

Part 1	Part 3
 Introduction IP: Internet Protocol Datagram format IPv4 addressing ICMP Part 2 IPv6 	 Routing algorithms Link state Distance Vector Hierarchical routing Routing in the Internet RIP OSPF
 Virtual circuit and datagram networks What's inside a router NAT 	 BGP Broadcast and multicast routing

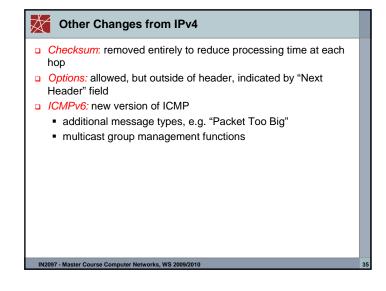
IN2097 - Master Course Computer Networks, WS 2009/2010

32

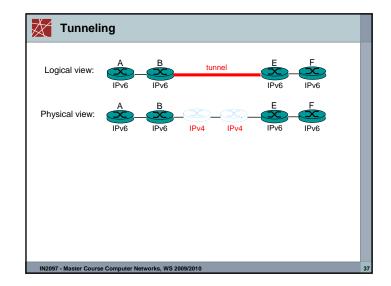
IPv6

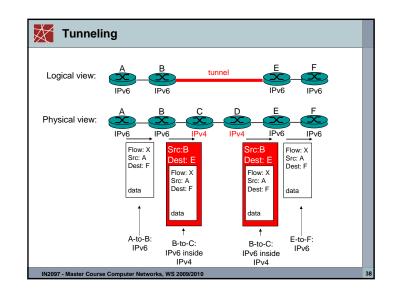
- Initial motivation: 32-bit address space soon to be completely allocated.
- Additional motivation:
 - header format helps speed processing/forwarding
 - header changes to facilitate QoS

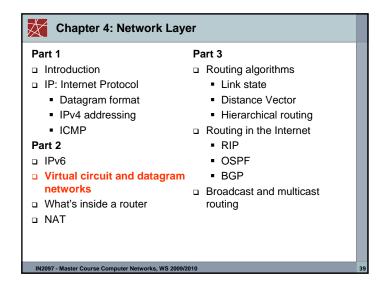
IPv6 datagram format:


- fixed-length 40 byte header
- no fragmentation allowed

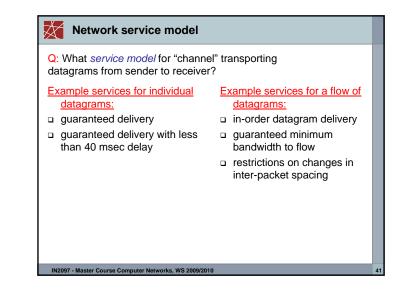
IPv6 Header (Cont)

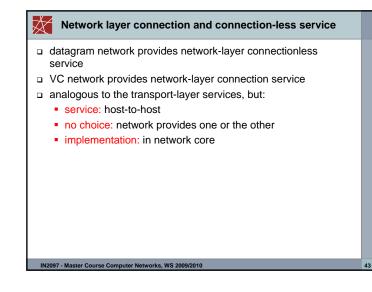

IN2097 - Master Course Computer Networks, WS 2009/2010


Priority: identify priority among datagrams in flow Flow Label: identify datagrams in same "flow." (concept of "flow" not well defined). Next header: identify upper layer protocol for data


ver					
F	payload len next hdr hop limit				
source address (128 bits)					
destination address (128 bits)					
		da	ata		
← 32 bits ▶					

Transition From IPv4 To IPv6	
 Not all routers can be upgraded simultaneous no "flag days" How will the network operate with mixed IPv4 and IPv6 routers? 	
 Tunneling: IPv6 carried as payload in IPv4 datagram among IPv4 routers 	
IN2097 - Master Course Computer Networks, WS 2009/2010	36





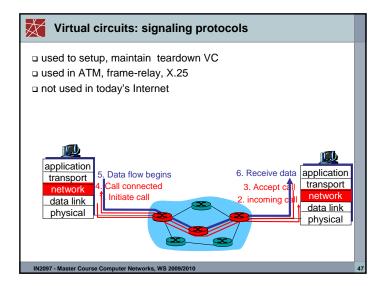
∞

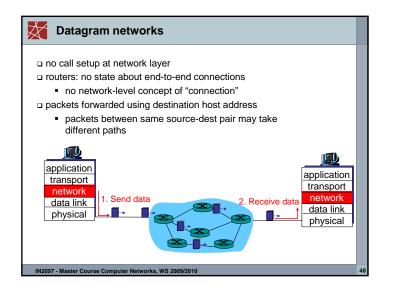
IN2

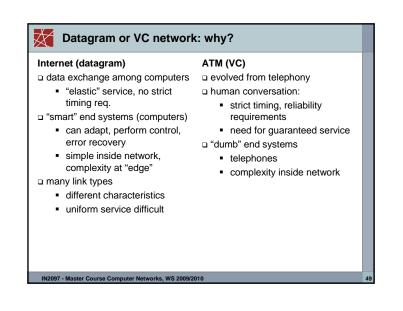
Network		Guarantees ?			Congestion	
Architecture		Bandwidth	Loss	Order	Timing	feedback
Internet	best effort	none	no	no	no	no (inferred via loss)
ATM	CBR	constant rate	yes	yes	yes	no congestion
ATM	VBR	guaranteed rate	yes	yes	yes	no congestion
ATM	ABR	guaranteed minimum	no	yes	no	yes
ATM	UBR	none	no	yes	no	no

Å	Virtual circuits	
	 "source-to-dest path behaves much like telephone circuit" performance-wise network actions along source-to-dest path 	
	call setup, teardown for each call before data can flow	
	each packet carries VC identifier (not destination host address)	
	every router on source-dest path maintains "state" for each passing connection	
	link, router resources (bandwidth, buffers) may be <i>allocated</i> to VC (dedicated resources = predictable service)	

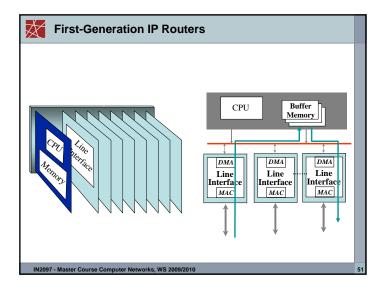
IN2097 - Master Course Computer Networks, WS 2009/2010

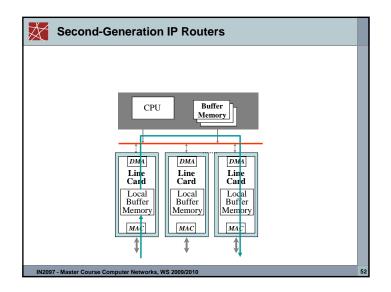

a VC consists of:

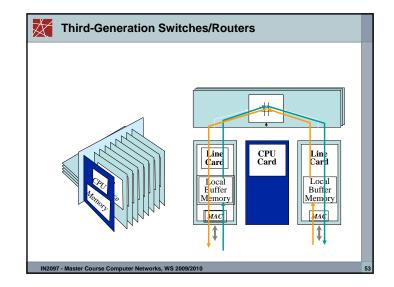

- 1. path from source to destination
- 2. VC numbers, one number for each link along path
- 3. entries in forwarding tables in routers along path
- packet belonging to VC carries VC number (rather than dest address)
- UC number can be changed on each link.

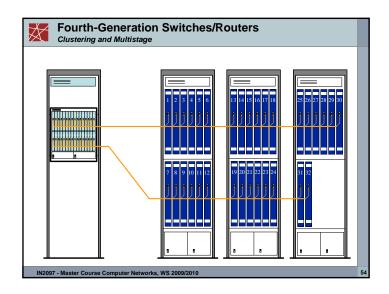

IN2097 - Master Course Computer Networks, WS 2009/2010

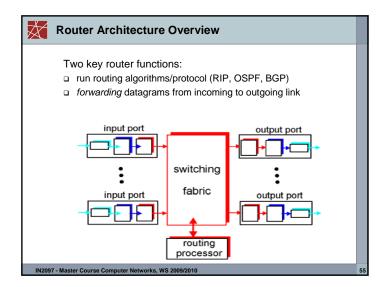
• New VC number comes from forwarding table


Forwarding t	able		
Forwarding table northwest router:		VC number 12 22 1 2 3 erface mber	2
Incoming interface	Incoming VC #	Outgoing interface	Outgoing VC #
1 2 3 1 	12 63 7 97	3 1 2 3 	22 18 17 87
Routers ma		tion state informa	ation!








Part 1	Part 3
Introduction	Routing algorithms
IP: Internet Protocol	 Link state
 Datagram format 	 Distance Vector
 IPv4 addressing 	 Hierarchical routing
 ICMP 	Routing in the Internet
Part 2	RIP
□ IPv6	 OSPF
Virtual circuit and datagram	 BGP
networks	Broadcast and multicast
What's inside a router	routing

