
= no per flow state inside network

o

[m}

Ethernet ATM

IP hourglass

,?g"‘ Summary: Minimalist Approach

a Dumb network
= |P provide minimal functionalities to support connectivity
= addressing, forwarding, routing

o Smart end systems

= transport layer or application performs more sophisticated
functionalities

= flow control, error control, congestion control
o Advantages

= accommodate heterogeneous technologies (Ethernet, modem,
satellite, wireless, ...)|

= support diverse applications (telnet, ftp, Web, X windows)
= decentralized network administration

ey
V%
“d

But that was yesterday

....... what about tomorrow?

,?g'.‘ Rethinking Internet Design

What's changed?
a operation in untrustworthy world
= endpoints can be malicious: Spam, Worms, (D)DoS, ...

= If endpoint not trustworthy, but want trustworthy network
= more mechanisms in network core

o more demanding applications
= end-to-end best effort service not enough
= new service models in network (IntServ, DiffServ)?

= new application-level service architecture built on top of network
core (e.g., CDN, P2P)?

;g'.‘ Rethinking Internet Design

What's changed (cont.)?
a ISP service differentiation
= ISP doing more (than other ISPs) in core is competitive advantage

o Rise of third party involvement

= interposed between endpoints (even against will)

= e.g., Chinese government, recording industry,
Vorratsdatenspeicherung

o less sophisticated users

All five changes motivate shift away from end-to-end!

,?g"‘ What's at stake?

“ Atissue is the conventional understanding of the “Internet philosophy”
o freedom of action

0 user empowerment

o end-user responsibility for actions taken

a lack of control “in” the net that limit or regulate what users can do

The end-end argument fostered that philosophy because they enable the
freedom to innovate, install new software at will, and run applications
of the users choice.”

[Blumenthal and Clark, 2001]

ey g
Y@ Technical response to changes

ey R
,2:“ Technical response to changes

o Trust: emerging distinction between what is “in” network (us,
trusted) and what is not (them, untrusted).

= ingress filtering
= emergence of Internet UNI (user network interface, as in
ATM)?
a Modify endpoints
= harden endpoints against attack
= endpoints/routers do content filtering: Net-nanny

= CDN, ASPs: rise of structured, distributed applications in
response to inability to send content (e.g., multimedia, high
bw) at high quality

o Add functions to the network core:
= filtering firewalls
= application-level firewalls
= NAT boxes
= active networking

... All operate within network, making use of application-level
information

= which addresses can do what at application level?

= |f addresses have meaning to applications, NAT must
“understand” that meaning

;g'.‘ Epilogue: will IP take over the world?

,2{.‘ 1. IP already dominates global communications?

o Reasons for success of IP:
= reachability: reach every host; adapts topology when links fail.

= heterogeneity: single service abstraction (best effort) regardless
of physical link topology

a many other claimed (or commonly accepted) reasons for IP’s
success may not be true

.... let's take a closer look

a business revenues Q: IP equipment cheaper?
(in US$, 2007): Economies of scale?
= ISPs: 13B (lots of routers?)

= Broadcast TV: 29B

= Cable TV: 29.8B

= Radio broadcast: 10.6B
= Phone industry: 268B Q: # bits carried in each network?

Q: per-device, IP is cheaper
(one line into house, multiple devices)

Q: Internet, more traffic and congestion

o Router/telco switch markets: .
is spread among all users (bad?)|

= Core router: 1.7B; edge
routers: 2.4B

= SONET/SDH/WDM: 28B,
Telecom MSS: 4.5B

;i(. 2. IP is more efficient?

X A .
y4q 3. IP is more robust?

a Statistical multiplexing versus circuit switching
a Link utilization:

= Avg. link utilization in Internet core: 3% to 30%
(ISPs: never run above 50%!)

= Avg. utilization of Ethernet is currently 1%
= Avg. link utilization of long distance phone lines: 33%
a low IP link utilization: purposeful!
= predictability, stability, low delay, resilience to failure
= at higher utilization: traffic spikes induce short congestion
periods — deterioration of QoS

o At low utilization, we loose benefits of statistical multiplexing!

a ‘“Internet was built to sustain a nuclear war” — marketing vapor!
« Remember large-scale network outages, e.g. on Sep 11" 2001?

o Median IP network availability: downtime: 471 min/yr
a Avg. phone network downtime: 5 min/yr

a Convergence time with link failures:
=*BGP: = 3-15 min,
intra-domain: = 0.1-1 s (e.g., OSPF)
=SONET: 50 ms

a Inconsistent routing state
=human misconfigurations
=in-band signaling (signaling and data share same network)
=routing computation “complex”

o Intelligence at edge, simplicity in core
= Cisco I0S: 8M lines of code
= Telephone switch: 3M lines of code

a Linecard complexity:
= Router: 30M gates in ASICs, 1 CPU, 300M packet buffers
= Switch: 25% of gates, no CPU, no packet buffers

Applications

TCP UDP,

radio, copper, fiber

IP “hourglass”

Applications Applications

IP\»

“love handles

NAT diffserv \psec

obile . P multicast
@ intserv
“Eth token

PPPgo2.11

radio, copper, fiber radio, copper, fiber

IP “hourglass” Middle-age IP = “hourglass” ?

HTTP-based apps

Applications

Eth token\
PPP 802.1

radio, copper, fiber radio, copper, fiber

Original idea: Today:
IP is greatest common denominator HTTP is greatest common denominator

client application overlays
Applications server
apps overlay
services
4
TCcP [JDP
v

radio, copper, fiber

radio, copper, fiber

IP “hourglass”

Chair for Network Architectures and Services — Prof. Carle
Department for Computer Science
TU Miinchen

Some advice on protocol design

= Aloose collection of important thoughts
related to protocol design

= ... actually, not only protocol design, but also
« Programming in general
« Systems in general (e.g., workflows in
companies)

« Life :))

iﬁ% Thought-triggering questions (1)

What problem am | trying to
solve?

o Have at least one well-
defined problem in mind

o Solve other problems
without complicating the
solution?

Will my solution scale?

0 Think about what
happens if you're
successful:
your protocol will be
used by millions!

o Does the protocol
make sense in small
situations as well?

,?g"‘ Thought-triggering questions (2)

How “robust” is my solution?
o adapt to failure/change
= self-stabilization: eventually adapt to failure/change

= Byzantine robustness: will work in spite of
malicious users

o What are the underlying assumptions?
= What if they are not true? catastrophe?

o maybe better to crash than degrade when problems
occur: signal problem exists

o techniques for limited spread of failures

o protocol should degrade gracefully in overload, at
least detect overload and complain

Further thoughts

Forward compatibility

o think about future changes,
evolution

o make fields large enough
0 reserve some spare bits

o specify an options field that
can be used/augmented
later

Parameters...
a Protocol parameters can be
useful
= designers can't determine
reasonable values
= tradeoffs exist: leave
parameter choice to users
a Parameters can be bad
= users (often not well
informed) will need to
choose values

= try to make values plug-and-
play

Simplicity vs Flexibility versus optimality

o Is amore complex protocol Why are protocols overly
reasonable? complex?

o Is “optimal” important? o design by committee

o KISS: “The simpler the o backward compatibility

protocol, the more likely it is to

be successfully implemented o flexibility: heavyweight swiss

knif
and deployed.” army knite -
o 80:20 rule: o unreasonble stiving for
80% of gains achievable with optimality o
20% of effort o underspecification

o exotic/unneeded features

yo1g Trading accuracy for time

a If computing the exact result is too slow, maybe an

approximate solution will do

= optimal solutions may be hard: heuristics will do
(e.g., optimal multicast routing is a Steiner tree

problem)

= faster compression using “lossy” compression

* lossy compression: decompression at
receiver will not exactly recreate original

signal

o Real-world examples?

= games like chess: can’'t compute an exact
solution

,?g"‘ Don'’t confuse specification with implementation

A general problem of computer scientists!

Specifications indicate external effects/interaction of protocol.
How protocol is implemented is up to designer

Programming language specifications: in addition to specifying
what, tend to suggest how.

00D oo

o real-world example: recipe
1. Cutonions
2. Cut potatoes
3. Put onion and potatoes into pot and boil
steps 1 and 2 can obviously be interchanged......

g‘:z Where are we headed:
~4 Current/upcoming research topics

o Network management: Measurement, automation (“managemt. plane”)
o Service management:
= Application-level networks, overlays, distributed hash tables (DHT)
= QoS: Not a solved problem end-end
a Wireless networking, mobility
o New types of networks:
= Sensor nets, body nets, home nets
a Security:
= Lack of cryptographic signatures in many protocols
= Most traffic unencrypted (...which is good for measurement...)
o Resilience: more robust networks (reacting faster / to more failures)
o “Future Internet”
= Evolutionary approach: step-by-step introduction of new protocols
= Revolutionary / clean-slate approach: Radical architecture change
o Ease of use, deployment (but what are the research problems here?)

ey
%
,;q. Future Internet

(sorry for the German labels, but most notions are in English anyway...)

‘ Cross-Layer,
Functional Building Blocks

\
\/J statt starrer Layer
QoS s

I N
| Mobilitat Sensometze
L

[wue(ess Adhoc- |
Netzwerke |
L)

| Tussle Space;
| Geschifisbeziehungen

L Kooperation J

;g'.‘ The really big picture

o Importance of user requirements

ser, stupid”

tion, stupid”

“It's the , Stupid”

verizon,

of course, not everyone
a.g rees It’s the Network

Verizon product, purchased 2007

The end!

