Chair for Network Architectures and Services — Prof. Carle
Department for Computer Science

TU Minchen

Master Course
Computer Networks
IN2097

Prof. Dr.-Ing. Georg Carle
Christian Grothoff, Ph.D.
Lecturer today: Dr. Nils Kammenhuber

Chair for Network Architectures and Services

Institut far Informatik
Technische Universitat Minchen
http://www.net.in.tum.de

X :
24 Chapter 3: Transport Layer

Our goals:
o understand principles behind transport layer services:
= multiplexing/demultiplexing
* reliable data transfer
* flow control
= congestion control
0 learn about transport layer protocols in the Internet:
= UDP: connectionless transport
= TCP: connection-oriented transport
= TCP congestion control

ey, :
2@ Chapter 3outline

o U 0 0 O

3.1 Transport-layer services
3.2 Multiplexing and demultiplexing
3.3 Connectionless transport: UDP
3.4 largely omitted
3.5 Connection-oriented transport: TCP
* segment structure
» reliable data transfer
= flow control
= connection management
3.6 largely omitted
3.7 TCP congestion control

ey, :
2@ Transport services and protocols

o provide logical communication
between app processes running
on different hosts

Q transport protocols run in end
systems

» send side: breaks app
messages into segments,
passes to network layer

= rcv side: reassembles

application
trans~ort
netwoR

4

|

segments into messages, k. T
passes to app layer
a more than one transport protocol .« f

available to apps
* |Internet: TCP and UDP

V4@ Internet t] tocol
,,ﬁ' nternet transport-layer protocols

o reliable, in-order delivery

(TCP) conreatio
= congestion control dIW.k
= flow control physical W -
= connection setup phy? ; thyW.'fr g
o unreliable, unordered <
delivery: UDP @ | et
= no-frills extension of N RN
“best-effort” IP e R
Q services not available: ot Mhccrion

physical f™ network
data link network l-= =
= delay guarantees]\;f/@ﬁ | e

* bandwidth guarantees

f physical | *---°

ey, :
2@ Chapter 3outline

o 3.1 Transport-layer services

o 3.2 Multiplexing and demultiplexing
o 3.3 Connectionless transport: UDP
a
a

3.5 Connection-oriented transport: TCP
* segment structure
» reliable data transfer
= flow control
= connection management
a -
a 3.7 TCP congestion control

'y : : : :
2@ Multiplexing/demultiplexing

— Demultiplexing at rcv host; ——

delivering received segments
to correct socket

[] =socket O = process

_ Multiplexing at send host; ___

gathering data from multiple
sockets, enveloping data with
header (later used for
demultiplexing)

application application application
| S

transport '}amg-pﬁ' transport
network nefwork network
link link link
physical physicat physical
host 1 host 2 host 3

'y, : :
2w How demultiplexing works

o host receives IP datagrams

» each datagram has source IP
address, destination IP
address

= each datagram carries 1
transport-layer segment

= each segment has source,
destination port number

o host uses IP addresses & port
numbers to direct segment to
appropriate socket

32 bits

v

source port # dest port #

other header fields

application
data
(message)

TCP/UDP segment format

;ﬁ‘ Connectionless demultiplexing I

o Create sockets with port numbers:
DatagramSocket mySocketl = new DatagramSocket(12534);
DatagramSocket mySocket2 = new DatagramSocket(12535);

o UDP socket identified by two-tuple:

(dest IP address, dest port number)
o When host receives UDP segment:
» checks destination port number in segment
= directs UDP segment to socket with that port number

o IP datagrams with different source IP addresses and/or source
port numbers directed to same socket

X .
gi{' Connectionless demux (cont)

DatagramSocket serverSocket = new DatagramSocket(6428);

= =

SP: 6428 SP: 6428
DP: 9157 DP: 5775

SP: 9157 SP: 5775

client |DP: 6428 server DP: 6428 Client

IP: A IP: C IP:B

Source Port (SP) provides “return address”

,'t{“ Connection-oriented demux
/ 7N\

o TCP socket identified by 4-tuple:
= source IP address
= source port number
= dest IP address
= dest port number

o recv host uses all four values to direct segment to appropriate
socket

o Server host may support many simultaneous TCP sockets:
» each socket identified by its own 4-tuple
a Web servers have different sockets for each connecting client

= non-persistent HTTP will have different socket for each
request

'y : :
gﬁ" Connection-oriented demux (cont)

Doo
SP: 5775
DP: 80
S-IP: B
D-1P:C
N
SP: 9157 SP: 9157
client DP: 80 server DP: 80 Client
IP: A S-IP: A P C S-IP: B IP:B
D-IP:C D-1P:C

iﬁ"“ Connection-oriented demux: Threaded Web Server

e
L i L, F
SP: 5775
DP: 80
S-IP: B
D-IP:C
N
SP: 9157 SP: 9157
client DP: 80 server DP: 80 Client
IP: A S-IP: A P C S-IP: B IP:B
D-IP:C D-IP:C

ey, :
2@ Chapter 3outline

o 3.1 Transport-layer services

o 3.2 Multiplexing and demultiplexing

o 3.3 Connectionless transport: UDP
a
a

3.5 Connection-oriented transport: TCP
* segment structure
» reliable data transfer
= flow control
= connection management
a -
a 3.7 TCP congestion control

X _
24 UDP: User Datagram Protocol [rrc 768] I

a “no frills,” “bare bones” Internet
transport protocol

o “best effort” service, UDP
segments may be:

Why is there a UDP?
0 NO connection

" |03f establishment (which can
= delivered out of order to add delay)
app

a simple: no connection
state at sender, receiver

0 small segment header

o No congestion control:
UDP can blast away as fast
as desired

O connectionless:

* no handshaking between
UDP sender, receiver

= each UDP segment
handled independently of
others

e

'y,
V% P:
,"4‘ UDP: more

a

often used for streaming
multimedia apps

= |oss tolerant

= rate sensitive

32 bits

A
v

Length, in source port # dest port #
other UDP uses bytes of UDP T~ length checksum
= DNS segment,
including
= SNMP header
reliable transfer over
UDP: add reliability at Application
application layer data
(message)

= application-specific

error recovery!

UDP segment format

;ﬁ".‘ UDP checksum I

Goal: detect “errors” (e.qg., flipped bits) in transmitted segment

Sender:

o treat segment contents as sequence of 16-bit integers

o checksum: addition (1's complement sum) of segment contents
o sender puts checksum value into UDP checksum field

Recelver:

o compute checksum of received segment

o check if computed checksum equals checksum field value:
= NO - error detected

* YES - no error detected. But maybe errors nonetheless?
More later

o e conpueeots ez w

='ay;
gﬁ" Internet Checksum Example

o Note

= When adding numbers, a carryout from the most
significant bit needs to be added to the result

o Example: add two 16-bit integers

1

11001100110011
110101010101 O01O01

Wraparound@IOI1101110111011

sum 011101110111 100
1 00010001 O0O0O0OO0OT11

1
checksum 0

ey, :
2@ Chapter 3outline

oL 0O 0O 0 O

3.1 Transport-layer services
3.2 Multiplexing and demultiplexing
3.3 Connectionless transport: UDP
3.4 Principles of reliable data transfer
3.5 Connection-oriented transport: TCP
* segment structure
» reliable data transfer
= flow control
= connection management
3.6 Principles of congestion control
3.7 TCP congestion control

nay, . :
2@ Pipelined protocols

Pipelining: sender allows multiple, “in-flight”, yet-to-be-
acknowledged pkts

* range of sequence numbers must be increased
= puffering at sender and/or receiver

data pclicke’r—r

<+— ACK packefts

(a) a stop-and-wait protocol in operation (b) a pipelined protocol in operation

aTwo generic forms of pipelined protocols: go-Back-N, selective repeat

2@ Pipelining: increased utilization

sender receiver

first packet bit transmitted, t = 0 —-------- - oo
last bit transmitted, t=L / R;

first packet bit arrives
last packet bit arrives, send ACK

> last bit of 2nd packet arrives, send ACK
last bit of 3" packet arrives, send ACK

RTT

ACK arrives, send next|
packet,t=RTT+L/R P> >~

............... - Increase utilization
"""" N / by a factor of 3!

y __3*L/R _ .024

= 0.0008

sender RTT+L/R ~30.008

'y,
gﬁ" Go-Back-N

Sender:
o k-bit seq # in pkt header
o “window” of up to N, consecutive unack’ed pkts allowed

send_base nexfseqnum dlready Usable. hof
i i ack’ed yet sent
JIIEE L TTRELO0N0000 | septanproa] ot
t__ window size —%
N

o ACK(n): ACKs all pkts up to, including seq # n - “cumulative
ACK”

= may receive duplicate ACKs (see receiver)
o timer for each in-flight pkt
o timeout(n): retransmit pkt n and all higher seq # pkts in window

ey, :
2@ Chapter 3outline

L o o0 o0 o

3.1 Transport-layer services
3.2 Multiplexing and demultiplexing
3.3 Connectionless transport: UDP
3.4 Principles of reliable data transfer
3.5 Connection-oriented transport: TCP

= segment structure

* reliable data transfer

= flow control

= connection management
3.6 Principles of congestion control
3.7 TCP congestion control

X :
,"I“ TCP: OVerview rrcs: 793, 1122, 1323, 2018, 2581
PN

Q point-to-point: o full duplex data:
= one Sender’ one receiver = Dpi-directional data flow In
. . _ same connection
o reliable, in-order byte steam: _
. L = MSS: maximum segment
* nNo “message boundaries size
Q pipelined: a connection-oriented:
= TCP CongeStiOn and flow m handshaking (exchange of
control set window size control msgs) init’s sender,
a send & receive buffers receiver state before data
exchange

o flow controlled:

= sender will not overwhelm
receiver

a Congestion controlled:
<« \Wi|| not overwhelm network

socket
door —

TCP TCP
send buffer receive buffer

() [segment] —» ()

'l'. TCP segment structure

32 bits

v

URG: urgent data
(generally not used)™_ source port # | dest port #

ACK: ACK # . Sequence humber
valid\\%miledgemen‘r humber
head : .
PSH: push data now or o APPSF Receive window
(generally not used)—| /hzels(um), Urg data pnter

L~
RST, SYN, FIN:— Op% (variable length)

connection estab
(setup, teardown /
commands) application

Internet / data
checksum (variable length)

(as in UDP)

counting

by bytes

of data

(not segments!]

bytes
rcvr willing
to accept

IN2097 - Master Course Computer Networks, WS 2009/2010

N’

i{"‘ TCP seq. #s and ACKs

Seq. #'s:
= pyte stream @
“number” of first g Host A Host B
byte in segment’s User _ Seqey
data types W
'‘C' ' Yailg = ‘C
ACKs: host ACKs
= seq # of next byte . receipt of

= ‘C |C:
expected from Ak, data b'aickh'oc?S
other side geo” 1>

= cumulative ACK
host ACKs

Q: how receiver handles receipt

out-of-order segments of echoed 743, Ack=g,
= A: TCP spec c \

doesn’t say, - up to
implementor time
simple telnet scenario

iﬁ".‘ TCP Round Trip Time and Timeout

Q: how to set TCP timeout
value?

o longer than RTT
= put RTT varies
o too short: premature timeout

" unnecessary
retransmissions

o too long: slow reaction to
segment loss

Q: how to estimate RTT?

o SampleRTT: measured time
from segment transmission

until ACK receipt
" ighore
retransmissions

o SampleRTT will vary, want
estimated RTT “smoother”

= average several
recent
measurements, not

just current
SampleRTT

IN2097 - Master Course Computer Networks, WS 2009/2010

27

e

EstimatedRTT = (1- a)*EstimatedRTT + a*SampleRTT

o Exponential weighted moving average
o influence of past sample decreases exponentially fast
0 typical value: oo =0.125

RTT (milliseconds)

350

300

250

200 -

150 -

100

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

15

22

29

36 43 50 57 64 71
time (seconnds)

—e— SampleRTT —®— Estimated RTT

78

85

92

99

106

iﬁ".‘ TCP Round Trip Time and Timeout

Setting the timeout

0 EstimtedRTT plus “safety margin”
» large variation in EstimatedRTT -> larger safety margin
o first estimate of how much SampleRTT deviates from EstimatedRTT:

DevRTT = (1-B)*DevRTT +
B*]|SampleRTT-EstimatedRTT]|

(typically, B = 0.25)

Then set timeout interval:

Timeoutlnterval = EstimatedRTT + 4*DevRTT

ey, :
2@ Chapter 3outline

L 0O 0O 0 O

3.1 Transport-layer services
3.2 Multiplexing and demultiplexing
3.3 Connectionless transport: UDP
3.4 Principles of reliable data transfer
3.5 Connection-oriented transport: TCP

* segment structure

* reliable data transfer

= flow control

= connection management
3.6 Principles of congestion control
3.7 TCP congestion control

Y :
;ﬁ" TCP reliable data transfer

o TCP creates rdt service on o Retransmissions are
top of IP’s unreliable service triggered by:

o Pipelined segments = timeout events

o Cumulative acks » duplicate acks

a TCP uses single a Initially consider simplified
retransmission timer TCP sender:

* ignore duplicate acks

= gnore flow control,
congestion control

ey,
V4% :
g TCP sender events:

data rcvd from app:

Q
Q

Create segment with seq #

seq # Is byte-stream number
of first data byte in segment

start timer if not already
running (think of timer as for
oldest unacked segment)

expiration interval:
TimeOutinterval

timeout:

Qo retransmit segment that
caused timeout

Q restart timer
Ack rcvd:

o If acknowledges previously
unacked segments

» update what is known to
be acked

= start timer If there are
outstanding segments

'l" TCP sender (simplified)

NextSeqNum = InitialSeqNum
SendBase = InitialSeqNum
loop (forever) {

switch(event)

event: data received from application above
create TCP segment with sequence number NextSegNum
if (timer currently not running)
start timer
pass segment to IP
NextSeqNum = NextSegqNum + length(data)

event: timer timeout
retransmit not-yet-acknowledged segment with
smallest sequence number
start timer

event: ACK received, with ACK field value of y
if (y > SendBase) {
SendBase =y
if (there are currently not-yet-acknowledged segments)
start timer }
} /* end of loop forever */

Comment:;

» SendBase-1: last
cumulatively
ack’ed byte
Example:

» SendBase-1 = 71;
y= 73, so the rcvr
wants 73+ ;

y > SendBase, so
that new data is
acked

6§ TCP: retransmission scenarios
/ 7N\

] !
(@]
(D)
= :
o N
= i
E i
l)
Seq:92, 8 by Sendbase %_
€S daty -~ 100 =
SendBase 9
=120 £
o
SendBase o
=100 SendBase _L
v v = 120 v premature timeout
time time

lost ACK scenario

e

45!
@)
Qo
E

SendBase
=120

v

time

Host A

Host B

Seg=g

v

Cumulative ACK scenario

e -
2@ TCP ACK generation [RFC 1122, RFC 2581]

Event at Receiver TCP Recelver action
Arrival of in-order segment with Delayed ACK. Wait up to 500ms
expected seq #. All data up to for next segment. If no next segment,

expected seq # already ACKed send ACK

Arrival of in-order segment with Immediately send single cumulative
expected seq #. One other ACK, ACKing both in-order segments
segment has ACK pending

Arrival of out-of-order segment Immediately send duplicate ACK,
higher-than-expect seq. # . indicating seq. # of next expected byte

Gap detected

Arrival of segment that Immediate send ACK, provided that
partially or completely fills gap segment starts at lower end of gap

QT

X)
/Y F R
,"4‘ ast etransmit

o Time-out period often
relatively long:

* long delay before
resending lost packet

o Detect lost segments via
duplicate ACKs.

» Sender often sends many
segments back-to-back

* |f segment is lost, there
will likely be many
duplicate ACKs.

0 If sender receives 3 ACKSs for

the same data, it supposes
that segment after ACKed
data was lost:

= fast retransmit: resend
segment before timer
expires

timeout

Host A

time

2nd g
€9men;

Host B

X/ : : _
g‘{' Fast retransmit algorithm:

event: ACK received, with ACK field value of y
if (y > SendBase) {
SendBase =y
if (there are currently not-yet-acknowledged segments)
start timer
}
else {
increment count of dup ACKs received for y
if (count of dup ACKs received fory = 3) {
resend segment with sequence numbery

}

/ \
a duplicate ACK for fast retransmit
already ACKed segment

ey, :
2@ Chapter 3outline

L 0O 0O 0 O

3.1 Transport-layer services
3.2 Multiplexing and demultiplexing
3.3 Connectionless transport: UDP
3.4 Principles of reliable data transfer
3.5 Connection-oriented transport: TCP

* segment structure

» reliable data transfer

= flow control

= connection management
3.6 Principles of congestion control
3.7 TCP congestion control

'y,
gﬁ‘ TCP Flow Control

o receive side of TCP connection
has a receive buffer:

-|1— RevWindow —n|-

i

797 applicat
I pplication
i A

//? s % process
2570
'Il— RevBuffer —I}

data from
1P

O app process may be slow at reading
from buffer

o speed-matching service: matching
the send rate to the receiving app’s
drain rate

- flow control

sender won’t overflow
receiver’s buffer by
transmitting too much,

too fast

='ay; : :
gﬁ" TCP Flow control: how it works

-|n— Revwindow —-|-

70000

data from
1P

/fff” o ff”%
707
b RevBuffer ————#

(Suppose TCP receiver discards
out-of-order segments)

Q spare room in buffer

= RcvWindow

= RcvBuffer-[LastByteRcvd -
LastByteRead]

Z Z applicati
L pplication
7 // ,

pProcess

a

a

Rcvr advertises spare room by
Including value of RcvWindow in

segments

Sender limits unACKed data to
RcvWindow

» guarantees receive buffer
doesn’t overflow

ey, :
2@ Chapter 3outline

L 0O 0O 0 O

3.1 Transport-layer services
3.2 Multiplexing and demultiplexing
3.3 Connectionless transport: UDP
3.4 Principles of reliable data transfer
3.5 Connection-oriented transport: TCP

* segment structure

» reliable data transfer

= flow control

= connection management
3.6 Principles of congestion control
3.7 TCP congestion control

=y :
w9 TCP Connection Management

Recall: TCP sender, receiver
establish “connection” before
exchanging data segments

a initialize TCP variables:
" seq. #S

= puffers, flow control info (e.g.
RcvWindow)

o client: connection initiator
Socket clientSocket = new

Socket('hostname", " port number'™);

O server: contacted by client

Socket connectionSocket =
welcomeSocket.accept();

| IN2OST- Master Course Computer Networks, WS20092010 45

Three way handshake:

Step 1: client host sends TCP SYN
segment to server

= specifies initial seq #
= no data

Step 2: server host receives SYN,
replies with SYNACK segment

= server allocates buffers

= specifies server initial seq. #

Step 3: client receives SYNACK,
replies with ACK segment, which may
contain data

iﬁ"“ TCP Connection Management (cont.)

Closing a connection:

client closes socket:

clientSocket.close(); @ client server@
Step 1: client end system sends close .
IN
TCP FIN control segment to
server

pct
Step 2: server receives FIN, / close
replies with ACK. Closes /
connection, sends FIN. _
m

x
o
=

o

close

Q time

ey :
;ﬁ" TCP Connection Management (cont.)

Step 3: client receives FIN,
replies with ACK.

* Enters “timed wait” - will 1@ ciient server [llh
respond with ACK to closing
received FINs FIN

Step 4: server, receives ACK.
Connection closed.

/ closing
. "o . F\N
Note: with small modification,

k

can handle simultaneous]
FINS.

closed

timed wait

closed

X :
L«" TCP Connection Management (cont)

CLOSED client application
initiates a TCP connection

wiait 30 seconds

send SYN
TIME_WAIT SYN_SENT
&
receive FIN receive SVMN & ACK
send ACK send ACK
¥
FIN_WAIT_2 ESTABLISHED TCP Se rver
client application | Ife CyCI e
o e initiates close connection
send nothing FIN_WAIT_1 send FIM CLOSED server application
receive ACK creates a listen socket
TCP client SRR
LAST_ACK LISTEN
F
receive S
send FIN send SYM & ACK
¥
CLOSE_WAIT SYN_RCVD
receive ACK
ive EIN send nothing
receive
send ACK ESTABLISHED

ey, :
2@ Chapter 3outline

L 0O 0O 0 O

3.1 Transport-layer services
3.2 Multiplexing and demultiplexing
3.3 Connectionless transport: UDP
3.4 Principles of reliable data transfer
3.5 Connection-oriented transport: TCP

* segment structure

» reliable data transfer

= flow control

= connection management
3.6 Principles of congestion control
3.7 TCP congestion control

wey _ . . _
24 Principles of Congestion Control

Congestion:

o informally: “too many sources sending too much data too fast for
network to handle”

o different from flow control!
O manifestations:

» |lost packets (buffer overflow at routers)

* long delays (queueing in router buffers)
o atop-10 problem!

't" Causes/costs of congestion: scenario 1

o two senders, two receivers
O one router, infinite buffers HOstA s orginal data Ao
O No retransmission

unlimited shared
output link buffers

Host B

C/2+ 0 large delays

when congested

O maximum
achievable
throughput

delay

7Lou’r

't" Causes/costs of congestion: scenario 2

O one router, finite buffers
o sender retransmission of lost packet

Host A 2

. . original data

A", . original data, plus A
retransmitted data

finite shared output link
buffers

't" Causes/costs of congestion: scenario 2

o always: 7» Kout(goodput)

o “perfect” retransm|SS|on only when loss: 7\~n> A

out
/
O retransmission of delayed (not lost) packet makes }vin larger (than
perfect case) for same out
RI2 f--mmmmmmmmmmm oo . RI2 f--mmmmmmmmmmmm oo ; R/2
) B i)
(<8 &8 (<g (2775
x:n R/2 k:n R/2 x:n R/2
a. b. C.

“costs” of congestion:
amore work (retrans) for given “goodput”

aunneeded retransmissions: link carries multiple copies of pkt

't" Causes/costs of congestion: scenario 3

o four senders

a multihop paths Q: what happens as), and
0 timeout/retransmit 2/ increase ? In

in

Host A ..
* A, original data A

out

A", . original data, plus
retransmitted data

finite shared output
link buffers

Host B

LI —

v
AA

9@ Causes/costs of congestion: scenario 3
7>

C/2 ¥

3 s
(_< i

k!

N

Another “cost” of congestion:

awhen packet dropped, any “upstream transmission capacity used
for that packet was wasted!

X/ .
gi(“ Approaches towards congestion control

Two broad approaches towards congestion control:

End-end congestion control: Network-assisted congestion
a no explicit feedback from control:

network Qo routers provide feedback to
o congestion inferred from end systems

end-system observed » single bit indicating

loss, delay congestion (SNA, DEChit,
a approach taken by TCP TCP/IP ECN, ATM)

= explicit rate sender should
send at

;i? Case study: ATM ABR congestion control I

ABR: available bit rate: RM (resource management)
o “elastic service” cells:

o if sender’s path “underloaded”. @ Sentby sender,
= sender should use interspersed with data cells

available bandwidth 0 bits in RM cell set by
a if sender’s path congested: switches (“network-

assisted”
= sender throttled to)

minimum guaranteed rate " Nibit noincrease in
rate (mild congestion)

= CI bit: congestion
Indication
0o RM cells returned to sender
by receiver, with bits intact

T Y

ey, :
2@ Chapter 3outline

L 0O 0O 0 O

3.1 Transport-layer services
3.2 Multiplexing and demultiplexing
3.3 Connectionless transport: UDP
3.4 Principles of reliable data transfer
3.5 Connection-oriented transport: TCP

* segment structure

» reliable data transfer

= flow control

= connection management
3.6 Principles of congestion control
3.7 TCP congestion control

=4, TCP congestion control: additive increase,
y‘V‘ L
/) multiplicative decrease

0 Approach:_increase transmission rate (window size), probing
for usable bandwidth, until loss occurs

= additive increase: increase CongWin by 1 MSS every
RTT until loss detected

= multiplicative decrease: cut CongWin in half after loss

‘4 Kbytes —

Saw tooth
behavior: probing
for bandwidth

6 Kbytes —

8 Kbytes —

congestion window size

» time

n'ay : _ :
2@ TCP Congestion Control: detalils

o sender limits transmission: How does sender perceive
LastByteSent-LastByteAcked congestion?
< CongWin 0 loss event = timeout or 3
a Roughly, duplicate acks
] CongWin o TCP sender reduces rate
rate = RTT DBYfes/sec (CongWin) after loss
event

o CongWin is dynamic, function of

perceived network congestion three mechanisms:

= AIMD
= s|low start

= conservative after
timeout events

='ay;
gﬁ" TCP Slow Start

o When connection begins,
CongWin =1 MSS

= Example: MSS = 500
bytes & RTT = 200 msec
= |nitial rate = 20 kbps

o available bandwidth may be
>> MSS/RTT

= desirable to quickly ramp
up to respectable rate

o When connection begins,
Increase rate exponentially
fast until first loss event

iﬁ".‘ TCP Slow Start (more)

o When connection begins,
Increase rate exponentially

until first loss event:;
_ Host A Host B
= double CongWin every 2 ost & [

RTT
» done by incrementing

received

«—RTT—
o
>
D

%
D
Z
D
=

CongWin for every ACK

o Summary: initial rate is slow
but ramps up exponentially Ur segments
fast

time

X : . ,
;i{. Refinement: inferring loss I

o After 3 dup ACKs:
= CongWin is cut in half

= window then grows

|inear|y —— Philosophy:
o But after tim_eOl.Jt event: 0 3 dup ACKs indicates

u CO”ng N |nStead setto network Capable Of
1 MSS; delivering some segments

= window then grows 3 timeout indicates a
exponentially “more a;l_armmg” |

congestion scenario
= to a threshold, then Y

grows linearly

v s oo oo sz w

- X/ .
VA%
24 Refinement

o Q: When should the
exponential increase
switch to linear?

o A: When COﬂngn . TCP Series 2 Reno
gets to 1/2 of its
value before timeout.

Implementation:

_| Threshold

Threshold

Transmission round

TCP Series 1 Tahoe

o Variable Threshold 27—
o Atloss event, Dn 1 2 34 56 7 8 910111213 14 15
Threshold is set to Transrrission round

1/2 of CongWin just
before loss event

n'ay, _ :
2@ Summary: TCP Congestion Control

a When CongWin is below Threshold, sender in slow-start phase,
window grows exponentially.

a When CongWin is above Threshold, sender is in congestion-
avoidance phase, window grows linearly.

a When a triple duplicate ACK occurs, Threshold set to CongWin/2
and CongWin set to Threshold.

o When timeout occurs, Threshold set to CongWin/2 and CongWin is
setto 1 MSS.

ey :
24 TCP sender congestion control

State Event TCP Sender Action Commentary
Slow Start (SS) ACK receipt for | CongWin = CongWin + MSS, Resulting in a doubling of
previously If (CongWin > Threshold) CongWin every RTT
unacked data set state to “Congestion
Avoidance”
Congestion ACK receipt for | CongWin = CongWin+MSS * Additive increase, resulting in

Avoidance (CA)

previously
unacked data

(MSS/CongWin)

increase of CongWin by 1 MSS
every RTT

SSorCA Loss event Threshold = CongWin/2, Fast recovery, implementing
detected by CongWin = Threshold, multiplicative decrease.
triple duplicate | Set state to “Congestion Avoidance” | CongWin will not drop below 1
ACK MSS.
SSorCA Timeout Threshold = CongWin/2, Enter slow start
CongWin = 1 MSS,
Set state to “Slow Start”
SSor CA Duplicate ACK | Increment duplicate ACK count for CongWin and Threshold not

segment being acked

changed

'4'. TCP summary

a

Connection-oriented: SYN, SYNACK: FIN

Retransmit lost packets; in-order data: sequence no., ACK no.

ACKs: either piggybacked, or no-data pure ACK packets if no
data travelling in other direction

Don’t overload receiver: rwin
* rwin advertised by receiver
Don’t overload network: cwin
» cwin affected by receiving ACKs
Sender buffer = min { rwin, cwin }
Congestion control:
= Slow start: exponential growth of cwin
= Congestion avoidance: linear groth of cwin
= Timeout; duplicate ACK: shrink cwin
Continuously adjust RTT estimation

IN2097 - Master Course Computer Networks, WS 2009/2010

67

iﬁ".‘ TCP throughput

o What's the average throughout of TCP as a function of window
size and RTT?

= |gnore slow start
Let W be the window size when loss occurs.
When window is W, throughput is W/RTT
Just after loss, window drops to W/2, throughput to W/2RTT.
Average throughout: 0.75 W/RTT

o 0O O O

X .
VA%
,'q‘ TCP Fairness

Fairness goal: if K TCP sessions share same bottleneck link of
bandwidth R, each should have average rate of R/K

TCP connection 1

2

bottleneck
router

connection 2 .
capacity R

@ Why is TCP fair?

Two competing sessions:
o Additive increase gives slope of 1, as throughout increases
o multiplicative decrease decreases throughput proportionally

equal bandwidth share

loss: decrease window by factor of 2
congestion avoidance: additive increase

loss: decrease window by factor of 2
congestion avoidance: additive increase

Connection 2 throughput

Connection 1 throughput R

X .
g Fairness (more)

Fairness and UDP Fairness and parallel TCP
o Multimedia apps often do not connections
use TCP a nothing prevents app from
= do not want rate throttled opening parallel connections
by congestion control between 2 hosts.

o Instead use UDP:

= pump audio/video at
constant rate, tolerate
packet loss

o Research area: TCP friendly " new app asks for 1 TCP,
gets rate R/10

= new app asks for 11 TCPs,
gets R/2!

o Web browsers do this

a Example: link of rate R
supporting 9 connections;

X/ :
2@ Chapter 3: Summary

o principles behind transport layer services:
* multiplexing, demultiplexing
= reliable data transfer
= flow control

= congestion control
0 instantiation and implementation in the Internet

= UDP

= TCP
Next:

o leaving the network “edge” (application, transport layers)
Q into the network “core”

