
1

Chair for Network Architectures and Services – Prof. Carle
Department for Computer Science
TU München

Master Course
Computer Networks

IN2097

Prof. Dr.-Ing. Georg Carle
Christian Grothoff, Ph.D.

Lecturer today: Dr. Nils Kammenhuber

Chair for Network Architectures and Services
Institut für Informatik

Technische Universität München
http://www.net.in.tum.de

Network Security, WS 2008/09, Chapter 9 2IN2097 - Master Course Computer Networks, WS 2009/2010 2

Chapter 3: Transport Layer

Our goals:
understand principles behind transport layer services:

multiplexing/demultiplexing
reliable data transfer
flow control
congestion control

learn about transport layer protocols in the Internet:
UDP: connectionless transport
TCP: connection-oriented transport
TCP congestion control

Network Security, WS 2008/09, Chapter 9 3IN2097 - Master Course Computer Networks, WS 2009/2010 3

Chapter 3 outline

3.1 Transport-layer services
3.2 Multiplexing and demultiplexing
3.3 Connectionless transport: UDP
3.4 largely omitted
3.5 Connection-oriented transport: TCP

segment structure
reliable data transfer
flow control
connection management

3.6 largely omitted
3.7 TCP congestion control

Network Security, WS 2008/09, Chapter 9 4IN2097 - Master Course Computer Networks, WS 2009/2010 4

Transport services and protocols

provide logical communication
between app processes running
on different hosts
transport protocols run in end
systems

send side: breaks app
messages into segments,
passes to network layer
rcv side: reassembles
segments into messages,
passes to app layer

more than one transport protocol
available to apps

Internet: TCP and UDP

application
transport
network
data link
physical

application
transport
network
data link
physical

logical end-end transport

2

Network Security, WS 2008/09, Chapter 9 5IN2097 - Master Course Computer Networks, WS 2009/2010 5

Internet transport-layer protocols

reliable, in-order delivery
(TCP)

congestion control
flow control
connection setup

unreliable, unordered
delivery: UDP

no-frills extension of
“best-effort” IP

services not available:
delay guarantees
bandwidth guarantees

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

application
transport
network
data link
physical

logical end-end transport

Network Security, WS 2008/09, Chapter 9 6IN2097 - Master Course Computer Networks, WS 2009/2010 6

Chapter 3 outline

3.1 Transport-layer services
3.2 Multiplexing and demultiplexing
3.3 Connectionless transport: UDP
-
3.5 Connection-oriented transport: TCP

segment structure
reliable data transfer
flow control
connection management

-
3.7 TCP congestion control

Network Security, WS 2008/09, Chapter 9 7IN2097 - Master Course Computer Networks, WS 2009/2010 7

Multiplexing/demultiplexing

application

transport

network

link

physical

P1 application

transport

network

link

physical

application

transport

network

link

physical

P2P3 P4P1

host 1 host 2 host 3

= process= socket

delivering received segments
to correct socket

Demultiplexing at rcv host:
gathering data from multiple
sockets, enveloping data with
header (later used for
demultiplexing)

Multiplexing at send host:

Network Security, WS 2008/09, Chapter 9 8IN2097 - Master Course Computer Networks, WS 2009/2010 8

How demultiplexing works

host receives IP datagrams
each datagram has source IP
address, destination IP
address
each datagram carries 1
transport-layer segment
each segment has source,
destination port number

host uses IP addresses & port
numbers to direct segment to
appropriate socket

source port # dest port #

32 bits

application
data

(message)

other header fields

TCP/UDP segment format

3

Network Security, WS 2008/09, Chapter 9 9IN2097 - Master Course Computer Networks, WS 2009/2010 9

Connectionless demultiplexing

Create sockets with port numbers:
DatagramSocket mySocket1 = new DatagramSocket(12534);

DatagramSocket mySocket2 = new DatagramSocket(12535);

UDP socket identified by two-tuple:
(dest IP address, dest port number)

When host receives UDP segment:
checks destination port number in segment
directs UDP segment to socket with that port number

IP datagrams with different source IP addresses and/or source
port numbers directed to same socket

Network Security, WS 2008/09, Chapter 9 10IN2097 - Master Course Computer Networks, WS 2009/2010 10

Connectionless demux (cont)

DatagramSocket serverSocket = new DatagramSocket(6428);

Client
IP:B

P2

client
IP: A

P1P1P3

server
IP: C

SP: 6428
DP: 9157

SP: 9157
DP: 6428

SP: 6428
DP: 5775

SP: 5775
DP: 6428

Source Port (SP) provides “return address”

Network Security, WS 2008/09, Chapter 9 11IN2097 - Master Course Computer Networks, WS 2009/2010 11

Connection-oriented demux

TCP socket identified by 4-tuple:
source IP address
source port number
dest IP address
dest port number

recv host uses all four values to direct segment to appropriate
socket
Server host may support many simultaneous TCP sockets:

each socket identified by its own 4-tuple
Web servers have different sockets for each connecting client

non-persistent HTTP will have different socket for each
request

Network Security, WS 2008/09, Chapter 9 12IN2097 - Master Course Computer Networks, WS 2009/2010 12

Connection-oriented demux (cont)

Client
IP:B

P1

client
IP: A

P1P2P4

server
IP: C

SP: 9157
DP: 80

SP: 9157
DP: 80

P5 P6 P3

D-IP:C
S-IP: A
D-IP:C

S-IP: B

SP: 5775
DP: 80

D-IP:C
S-IP: B

4

Network Security, WS 2008/09, Chapter 9 13IN2097 - Master Course Computer Networks, WS 2009/2010 13

Connection-oriented demux: Threaded Web Server

Client
IP:B

P1

client
IP: A

P1P2

server
IP: C

SP: 9157
DP: 80

SP: 9157
DP: 80

P4 P3

D-IP:C
S-IP: A
D-IP:C

S-IP: B

SP: 5775
DP: 80

D-IP:C
S-IP: B

Network Security, WS 2008/09, Chapter 9 14IN2097 - Master Course Computer Networks, WS 2009/2010 14

Chapter 3 outline

3.1 Transport-layer services
3.2 Multiplexing and demultiplexing
3.3 Connectionless transport: UDP
-
3.5 Connection-oriented transport: TCP

segment structure
reliable data transfer
flow control
connection management

-
3.7 TCP congestion control

Network Security, WS 2008/09, Chapter 9 15IN2097 - Master Course Computer Networks, WS 2009/2010 15

UDP: User Datagram Protocol [RFC 768]

“no frills,” “bare bones” Internet
transport protocol
“best effort” service, UDP
segments may be:

lost
delivered out of order to
app

connectionless:
no handshaking between
UDP sender, receiver
each UDP segment
handled independently of
others

Why is there a UDP?
no connection

establishment (which can
add delay)

simple: no connection
state at sender, receiver

small segment header
No congestion control:

UDP can blast away as fast
as desired

Network Security, WS 2008/09, Chapter 9 16IN2097 - Master Course Computer Networks, WS 2009/2010 16

UDP: more

often used for streaming
multimedia apps

loss tolerant
rate sensitive

other UDP uses
DNS
SNMP

reliable transfer over
UDP: add reliability at
application layer

application-specific
error recovery!

source port # dest port #

32 bits

Application
data

(message)

UDP segment format

length checksum
Length, in

bytes of UDP
segment,
including

header

5

Network Security, WS 2008/09, Chapter 9 17IN2097 - Master Course Computer Networks, WS 2009/2010 17

UDP checksum

Goal: detect “errors” (e.g., flipped bits) in transmitted segment

Sender:
treat segment contents as sequence of 16-bit integers
checksum: addition (1’s complement sum) of segment contents
sender puts checksum value into UDP checksum field

Receiver:
compute checksum of received segment
check if computed checksum equals checksum field value:

NO - error detected
YES - no error detected. But maybe errors nonetheless?
More later ….

Network Security, WS 2008/09, Chapter 9 18IN2097 - Master Course Computer Networks, WS 2009/2010 18

Internet Checksum Example

Note
When adding numbers, a carryout from the most
significant bit needs to be added to the result

Example: add two 16-bit integers

1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0
1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

wraparound

sum
checksum

Network Security, WS 2008/09, Chapter 9 19IN2097 - Master Course Computer Networks, WS 2009/2010 19

Chapter 3 outline

3.1 Transport-layer services
3.2 Multiplexing and demultiplexing
3.3 Connectionless transport: UDP
3.4 Principles of reliable data transfer
3.5 Connection-oriented transport: TCP

segment structure
reliable data transfer
flow control
connection management

3.6 Principles of congestion control
3.7 TCP congestion control

Network Security, WS 2008/09, Chapter 9 20IN2097 - Master Course Computer Networks, WS 2009/2010 20

Pipelined protocols

Pipelining: sender allows multiple, “in-flight”, yet-to-be-
acknowledged pkts

range of sequence numbers must be increased
buffering at sender and/or receiver

Two generic forms of pipelined protocols: go-Back-N, selective repeat

6

Network Security, WS 2008/09, Chapter 9 21IN2097 - Master Course Computer Networks, WS 2009/2010 21

Pipelining: increased utilization

first packet bit transmitted, t = 0

sender receiver

RTT

last bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next
packet, t = RTT + L / R

last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives, send ACK

U
sender =

.024
30.008

= 0.0008 3 * L / R
RTT + L / R

=

Increase utilization
by a factor of 3!

Network Security, WS 2008/09, Chapter 9 22IN2097 - Master Course Computer Networks, WS 2009/2010 22

Go-Back-N

Sender:
k-bit seq # in pkt header
“window” of up to N, consecutive unack’ed pkts allowed

ACK(n): ACKs all pkts up to, including seq # n - “cumulative
ACK”

may receive duplicate ACKs (see receiver)
timer for each in-flight pkt
timeout(n): retransmit pkt n and all higher seq # pkts in window

Network Security, WS 2008/09, Chapter 9 23IN2097 - Master Course Computer Networks, WS 2009/2010 23

Chapter 3 outline

3.1 Transport-layer services
3.2 Multiplexing and demultiplexing
3.3 Connectionless transport: UDP
3.4 Principles of reliable data transfer
3.5 Connection-oriented transport: TCP

segment structure
reliable data transfer
flow control
connection management

3.6 Principles of congestion control
3.7 TCP congestion control

Network Security, WS 2008/09, Chapter 9 24IN2097 - Master Course Computer Networks, WS 2009/2010 24

TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581

full duplex data:
bi-directional data flow in
same connection
MSS: maximum segment
size

connection-oriented:
handshaking (exchange of
control msgs) init’s sender,
receiver state before data
exchange

flow controlled:
sender will not overwhelm
receiver

Congestion controlled:
Will not overwhelm networksocket

door
TCP

send buffer
TCP

receive buffer

socket
door

segment

application
writes data

application
reads data

point-to-point:
one sender, one receiver

reliable, in-order byte steam:
no “message boundaries”

pipelined:
TCP congestion and flow
control set window size

send & receive buffers

7

Network Security, WS 2008/09, Chapter 9 25IN2097 - Master Course Computer Networks, WS 2009/2010 25

TCP segment structure

source port # dest port #

32 bits

application
data

(variable length)

sequence number
acknowledgement number

Receive window
Urg data pnterchecksum

FSRPAUhead
len

not
used

Options (variable length)

URG: urgent data
(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

bytes
rcvr willing
to accept

counting
by bytes
of data
(not segments!)

Internet
checksum

(as in UDP)

Network Security, WS 2008/09, Chapter 9 26IN2097 - Master Course Computer Networks, WS 2009/2010 26

TCP seq. #’s and ACKs

Seq. #’s:
byte stream
“number” of first
byte in segment’s
data

ACKs:
seq # of next byte
expected from
other side
cumulative ACK

Q: how receiver handles
out-of-order segments

A: TCP spec
doesn’t say, - up to
implementor

Host A Host B

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

User
types

‘C’

host ACKs
receipt

of echoed
‘C’

host ACKs
receipt of
‘C’, echoes

back ‘C’

time
simple telnet scenario

Network Security, WS 2008/09, Chapter 9 27IN2097 - Master Course Computer Networks, WS 2009/2010 27

TCP Round Trip Time and Timeout

Q: how to set TCP timeout
value?
longer than RTT

but RTT varies
too short: premature timeout

unnecessary
retransmissions

too long: slow reaction to
segment loss

Q: how to estimate RTT?
SampleRTT: measured time
from segment transmission
until ACK receipt

ignore
retransmissions

SampleRTT will vary, want
estimated RTT “smoother”

average several
recent
measurements, not
just current
SampleRTT

Network Security, WS 2008/09, Chapter 9 28IN2097 - Master Course Computer Networks, WS 2009/2010 28

TCP Round Trip Time and Timeout

Exponential weighted moving average
influence of past sample decreases exponentially fast
typical value: α = 0.125

EstimatedRTT = (1- α)*EstimatedRTT + α*SampleRTT

8

Network Security, WS 2008/09, Chapter 9 29IN2097 - Master Course Computer Networks, WS 2009/2010 29

Example RTT estimation:

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

RT
T

(m
ill

ise
co

nd
s)

SampleRTT Estimated RTT

Network Security, WS 2008/09, Chapter 9 30IN2097 - Master Course Computer Networks, WS 2009/2010 30

TCP Round Trip Time and Timeout

Setting the timeout
EstimtedRTT plus “safety margin”

large variation in EstimatedRTT -> larger safety margin
first estimate of how much SampleRTT deviates from EstimatedRTT:

TimeoutInterval = EstimatedRTT + 4*DevRTT

DevRTT = (1-β)*DevRTT +
β*|SampleRTT-EstimatedRTT|

(typically, β = 0.25)

Then set timeout interval:

Network Security, WS 2008/09, Chapter 9 31IN2097 - Master Course Computer Networks, WS 2009/2010 31

Chapter 3 outline

3.1 Transport-layer services
3.2 Multiplexing and demultiplexing
3.3 Connectionless transport: UDP
3.4 Principles of reliable data transfer
3.5 Connection-oriented transport: TCP

segment structure
reliable data transfer
flow control
connection management

3.6 Principles of congestion control
3.7 TCP congestion control

Network Security, WS 2008/09, Chapter 9 32IN2097 - Master Course Computer Networks, WS 2009/2010 32

TCP reliable data transfer

TCP creates rdt service on
top of IP’s unreliable service
Pipelined segments
Cumulative acks
TCP uses single
retransmission timer

Retransmissions are
triggered by:

timeout events
duplicate acks

Initially consider simplified
TCP sender:

ignore duplicate acks
ignore flow control,
congestion control

9

Network Security, WS 2008/09, Chapter 9 33IN2097 - Master Course Computer Networks, WS 2009/2010 33

TCP sender events:

data rcvd from app:
Create segment with seq #
seq # is byte-stream number
of first data byte in segment
start timer if not already
running (think of timer as for
oldest unacked segment)
expiration interval:
TimeOutInterval

timeout:
retransmit segment that
caused timeout
restart timer

Ack rcvd:
If acknowledges previously
unacked segments

update what is known to
be acked
start timer if there are
outstanding segments

Network Security, WS 2008/09, Chapter 9 34IN2097 - Master Course Computer Networks, WS 2009/2010 34

TCP sender (simplified)

NextSeqNum = InitialSeqNum
SendBase = InitialSeqNum
loop (forever) {

switch(event)

event: data received from application above
create TCP segment with sequence number NextSeqNum
if (timer currently not running)

start timer
pass segment to IP
NextSeqNum = NextSeqNum + length(data)

event: timer timeout
retransmit not-yet-acknowledged segment with

smallest sequence number
start timer

event: ACK received, with ACK field value of y
if (y > SendBase) {

SendBase = y
if (there are currently not-yet-acknowledged segments)

start timer }
} /* end of loop forever */

Comment:
• SendBase-1: last
cumulatively
ack’ed byte
Example:
• SendBase-1 = 71;
y= 73, so the rcvr
wants 73+ ;
y > SendBase, so
that new data is
acked

Network Security, WS 2008/09, Chapter 9 35IN2097 - Master Course Computer Networks, WS 2009/2010 35

TCP: retransmission scenarios

Host A

Seq=100, 20 bytes data

ACK=100

time
premature timeout

Host B

Seq=92, 8 bytes data

ACK=120

Seq=92, 8 bytes data

Se
q=

92
 ti

m
eo

ut

ACK=120

Host A

Seq=92, 8 bytes data

ACK=100

loss

tim
eo

ut

lost ACK scenario

Host B

X

Seq=92, 8 bytes data

ACK=100

time

Se
q=

92
 ti

m
eo

ut

SendBase
= 100

SendBase
= 120

SendBase
= 120

Sendbase
= 100

Network Security, WS 2008/09, Chapter 9 36IN2097 - Master Course Computer Networks, WS 2009/2010 36

TCP retransmission scenarios (more)

Host A

Seq=92, 8 bytes data

ACK=100

loss

tim
eo

ut

Cumulative ACK scenario

Host B

X

Seq=100, 20 bytes data

ACK=120

time

SendBase
= 120

10

Network Security, WS 2008/09, Chapter 9 37IN2097 - Master Course Computer Networks, WS 2009/2010 37

TCP ACK generation [RFC 1122, RFC 2581]

Event at Receiver

Arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

Arrival of in-order segment with
expected seq #. One other
segment has ACK pending

Arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

Arrival of segment that
partially or completely fills gap

TCP Receiver action

Delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

Immediately send single cumulative
ACK, ACKing both in-order segments

Immediately send duplicate ACK,
indicating seq. # of next expected byte

Immediate send ACK, provided that
segment starts at lower end of gap

Network Security, WS 2008/09, Chapter 9 38IN2097 - Master Course Computer Networks, WS 2009/2010 38

Fast Retransmit

Time-out period often
relatively long:

long delay before
resending lost packet

Detect lost segments via
duplicate ACKs.

Sender often sends many
segments back-to-back
If segment is lost, there
will likely be many
duplicate ACKs.

If sender receives 3 ACKs for
the same data, it supposes
that segment after ACKed
data was lost:

fast retransmit: resend
segment before timer
expires

Network Security, WS 2008/09, Chapter 9 39IN2097 - Master Course Computer Networks, WS 2009/2010 39

Host A

ti
m

eo
ut

Host B

time

X

resend 2nd segment

Resending a segment after triple duplicate ACK

Network Security, WS 2008/09, Chapter 9 40IN2097 - Master Course Computer Networks, WS 2009/2010 40

event: ACK received, with ACK field value of y
if (y > SendBase) {

SendBase = y
if (there are currently not-yet-acknowledged segments)

start timer
}

else {
increment count of dup ACKs received for y
if (count of dup ACKs received for y = 3) {

resend segment with sequence number y
}

Fast retransmit algorithm:

a duplicate ACK for
already ACKed segment

fast retransmit

11

Network Security, WS 2008/09, Chapter 9 41IN2097 - Master Course Computer Networks, WS 2009/2010 41

Chapter 3 outline

3.1 Transport-layer services
3.2 Multiplexing and demultiplexing
3.3 Connectionless transport: UDP
3.4 Principles of reliable data transfer
3.5 Connection-oriented transport: TCP

segment structure
reliable data transfer
flow control
connection management

3.6 Principles of congestion control
3.7 TCP congestion control

Network Security, WS 2008/09, Chapter 9 42IN2097 - Master Course Computer Networks, WS 2009/2010 42

TCP Flow Control

receive side of TCP connection
has a receive buffer:

app process may be slow at reading
from buffer
speed-matching service: matching
the send rate to the receiving app’s
drain rate

sender won’t overflow
receiver’s buffer by

transmitting too much,
too fast

flow control

Network Security, WS 2008/09, Chapter 9 43IN2097 - Master Course Computer Networks, WS 2009/2010 43

TCP Flow control: how it works

(Suppose TCP receiver discards
out-of-order segments)
spare room in buffer

= RcvWindow
= RcvBuffer-[LastByteRcvd -

LastByteRead]

Rcvr advertises spare room by
including value of RcvWindow in
segments
Sender limits unACKed data to
RcvWindow

guarantees receive buffer
doesn’t overflow

Network Security, WS 2008/09, Chapter 9 44IN2097 - Master Course Computer Networks, WS 2009/2010 44

Chapter 3 outline

3.1 Transport-layer services
3.2 Multiplexing and demultiplexing
3.3 Connectionless transport: UDP
3.4 Principles of reliable data transfer
3.5 Connection-oriented transport: TCP

segment structure
reliable data transfer
flow control
connection management

3.6 Principles of congestion control
3.7 TCP congestion control

12

Network Security, WS 2008/09, Chapter 9 45IN2097 - Master Course Computer Networks, WS 2009/2010 45

TCP Connection Management

Recall: TCP sender, receiver
establish “connection” before
exchanging data segments
initialize TCP variables:

seq. #s
buffers, flow control info (e.g.
RcvWindow)

client: connection initiator
Socket clientSocket = new

Socket("hostname","port number");

server: contacted by client
Socket connectionSocket =
welcomeSocket.accept();

Three way handshake:
Step 1: client host sends TCP SYN
segment to server

specifies initial seq #
no data

Step 2: server host receives SYN,
replies with SYNACK segment

server allocates buffers
specifies server initial seq. #

Step 3: client receives SYNACK,
replies with ACK segment, which may
contain data

Network Security, WS 2008/09, Chapter 9 46IN2097 - Master Course Computer Networks, WS 2009/2010 46

TCP Connection Management (cont.)

Closing a connection:

client closes socket:
clientSocket.close();

Step 1: client end system sends
TCP FIN control segment to
server

Step 2: server receives FIN,
replies with ACK. Closes
connection, sends FIN.

client

FIN

server

ACK

ACK

FIN

close

close

closed

ti
m

ed
 w

ai
t

Network Security, WS 2008/09, Chapter 9 47IN2097 - Master Course Computer Networks, WS 2009/2010 47

TCP Connection Management (cont.)

Step 3: client receives FIN,
replies with ACK.

Enters “timed wait” - will
respond with ACK to
received FINs

Step 4: server, receives ACK.
Connection closed.

Note: with small modification,
can handle simultaneous
FINs.

client

FIN

server

ACK

ACK

FIN

closing

closing

closed

tim
ed

 w
ai

t

closed

Network Security, WS 2008/09, Chapter 9 48IN2097 - Master Course Computer Networks, WS 2009/2010 48

TCP Connection Management (cont)

TCP client
lifecycle

TCP server
lifecycle

13

Network Security, WS 2008/09, Chapter 9 49IN2097 - Master Course Computer Networks, WS 2009/2010 49

Chapter 3 outline

3.1 Transport-layer services
3.2 Multiplexing and demultiplexing
3.3 Connectionless transport: UDP
3.4 Principles of reliable data transfer
3.5 Connection-oriented transport: TCP

segment structure
reliable data transfer
flow control
connection management

3.6 Principles of congestion control
3.7 TCP congestion control

Network Security, WS 2008/09, Chapter 9 50IN2097 - Master Course Computer Networks, WS 2009/2010 50

Principles of Congestion Control

Congestion:
informally: “too many sources sending too much data too fast for
network to handle”
different from flow control!
manifestations:

lost packets (buffer overflow at routers)
long delays (queueing in router buffers)

a top-10 problem!

Network Security, WS 2008/09, Chapter 9 51IN2097 - Master Course Computer Networks, WS 2009/2010 51

Causes/costs of congestion: scenario 1

two senders, two receivers
one router, infinite buffers
no retransmission

unlimited shared
output link buffers

Host A
λin : original data

Host B

λout

large delays
when congested
maximum
achievable
throughput

Network Security, WS 2008/09, Chapter 9 52IN2097 - Master Course Computer Networks, WS 2009/2010 52

Causes/costs of congestion: scenario 2

one router, finite buffers
sender retransmission of lost packet

finite shared output link
buffers

Host A λin : original data

Host B

λout

λ'in : original data, plus
retransmitted data

14

Network Security, WS 2008/09, Chapter 9 55IN2097 - Master Course Computer Networks, WS 2009/2010 55

Causes/costs of congestion: scenario 3

Another “cost” of congestion:
when packet dropped, any “upstream transmission capacity used

for that packet was wasted!

H
o
s
t
A

H
o
s
t
B

λ
o
u

t

Network Security, WS 2008/09, Chapter 9 56IN2097 - Master Course Computer Networks, WS 2009/2010 56

Approaches towards congestion control

End-end congestion control:
no explicit feedback from
network
congestion inferred from
end-system observed
loss, delay
approach taken by TCP

Two broad approaches towards congestion control:
Network-assisted congestion

control:
routers provide feedback to
end systems

single bit indicating
congestion (SNA, DECbit,
TCP/IP ECN, ATM)
explicit rate sender should
send at

Network Security, WS 2008/09, Chapter 9 58IN2097 - Master Course Computer Networks, WS 2009/2010 58

Chapter 3 outline

3.1 Transport-layer services
3.2 Multiplexing and demultiplexing
3.3 Connectionless transport: UDP
3.4 Principles of reliable data transfer
3.5 Connection-oriented transport: TCP

segment structure
reliable data transfer
flow control
connection management

3.6 Principles of congestion control
3.7 TCP congestion control

Network Security, WS 2008/09, Chapter 9 59IN2097 - Master Course Computer Networks, WS 2009/2010 59

TCP congestion control: additive increase,
multiplicative decrease

8 Kbytes

16 Kbytes

24 Kbytes

time

congestion
window

timeco
ng

es
tio

n
w

in
do

w
 s

iz
e

Saw tooth
behavior: probing

for bandwidth

Approach: increase transmission rate (window size), probing
for usable bandwidth, until loss occurs

additive increase: increase CongWin by 1 MSS every
RTT until loss detected
multiplicative decrease: cut CongWin in half after loss

15

Network Security, WS 2008/09, Chapter 9 60IN2097 - Master Course Computer Networks, WS 2009/2010 60

TCP Congestion Control: details

sender limits transmission:
LastByteSent-LastByteAcked

≤ CongWin

Roughly,

CongWin is dynamic, function of
perceived network congestion

rate = CongWin
RTT Bytes/sec

How does sender perceive
congestion?
loss event = timeout or 3
duplicate acks
TCP sender reduces rate
(CongWin) after loss
event

three mechanisms:
AIMD
slow start
conservative after
timeout events

Network Security, WS 2008/09, Chapter 9 61IN2097 - Master Course Computer Networks, WS 2009/2010 61

TCP Slow Start

When connection begins,
CongWin = 1 MSS

Example: MSS = 500
bytes & RTT = 200 msec
initial rate = 20 kbps

available bandwidth may be
>> MSS/RTT

desirable to quickly ramp
up to respectable rate

When connection begins,
increase rate exponentially
fast until first loss event

Network Security, WS 2008/09, Chapter 9 62IN2097 - Master Course Computer Networks, WS 2009/2010 62

TCP Slow Start (more)

When connection begins,
increase rate exponentially
until first loss event:

double CongWin every
RTT
done by incrementing
CongWin for every ACK
received

Summary: initial rate is slow
but ramps up exponentially
fast

Host A

one segment

R
TT

Host B

time

two segments

four segments

Network Security, WS 2008/09, Chapter 9 63IN2097 - Master Course Computer Networks, WS 2009/2010 63

Refinement: inferring loss

After 3 dup ACKs:
CongWin is cut in half
window then grows
linearly

But after timeout event:
CongWin instead set to
1 MSS;
window then grows
exponentially
to a threshold, then
grows linearly

3 dup ACKs indicates
network capable of
delivering some segments

timeout indicates a
“more alarming”
congestion scenario

Philosophy:

16

Network Security, WS 2008/09, Chapter 9 64IN2097 - Master Course Computer Networks, WS 2009/2010 64

Refinement

Q: When should the
exponential increase
switch to linear?
A: When CongWin
gets to 1/2 of its
value before timeout.

Implementation:
Variable Threshold
At loss event,
Threshold is set to
1/2 of CongWin just
before loss event

Network Security, WS 2008/09, Chapter 9 65IN2097 - Master Course Computer Networks, WS 2009/2010 65

Summary: TCP Congestion Control

When CongWin is below Threshold, sender in slow-start phase,
window grows exponentially.

When CongWin is above Threshold, sender is in congestion-
avoidance phase, window grows linearly.

When a triple duplicate ACK occurs, Threshold set to CongWin/2
and CongWin set to Threshold.

When timeout occurs, Threshold set to CongWin/2 and CongWin is
set to 1 MSS.

Network Security, WS 2008/09, Chapter 9 66IN2097 - Master Course Computer Networks, WS 2009/2010 66

TCP sender congestion control

SS or CA

SS or CA

SS or CA

Congestion
Avoidance (CA)

Slow Start (SS)

State

CongWin and Threshold not
changed

Increment duplicate ACK count for
segment being acked

Duplicate ACK

Enter slow startThreshold = CongWin/2,
CongWin = 1 MSS,
Set state to “Slow Start”

Timeout

Fast recovery, implementing
multiplicative decrease.
CongWin will not drop below 1
MSS.

Threshold = CongWin/2,
CongWin = Threshold,
Set state to “Congestion Avoidance”

Loss event
detected by
triple duplicate
ACK

Additive increase, resulting in
increase of CongWin by 1 MSS
every RTT

CongWin = CongWin+MSS *
(MSS/CongWin)

ACK receipt for
previously
unacked data

Resulting in a doubling of
CongWin every RTT

CongWin = CongWin + MSS,
If (CongWin > Threshold)

set state to “Congestion
Avoidance”

ACK receipt for
previously
unacked data

CommentaryTCP Sender Action Event

Network Security, WS 2008/09, Chapter 9 67IN2097 - Master Course Computer Networks, WS 2009/2010 67

TCP summary

Connection-oriented: SYN, SYNACK; FIN
Retransmit lost packets; in-order data: sequence no., ACK no.
ACKs: either piggybacked, or no-data pure ACK packets if no
data travelling in other direction
Don’t overload receiver: rwin

rwin advertised by receiver
Don’t overload network: cwin

cwin affected by receiving ACKs
Sender buffer = min { rwin, cwin }
Congestion control:

Slow start: exponential growth of cwin
Congestion avoidance: linear groth of cwin
Timeout; duplicate ACK: shrink cwin

Continuously adjust RTT estimation

17

Network Security, WS 2008/09, Chapter 9 68IN2097 - Master Course Computer Networks, WS 2009/2010 68

TCP throughput

What’s the average throughout of TCP as a function of window
size and RTT?

Ignore slow start
Let W be the window size when loss occurs.
When window is W, throughput is W/RTT
Just after loss, window drops to W/2, throughput to W/2RTT.
Average throughout: 0.75 W/RTT

Network Security, WS 2008/09, Chapter 9 69IN2097 - Master Course Computer Networks, WS 2009/2010 69

TCP Fairness

Fairness goal: if K TCP sessions share same bottleneck link of
bandwidth R, each should have average rate of R/K

TCP connection 1

bottleneck
router

capacity R

TCP
connection 2

Network Security, WS 2008/09, Chapter 9 70IN2097 - Master Course Computer Networks, WS 2009/2010 70

Why is TCP fair?

Two competing sessions:
Additive increase gives slope of 1, as throughout increases
multiplicative decrease decreases throughput proportionally

R

R

equal bandwidth share

Connection 1 throughput

Co
nn

e c
ti

on
 2

 t
hr

o u
gh

pu
t

congestion avoidance: additive increase
loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2

Network Security, WS 2008/09, Chapter 9 71IN2097 - Master Course Computer Networks, WS 2009/2010 71

Fairness (more)

Fairness and UDP
Multimedia apps often do not
use TCP

do not want rate throttled
by congestion control

Instead use UDP:
pump audio/video at
constant rate, tolerate
packet loss

Research area: TCP friendly

Fairness and parallel TCP
connections
nothing prevents app from
opening parallel connections
between 2 hosts.
Web browsers do this
Example: link of rate R
supporting 9 connections;

new app asks for 1 TCP,
gets rate R/10
new app asks for 11 TCPs,
gets R/2 !

18

Network Security, WS 2008/09, Chapter 9 72IN2097 - Master Course Computer Networks, WS 2009/2010 72

Chapter 3: Summary

principles behind transport layer services:

multiplexing, demultiplexing
reliable data transfer
flow control
congestion control

instantiation and implementation in the Internet

UDP
TCP

Next:
leaving the network “edge” (application, transport layers)
into the network “core”

