Department for Computer Science
TU Miinchen

Z&é Chair for Network Architectures and Services — Prof. Carle

Master Course
Computer Networks
IN2097

Prof. Dr.-Ing. Georg Carle
Christian Grothoff, Ph.D.
Lecturer today: Dr. Nils Kammenhuber

Chair for Network Architectures and Services
Institut fur Informatik
Technische Universitat Minchen
http://www.net.in.tum.de

Our goals:
o understand principles behind transport layer services:
= multiplexing/demultiplexing
= reliable data transfer
= flow control
= congestion control
o learn about transport layer protocols in the Internet:
= UDP: connectionless transport
= TCP: connection-oriented transport
= TCP congestion control

Chapter 3: Transport Layer

Chapter 3 outline

o 3.1 Transport-layer services
o 3.2 Multiplexing and demultiplexing
o 3.3 Connectionless transport: UDP
o 3.4 largely omitted
o 3.5 Connection-oriented transport: TCP
= segment structure
= reliable data transfer
= flow control
= connection management
a 3.6 largely omitted
a 3.7 TCP congestion control

o provide logical communication
between app processes running
on different hosts

o transport protocols run in end
systems

= send side: breaks app
messages into segments,
passes to network layer

= rcv side: reassembles
segments into messages,
passes to app layer]x e

o more than one transport protocol s
available to apps

» Internet: TCP and UDP

Fransport

[nefwork |
physical

o reliable, in-order delivery
(TCP)
= congestion control
= flow control
= connection setup

-

|
oc
o unreliable, unordered W /
delivery: UDP @ 4 %o
= no-frills extension of ﬁf il s,
“best-effort” IP o N
o services not available: ..
= delay guarantees]x

= bandwidth guarantees

@ Chapter 3 outline

!

o 3.1 Transport-layer services

o 3.2 Multiplexing and demultiplexing
o 3.3 Connectionless transport: UDP
]
m]

3.5 Connection-oriented transport: TCP
= segment structure
= reliable data transfer
= flow control
= connection management
a -
o 3.7 TCP congestion control

=
>\

Multiplexing/demultiplexing

Demultiplexing at rcv host:

delivering received segments
to correct socket

[=socket O = process

Multiplexing at send host:
gathering data from multiple
sockets, enveloping data with
header (later used for
demultiplexing)

application @ @ application @ @ application
] L]
transport trasgport transport
network nepwork network
link nk link
physical physicat physical
host 1 host 2 host 3

A . .
yiq How demultiplexing works

o host receives IP datagrams
» each datagram has source IP
address, destination IP
address
each datagram carries 1
transport-layer segment
= each segment has source,
destination port number
o host uses IP addresses & port
numbers to direct segment to
appropriate socket

+~—— 32 bits —

source port # dest port #

other header fields

application
data
(message)

TCP/UDP segment format

Connectionless demultiplexing

o Create sockets with port numbers:
DatagramSocket mySocketl = new DatagramSocket(12534);
DatagramSocket mySocket2 = new DatagramSocket(12535);

o UDP socket identified by two-tuple:

(dest IP address, dest port number)
o When host receives UDP segment:
= checks destination port number in segment
= directs UDP segment to socket with that port number

o IP datagrams with different source IP addresses and/or source
port numbers directed to same socket

y¢g Connectionless demux (cont)

DatagramSocket serverSocket = new DatagramSocket(6428);

SP: 6428 SP: 6428
DP: 9157 DP: 5775

SP: 9157 SP: 5775

client DP: 6428 server DP: 6428 Client

IP: A IP: C IP:B

Source Port (SP) provides “return address”

=

4 Connection-oriented demux
N

o TCP socket identified by 4-tuple:
= source IP address
= source port number
= dest IP address
= dest port number

o recv host uses all four values to direct segment to appropriate
socket

a Server host may support many simultaneous TCP sockets:
= each socket identified by its own 4-tuple
o Web servers have different sockets for each connecting client

= non-persistent HTTP will have different socket for each
request

- . .
Y@ Connection-oriented demux (cont)

D
SP: 5775
DP: 80
S-IP: B
D-IP:C
Ve
SP: 9157 SP: 9157
client DP: 80 server DP: 80 Client
IP: A S-IP: A P: C S-IP: B IP:B
D-IP:C D-IP:C

ig'.‘ Connection-oriented demux: Threaded Web Server

e
SP: 5775
DP: 80
S-IP:B
D-IP.C
L
SP: 9157 SP: 9157
client DP: 80 server DP: 80 Client
P: A S-IP: A P C S-IP:B IP:B
D-IP:C D-IP:C

Chapter 3 outline

o 3.1 Transport-layer services

o 3.2 Multiplexing and demultiplexing

o 3.3 Connectionless transport: UDP
]
m]

3.5 Connection-oriented transport: TCP
= segment structure
= reliable data transfer
= flow control
= connection management
a -

o 3.7 TCP congestion control

UDP: User Datagram Protocol [rrc 768]

o “no frills,” “bare bones” Internet
transport protocol

o ‘“best effort” service, UDP
segments may be:

= lost
= delivered out of order to
app
Q connectionless:

* no handshaking between
UDP sender, receiver

= each UDP segment
handled independently of
others

Why is there a UDP?

Q no connection
establishment (which can
add delay)

o simple: no connection
state at sender, receiver

o small segment header

a No congestion control:
UDP can blast away as fast
as desired

UDP: more

o often used for streaming
multimedia apps

= |oss tolerant

= rate sensitive Length, in source port # dest port #
a other UDP uses bytes of UDP T~ length checksum
" DNS segment,
including
= SNMP header
o reliable transfer over
UDP: add reliability at Application
application layer data
= application-specific (message)
error recovery!

+~—— 32 bits —

UDP segment format

ig'.‘ UDP checksum

Goal: detect “errors” (e.g., flipped bits) in transmitted segment

Sender:

o treat segment contents as sequence of 16-bit integers

o checksum: addition (1's complement sum) of segment contents
o sender puts checksum value into UDP checksum field

Receiver:

o compute checksum of received segment

o check if computed checksum equals checksum field value:
= NO - error detected

= YES - no error detected. But maybe errors nonetheless?
More later

=y
yq nternet Checksum Example

a Note

= When adding numbers, a carryout from the most
significant bit needs to be added to the result

o Example: add two 16-bit integers

1110011001100110
1101010101010101

Wraparound@1011101110111011

sum 1011101110111100
checksum 0100010001 000011

L X A B
y¢q Chapter 3 outline

3.1 Transport-layer services
3.2 Multiplexing and demultiplexing
3.3 Connectionless transport: UDP
3.4 Principles of reliable data transfer
3.5 Connection-oriented transport: TCP
* segment structure
= reliable data transfer
= flow control
= connection management
o 3.6 Principles of congestion control
a 3.7 TCP congestion control

0O U0 00O

Y@ Pipelined protocols

Pipelining: sender allows multiple, “in-flight”, yet-to-be-
acknowledged pkts
» range of sequence numbers must be increased
= buffering at sender and/or receiver

— ACK pockets

(el a slop-and-wail pralecsl in aperation B o pipslined prolocal in opesalion

aTwo generic forms of pipelined protocols: go-Back-N, selective repeat

Pipelining: increased utilization

sender receiver

first packet bit transmitted, t = 0 —fs------------coeeoeoeaoo |
last bit transmitted, t=L / R

first packet bit arrives

last packet bit arrives, send ACK

last bit of 2" packet arrives, send ACK|
tlast bit of 3 packet arrives, send ACK
ACK arrives, send ne:
packet, t=RTT+L/R

Increase utilization
/ by a factor of 3!

-_3*L/R _ .04 0.0008

U = =
sender RTT+L/R 30008

Go-Back-N

Sender:
o k-bit seq # in pkt header
o “window” of up to N, consecutive unack’ed pkts allowed

send_base nextsegnum

already usable, not
v v ack’'ed yet sent
DUINR T DITLEOOO0OND | spvcetaa) rovosme
t 4 -

window size
N

o ACK(n): ACKs all pkts up to, including seq # n - “cumulative
ACK”

= may receive duplicate ACKs (see receiver)
a timer for each in-flight pkt
o timeout(n): retransmit pkt n and all higher seq # pkts in window

Chapter 3 outline

3.1 Transport-layer services

= segment structure
= reliable data transfer
= flow control

a 3.7 TCP congestion control

= connection management
o 3.6 Principles of congestion control

a

o 3.2 Multiplexing and demultiplexing

o 3.3 Connectionless transport: UDP

o 3.4 Principles of reliable data transfer

a 3.5 Connection-oriented transport: TCP

A g
g‘{.‘ TCP: OVerview recs: 793, 1122, 1323, 2018, 2581
N

o point-to-point:
= one sender, one receiver
o reliable, in-order byte steam:
= no “message boundaries”
o pipelined:
= TCP congestion and flow
control set window size
o send & receive buffers

socket
door ~

send buffer
@

receive buffer
O

o full duplex data:

= bi-directional data flow in
same connection
= MSS: maximum segment
size
o connection-oriented:
= handshaking (exchange of
control msgs) init's sender,
receiver state before data
exchange
o flow controlled:
= sender will not overwhelm
receiver
o Congestion controlled:

_.=«a \Nill not overwhelm network

door

ig'.‘ TCP segment structure I

— 32bits
URG: urgenf data * ti
(generally not used) source port # | dest port # E;”gy;"g
ACK: ACK # sequence humber of data
valid ———acknowledgement number (not segments!
PSH: push data now M RIS|IF| Receive window # bytes
Il d)—| yte:
(generally no used) Mm Urg data priter revr willing
RST, SYN,FIN:=" | Optiefis (variable length) Yo accept
connection estab
(setup, teardown
commands) application
Internet data
checksum (variable length)
(as in UDP)

_zosr - vastr cowse compuereworko wszooweoro

TCP Round Trip Time and Timeout

Q: how to set TCP timeout
value?

Q: how to estimate RTT?

o SampleRTT: measured time

o longer than RTT from segment transmission
= but RTT varies until ACK receipt

O too short: premature timeout = ignore
* unnecessary retransmissions
retransmissions o SampleRTT will vary, want
o too long: slow reaction to estimated RTT “smoother”
segment loss
" average several
recent
measurements, not
just current
SampleRTT

TCP Round Trip Time and Timeout

EstimatedRTT = (1- a)*EstimatedRTT + o*SampleRTT

o Exponential weighted moving average
o influence of past sample decreases exponentially fast

Qo typical value: o =0.125

L svor s corcompr s vsrome

ey s
%4 TCPseq.#'s and ACKs I
Seq. #'s:
= byte stream @
“number” of first @ Host A Host B
byte in segment’s User oo,
data types 2 ACKs79
. c s datg = o
ACKs: host ACKs
= seq # of next byte e rce,ce'l:f of
expected from pokcan. 882 A
other side sed 2
= cumulative ACK
. host ACKs
Q: how receiver handles receipt e
out-of-order segments of echoed 9743, Ack=gy
= A: TCP spec C \
doesn’t say, - up to
implementor time
simple telnet scenario l

ig'.‘ Example RTT estimation:

RTT: gaia.cs.umass.edu to fantasia eurecom.fr

RTT (milliseconds)

time (seconnds)

—+— SampleRTT —=— Estimated RTT

;ﬁﬁ TCP Round Trip Time and Timeout

Setting the timeout
o EstimtedRTT plus “safety margin”
= large variation in EstimatedRTT -> larger safety margin
a first estimate of how much SampleRTT deviates from EstimatedRTT:

DevRTT = (1-B)*DevRTT +
B*|SampleRTT-EstimatedRTT]|

(typically, B = 0.25)

Then set timeout interval:

Timeoutlnterval = EstimatedRTT + 4*DevRTT

Chapter 3 outline

o 3.1 Transport-layer services
o 3.2 Multiplexing and demultiplexing
o 3.3 Connectionless transport: UDP
o 3.4 Principles of reliable data transfer
o 3.5 Connection-oriented transport: TCP
* segment structure
= reliable data transfer
= flow control
= connection management
o 3.6 Principles of congestion control
a 3.7 TCP congestion control

TCP reliable data transfer

o TCP creates rdt service on o Retransmissions are
top of IP’s unreliable service triggered by:

o Pipelined segments = timeout events

o Cumulative acks = duplicate acks

o TCP uses single a Initially consider simplified
retransmission timer TCP sender:

= ignore duplicate acks

= ignore flow control,
congestion control

(] TCP sender events:

data rcvd from app: timeout:

o Create segment with seq # o retransmit segment that

0 seq #is byte-stream number caused timeout
of first data byte in segment Q restart timer

o start timer if not already Ack revd:
running (think of timer as for g |f acknowledges previously
oldest unacked segment) unacked segments

0 expiration interval: = update what is known to
TimeOutlinterval be acked

= start timer if there are
outstanding segments

Y@ TCP sender (simpiified)

NextSegNum = InitialSeqNum
SendBase = InitialSeqgNum
loop (forever) {

switch(event)

event: data received from application above
create TCP segment with sequence number NextSegNum
if (timer currently not running)
start timer Comment:
pass segment to IP « SendBase-1: last

NextSegNum = NextSegNum + length(data) cumulatively
.) ack’ed byte
event: timer timeout Example:

retransmit not-yet-acknowledged segment with

* SendBase-1 = 71;
smallest sequence number - 73 th
start timer Yy= 73, so the rcvr

wants 73+ ;
y > SendBase, so
that new data is

event: ACK received, with ACK field value of y
if (y > SendBase) {

SendBase =y acked
if (there are currently not-yet-acknowledged segments)
start timer }
} /* end of loop forever */

TCP: retransmission scenarios

@ Host A Host Bm

+~—— timeout ——

SendBase
=100

tim

e
lost ACK scenario

92 timeout —

Sendbase
=100
SendBase
=120

Seq=92 timeout - Seq;

SendBase
=120 'L

premature timeout
time

7t

Y@ TCP retransmission scenarios (more)

&

SendBase
=120

Host A Host B

Seg=
9292, 8 byres vt
10
- S
S€42100, 5 A:d
ata
X

loss
120
pox?

~——— timeout ——

time

B

Cumulative ACK scenario

- .
;:‘ TCP ACK generation [RFC 1122, RFC 2581]

Event at Receiver TCP Receiver action

Arrival of in-order segment with Delayed ACK. Wait up to 500ms
expected seq #. All data up to for next segment. If no next segment,
expected seq # already ACKed send ACK

Arrival of in-order segment with Immediately send single cumulative
expected seq #. One other ACK, ACKing both in-order segments
segment has ACK pending

Arrival of out-of-order segment Immediately send duplicate ACK,
higher-than-expect seq. # . indicating seq. # of next expected byte
Gap detected

Arrival of segment that Immediate send ACK, provided that
partially or completely fills gap segment starts at lower end of gap

X a
L‘ Fast Retransmit

o Time-out period often o If sender receives 3 ACKs for
relatively long: the same data, it supposes
= long delay before that segment after ACKed
resending lost packet data was lost:
o Detect lost segments via = fast retransmit: resend
duplicate ACKs. segment before timer
expires

= Sender often sends many
segments back-to-back

= |f segment is lost, there
will likely be many
duplicate ACKs.

Resending a segment after triple duplicate ACK

Host A Host B

] 2
\X

timeout

re5eng ong
Segmen,
t

time

=y . L
yq Fast retransmit algorithm:

event: ACK received, with ACK field value of y
if (y > SendBase) {
SendBase =y
if (there are currently not-yet-acknowledged segments)
start timer
}
else {
increment count of dup ACKs received for y
if (count of dup ACKs received for y = 3) {
resend segment with sequence number y

}

a duplicate ACK for fast retransmit
already ACKed segment

10

ig'.‘ Chapter 3 outline

3.1 Transport-layer services
3.2 Multiplexing and demultiplexing
3.3 Connectionless transport: UDP
3.4 Principles of reliable data transfer
3.5 Connection-oriented transport: TCP
= segment structure
= reliable data transfer
= flow control
= connection management
o 3.6 Principles of congestion control
a 3.7 TCP congestion control

[R R = R

e
7
»d

o receive side of TCP connection
has a receive buffer:

TCP Flow Control

p— RevWindow —a

_ 7 flow control
dta fom :f: ; »"’f:"::m sender won't overflow
it | receiver’s buffer by
) transmitting too much,
, RevBufer # too fast

o app process may be slow at reading
from buffer

o speed-matching service: matching
the send rate to the receiving app’s
drain rate

TCP Flow control: how it works

p— RevWindow —a

dats from CTICE L application
i data " process

£ W s

. BevBuller

(Suppose TCP receiver discards o Rcvr advertises spare room by

out-of-order segments) including value of RevWindow in
o spare room in buffer segments
= RevWindow o Sender limits unACKed data to
= RevBuffer-[LastByteRcvd - RcvWindow

LastByteRead] = guarantees receive buffer

doesn't overflow

Chapter 3 outline

o 3.1 Transport-layer services
o 3.2 Multiplexing and demultiplexing
o 3.3 Connectionless transport: UDP
o 3.4 Principles of reliable data transfer
a 3.5 Connection-oriented transport: TCP
* segment structure
= reliable data transfer
= flow control
= connection management
o 3.6 Principles of congestion control
o 3.7 TCP congestion control

11

L X

y4§ TCP Connection Management

Recall: TCP sender, receiver
establish “connection” before
exchanging data segments

o initialize TCP variables:

= seq. #s
= buffers, flow control info (e.g.
RcvWindow)
o client: connection initiator
Socket clientSocket = new

Socket(*hostname™, " port number™);

o server: contacted by client
Socket connectionSocket =
welcomeSocket.accept();

Three way handshake:

Step 1: client host sends TCP SYN
segment to server

= specifies initial seq #

= no data
Step 2: server host receives SYN,
replies with SYNACK segment

= server allocates buffers

= specifies server initial seq. #

Step 3: client receives SYNACK,
replies with ACK segment, which may
contain data

¢ TCP Connection Management (cont.)

Closing a connection:

client closes socket:
clientSocket.close();

Step 1: client end system sends
TCP FIN control segment to
server

Step 2: server receives FIN,
replies with ACK. Closes
connection, sends FIN.

m client ser‘ver‘@

close
FIN

cX

E close
/
K

=
S
2
el

close

Q time

TCP Connection Management (cont.)

Step 3: client receives FIN,
replies with ACK.

* Enters “timed wait” - will 1B ciient server [
respond with ACK to closing
received FINs Fin

Step 4: server, receives ACK.
Connection closed.

Note: with small modification,
can handle simultaneous
FINs.

K .

P closing
/
K‘

closed

2 timed wait

closel

iﬁ".‘ TCP Connection Management (cont)

o como | e

TCP server
lifecycle

[t s
TCP client
lifecycle

= Cosn ion
| o 2 ervates & baten pockst

Ey]

12

ig'.‘ Chapter 3 outline

3.1 Transport-layer services
3.2 Multiplexing and demultiplexing
3.3 Connectionless transport: UDP
3.4 Principles of reliable data transfer
3.5 Connection-oriented transport: TCP

= segment structure

= reliable data transfer

= flow control

= connection management
o 3.6 Principles of congestion control
a 3.7 TCP congestion control

[R R = R

;A“ Principles of Congestion Control
Congestion:

o informally: “too many sources sending too much data too fast for
network to handle”

o different from flow control!
o manifestations:

= |ost packets (buffer overflow at routers)

= long delays (queueing in router buffers)
o atop-10 problem!

o

248

Causes/costs of congestion: scenario 1

o two senders, two receivers
Qa one router, infinite buffers HostA

Ay original data
0 no retransmission \ ﬁ‘i
Host B | unlimited shared
- output link buffers.
r
Ci2 — . . o large delays
£ 4 when congested
<~ © : o maximum
i achievable
4 throughput
cr2 2 ghp
?"’In A‘in

Causes/costs of congestion: scenario 2

o one router, finite buffers
o sender retransmission of lost packet

Host A A, original data

[e

retransmitted data

out
W, - original data, plus B

finite shared output link

13

ey g q
;J{.‘ Causes/costs of congestion: scenario 3
N

Cl24

)\’r
in
Another “cost” of congestion:

awhen packet dropped, any “upstream transmission capacity used
for that packet was wasted!

ey .
Y@ Approaches towards congestion control

Two broad approaches towards congestion control:
End-end congestion control: Network-assisted congestion

a no explicit feedback from control:

network o routers provide feedback to
o congestion inferred from end systems

end-system observed » single bit indicating

loss, delay congestion (SNA, DEChit,
o approach taken by TCP TCP/IP ECN, ATM)

= explicit rate sender should
send at

L X A B
y¢q Chapter 3 outline

3.1 Transport-layer services
3.2 Multiplexing and demultiplexing
3.3 Connectionless transport: UDP
3.4 Principles of reliable data transfer
3.5 Connection-oriented transport: TCP
* segment structure
= reliable data transfer
= flow control
= connection management
o 3.6 Principles of congestion control
o 3.7 TCP congestion control

0O 0 00O

& TCP congestion control: additive increase,
e iplicati
N multiplicative decrease

o Approach:_increase transmission rate (window size), probing
for usable bandwidth, until loss occurs
= additive increase: increase CongWin by 1 MSS every
RTT until loss detected

= multiplicative decrease: cut CongWin in half after loss

Saw tooth
behavior: probing
for bandwidth

6 Kbytes

8 Kbytes

congestion window size

time

14

;g'.‘ TCP Congestion Control: details

o sender limits transmission:
LastByteSent-LastByteAcked

< CongWin
o Roughly,
c -
rate = %ﬁ’#‘ Bytes/sec

a CongWin is dynamic, function of
perceived network congestion

How does sender perceive
congestion?

o loss event = timeout or 3
duplicate acks

a TCP sender reduces rate
(CongWin) after loss
event

three mechanisms:

= AIMD
= slow start

= conservative after
timeout events

¥ TCP Slow Start

o When connection begins,
CongWin =1 MSS
= Example: MSS = 500
bytes & RTT = 200 msec
= initial rate = 20 kbps
o available bandwidth may be
>>MSS/RTT

= desirable to quickly ramp
up to respectable rate

o When connection begins,
increase rate exponentially
fast until first loss event

;-4;:"‘ TCP Slow Start (more)

o When connection begins,
increase rate exponentially
until first loss event:

= double CongWin every
RTT

= done by incrementing
CongWin for every ACK
received

o Summary: initial rate is slow
but ramps up exponentially
fast

m Host A Host B@
W

Ur segments

“—RTT—

time

-y . L P
Y@ Refinement: inferring loss

o After 3 dup ACKs:
= CongWin is cut in half
= window then grows
linearly
o But after timeout event:
= CongWin instead set to
1 MSS;

= window then grows
exponentially

= to a threshold, then
grows linearly

— Philosophy:

0 3 dup ACKs indicates
network capable of
delivering some segments
Q timeout indicates a
“more alarming”
congestion scenario

15

@ Refinement TCP sender congestion control

o Q: When should the

exponential increase State Event TCP Sender Action Commentary
SWitCh to |ineal’? Slow Start (SS) | ACK receipt for | CongWin = CongWin + MSS, Resulting in a doubling of
) 14 previously If (CongWin > Threshold) CongWin every RTT
a A: When CongWin & . TCP Series 2 fleno unacked data set state to *Congestion
< i | Avoidance
gets to 1/2 of its E 1o R i
. 2 Threshald - - Congestion ACK receipt for | CongWin = CongWin+MSS * Additive increase, resulting in
value before timeout. 5 = e o Avoidance (CA) | previously (MSS/CongWin) increase of CongWin by 1 MSS
. 2 & <z z unacked data every RTT
Implementation: E " , T i
. = TR 1 1.
a Val’lable Th reShOld 2 o ok ek 1 Tahoe L SSorCA Loss event Threshold = CongWin/2, Fast recovery, implementing
e - - detected by CongWin = Threshold, multiplicative decrease.

o Atloss event, I BB T T iicp:f duplicate | Set state to “Congestion Avoidance” ;osnsgwin will not drop below 1

Threshold is set to Ao '

1/2 Of COnngn JUSt SSorCA Timeout Threshold = CongWin/2, Enter slow start

CongWin = 1 MSS,
before loss event Set state to “Slow Start”
SSor CA Duplicate ACK | Increment duplicate ACK count for CongWin and Threshold not
segment being acked changed

wq Summary: TCP Congestion Control ¢ TCPsummary
o When CongWin is below Threshold, sender in slow-start phase, o Connection-oriented: SYN, SYNACK; FIN

window grows exponentially. o Retransmit lost packets; in-order data: sequence no., ACK no.

o When CongWin is above Threshold, sender is in congestion- o ACKs: either piggybacked, or no-data pure ACK packets if no
avoidance phase, window grows linearly. data travelling in other direction

a When a triple duplicate ACK occurs, Threshold set to CongWin/2 o Don't overload receiver: rwin
and CongWin set to Threshold. = rwin advertised by receiver

a When timeout occurs, Threshold set to CongWin/2 and CongWin is o Don't overload network: cwin
setto 1 MSS. = cwin affected by receiving ACKs

a Sender buffer = min { rwin, cwin }

a Congestion control:
= Slow start: exponential growth of cwin
= Congestion avoidance: linear groth of cwin
» Timeout; duplicate ACK: shrink cwin

a Continuously adjust RTT estimation

ig'.‘ TCP throughput

o What's the average throughout of TCP as a function of window
size and RTT?

= Ignore slow start
Let W be the window size when loss occurs.
When window is W, throughput is W/RTT
Just after loss, window drops to W/2, throughput to W/2RTT.
Average throughout: 0.75 W/RTT

[R W =}

e
7
»d

Fairness goal: if K TCP sessions share same bottleneck link of
bandwidth R, each should have average rate of R/K

TCP Fairness

TCP connection 1

TCP@ bottleneck

connection 2

router
capacity R

o

Why is TCP fair?

248

Two competing sessions:
o Additive increase gives slope of 1, as throughout increases
o multiplicative decrease decreases throughput proportionally

equal bandwidth share

loss: decrease window by factor of 2
congestion avoidance: additive increase

loss: decrease window by factor of 2
congestion avoidance: additive increase

Connection 2 throughput o

Connection 1 throughput R

Fairness (more)

Fairness and UDP Fairness and parallel TCP
o Multimedia apps often do not connections
use TCP a nothing prevents app from
= do not want rate throttled opening parallel connections
by congestion control between 2 hosts.

a Instead use UDP: o Web browsers do this

a Example: link of rate R
supporting 9 connections;

= pump audio/video at
constant rate, tolerate
packet loss
o Research area: TCP friendly * new app asks for 1 TCP,
gets rate R/10
* new app asks for 11 TCPs,
gets R/2!

17

ig'.‘ Chapter 3: Summary

o principles behind transport layer services:
= multiplexing, demultiplexing
= reliable data transfer
= flow control

= congestion control
0 instantiation and implementation in the Internet
= UDP
= TCP
Next:
o leaving the network “edge” (application, transport layers)
a into the network “core”

18

