
Chair for Network Architectures and Services – Prof. Carle
Department for Computer Science
TU München

Master Course
Computer Networks

IN2097

Prof. Dr.-Ing. Georg Carle
Christian Grothoff, Ph.D.

Chair for Network Architectures and Services
Institut für Informatik

Technische Universität München
http://www.net.in.tum.de

Network Security, WS 2008/09, Chapter 9 2IN2097 - Master Course Computer Networks, WS 2009/2010 2

Chapter 2: Application layer

Principles of network applications
Web and HTTP
DNS
P2P applications
Socket programming with TCP
Socket programming with UDP

Network Security, WS 2008/09, Chapter 9 3IN2097 - Master Course Computer Networks, WS 2009/2010 3

Chapter 2: Application Layer

Our goals:
conceptual, implementation aspects of network application
protocols

transport-layer service models
client-server paradigm
peer-to-peer paradigm

learn about protocols by examining popular application-
level protocols

HTTP
DNS

programming network applications
socket API

Network Security, WS 2008/09, Chapter 9 4IN2097 - Master Course Computer Networks, WS 2009/2010 4

Some network applications

e-mail
web
instant messaging
remote login
P2P file sharing
multi-user network games
streaming stored video clips
voice over IP
real-time video conferencing
grid computing

Network Security, WS 2008/09, Chapter 9 5IN2097 - Master Course Computer Networks, WS 2009/2010 5

Creating a network application

write programs that
run on (different) end systems
communicate over network
e.g., web server software
communicates with browser
software

No need to write software for network-
core devices

Network-core devices do not run
user applications
applications on end systems
allows for rapid application
development, propagation

application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

think of different viewpoint:
what would be the benefits if you could program your router?

Network Security, WS 2008/09, Chapter 9 6IN2097 - Master Course Computer Networks, WS 2009/2010 6

Chapter 2: Application layer

Principles of network applications
Web and HTTP
DNS
P2P applications
Socket programming with TCP
Socket programming with UDP

Network Security, WS 2008/09, Chapter 9 7IN2097 - Master Course Computer Networks, WS 2009/2010 7

Application architectures

Client-server

Peer-to-peer (P2P)

Hybrid of client-server and P2P

Network Security, WS 2008/09, Chapter 9 8IN2097 - Master Course Computer Networks, WS 2009/2010 8

Client-server architecture

server:
always-on host
permanent IP address
server farms for scaling

clients:
communicate with server
may be intermittently connected
may have dynamic IP
addresses
do not communicate directly
with each other

client/server

Network Security, WS 2008/09, Chapter 9 9IN2097 - Master Course Computer Networks, WS 2009/2010 9

Pure P2P architecture

no always-on server
arbitrary end systems
directly communicate
peers are intermittently
connected and change IP
addresses

Highly scalable but difficult to
manage

peer-peer

Network Security, WS 2008/09, Chapter 9 10IN2097 - Master Course Computer Networks, WS 2009/2010 10

Hybrid of client-server and P2P

Skype
voice-over-IP P2P application
centralized server: authenticates user, finds address of
remote party
client-client connection: direct (not through server)

Instant messaging
chatting between two users is P2P
centralized service: client presence detection/location

• user registers its IP address with central server when it
comes online

• user contacts central server to find IP addresses of
buddies

Network Security, WS 2008/09, Chapter 9 11IN2097 - Master Course Computer Networks, WS 2009/2010 11

Processes communicating

Process: program running within a
host.
within same host, two processes
communicate using
inter-process communication
(defined by OS).
processes in different hosts
communicate by exchanging
messages

Client process: process that
initiates communication
Server process: process that
waits to be contacted

Note: applications with
P2P architectures have
client processes & server
processes

Network Security, WS 2008/09, Chapter 9 12IN2097 - Master Course Computer Networks, WS 2009/2010 12

Sockets

process sends/receives
messages to/from its socket
socket analogous to door

sending process shoves
message out door
sending process relies on
transport infrastructure on
other side of door which
brings message to socket at
receiving process

process

TCP with
buffers,
variables

socket

host or
server

process

TCP with
buffers,
variables

socket

host or
server

Internet

controlled
by OS

controlled by
app developer

API: (1) choice of transport protocol; (2) ability to fix a few
parameters (lots more on this later)

Network Security, WS 2008/09, Chapter 9 13IN2097 - Master Course Computer Networks, WS 2009/2010 13

Addressing processes

to receive messages, process
must have identifier
host device has unique 32-bit
IP address
Q: does IP address of host
suffice for identifying the
process?

Network Security, WS 2008/09, Chapter 9 14IN2097 - Master Course Computer Networks, WS 2009/2010 14

Addressing processes

to receive messages, process
must have identifier
host device has unique 32-bit
IP address
Q: does IP address of host
on which process runs suffice
for identifying the process?

A: No, many processes
can be running on same
host

identifier includes both IP
address and port numbers
associated with process on
host.
Example port numbers:

HTTP server: 80
Mail server: 25

to send HTTP message to
gaia.cs.umass.edu web
server:

IP address:
128.119.245.12
Port number: 80

more shortly…

Network Security, WS 2008/09, Chapter 9 15IN2097 - Master Course Computer Networks, WS 2009/2010 15

Application-layer protocol defines

Types of messages exchanged,
e.g., request, response

Message syntax:
what fields in messages & how fields are delineated

Message semantics
meaning of information in fields

Rules for when and how processes send & respond to
messages

Public-domain protocols:
defined in RFCs
allows for interoperability
e.g., HTTP, SMTP

Proprietary protocols:
e.g., Skype

Network Security, WS 2008/09, Chapter 9 16IN2097 - Master Course Computer Networks, WS 2009/2010 16

What transport service does an application need?

Data loss
some apps (e.g., audio) can tolerate some loss
other apps (e.g., file transfer, telnet) require 100% reliable data
transfer

Timing
some apps (e.g., Internet telephony, interactive games) require low
delay to be “effective”
frequently the applications also need timestamps (e.g. specifying
playout time)

Throughput
some apps (e.g., multimedia) require minimum amount of throughput
to be “effective”
other apps (“elastic apps”) make use of whatever throughput they get

Security
Some apps (e.g. Internet banking) require security services such as
encryption, data integrity, …

Network Security, WS 2008/09, Chapter 9 17IN2097 - Master Course Computer Networks, WS 2009/2010 17

Transport service requirements of common apps

Application

file transfer
e-mail

Web documents
real-time audio/video

stored audio/video
interactive games
instant messaging

Data loss

no loss
no loss
no loss
loss-tolerant

loss-tolerant
loss-tolerant
no loss

Throughput

elastic
elastic
elastic
audio: 5kbps-1Mbps
video:10kbps-5Mbps
same as above
few kbps up
elastic

Time Sensitive

no
no
no
yes, 100’s msec

yes, few secs
yes, 100’s msec
yes and no

Network Security, WS 2008/09, Chapter 9 18IN2097 - Master Course Computer Networks, WS 2009/2010 18

Internet transport protocols services

TCP service:
connection-oriented: setup
required between client and server
processes
reliable transport between sending
and receiving process
flow control: sender won’t
overwhelm receiver
congestion control: sender
throttled when network overloaded
does not provide: timing, minimum
throughput guarantees, security

UDP service:
unreliable data transfer
between sending and
receiving process
does not provide: connection
setup, reliability, flow control,
congestion control, timing,
throughput guarantee, or
security

Q: why bother? Why is there a
UDP?

Network Security, WS 2008/09, Chapter 9 19IN2097 - Master Course Computer Networks, WS 2009/2010 19

Internet apps: application, transport protocols

Application

e-mail
remote terminal access

Web
file transfer

streaming multimedia

Internet telephony

Application
layer protocol

SMTP [RFC 2821]
Telnet [RFC 854]
HTTP [RFC 2616]
FTP [RFC 959]
HTTP (e.g., Youtube),
RTP [RFC 1889]
SIP, RTP, proprietary
(e.g., Skype)

Underlying
transport protocol

TCP
TCP
TCP
TCP
TCP or UDP

typically UDP

Network Security, WS 2008/09, Chapter 9 20IN2097 - Master Course Computer Networks, WS 2009/2010 20

Chapter 2: Application layer

Principles of network applications
Web and HTTP
DNS
P2P applications
Socket programming with TCP
Socket programming with UDP

Network Security, WS 2008/09, Chapter 9 21IN2097 - Master Course Computer Networks, WS 2009/2010 21

HTTP overview

HTTP: hypertext transfer protocol
Web’s application layer protocol
client/server model

client: browser that requests,
receives, “displays” Web
objects
server: Web server sends
objects in response to
requests

PC running
Explorer

Server
running

Apache Web
server

Mac running
Navigator

HTTP request

HTTP request

HTTP response

HTTP response

Network Security, WS 2008/09, Chapter 9 22IN2097 - Master Course Computer Networks, WS 2009/2010 22

HTTP overview (continued)

HTTP uses TCP:
client initiates TCP
connection (creates socket)
to server, port 80
server accepts TCP
connection from client
HTTP messages
(application-layer protocol
messages) exchanged
between browser (HTTP
client) and Web server
(HTTP server)
http1.0: TCP connection
closed

Protocols that maintain “state”
are complex!
past history (state) must be
maintained
if server/client crashes, their
views of “state” may be
inconsistent, must be
reconciled

aside

HTTP is “stateless”
server maintains no information
about past client requests

research by PhD candidate Andreas
Klenk: stateless negotiation protocol
suitable for Web services

Network Security, WS 2008/09, Chapter 9 23IN2097 - Master Course Computer Networks, WS 2009/2010 23

HTTP connections

Nonpersistent HTTP (v1.0)
At most one object is sent
over a TCP connection.

Persistent HTTP (v1.1)
Multiple objects can be sent
over single TCP connection
between client and server.

Network Security, WS 2008/09, Chapter 9 24IN2097 - Master Course Computer Networks, WS 2009/2010 24

Nonpersistent HTTP

Suppose user enters URL
www.someSchool.edu/someDepartment/home.index

1a. HTTP client initiates TCP
connection to HTTP server
(process) at
www.someSchool.edu on
port 80

2. HTTP client sends HTTP
request message (containing
URL) into TCP connection
socket. Message indicates that
client wants object
someDepartment/home.index

1b. HTTP server at host
www.someSchool.edu waiting
for TCP connection at port 80.
“accepts” connection, notifying
client

3. HTTP server receives request
message, forms response
message containing requested
object, and sends message into
its socket

time

(contains text,
references to 10

jpeg images)

Network Security, WS 2008/09, Chapter 9 25IN2097 - Master Course Computer Networks, WS 2009/2010 25

Nonpersistent HTTP (cont.)

5. HTTP client receives
response message
containing html file, displays
html. Parsing html file, finds
10 referenced jpeg objects

6. Steps 1-5 repeated for each of
10 jpeg objects

4. HTTP server closes TCP
connection.

time

Network Security, WS 2008/09, Chapter 9 26IN2097 - Master Course Computer Networks, WS 2009/2010 26

Non-Persistent HTTP: Response time

Definition of RTT: time for a small
packet to travel from client to
server and back.

Response time:
one RTT to initiate TCP
connection
one RTT for HTTP request and
first few bytes of HTTP
response to return
file transmission time

total = 2RTT+ transmit time

time to
transmit
file

initiate TCP
connection

RTT
request
file

RTT

file
received

time time

Network Security, WS 2008/09, Chapter 9 27IN2097 - Master Course Computer Networks, WS 2009/2010 27

Persistent HTTP

Nonpersistent HTTP issues:
requires 2 RTTs per
object
Operating System
overhead for each TCP
connection
browsers often open
parallel TCP connections
to fetch referenced
objects

Persistent HTTP
server leaves connection
open after sending response
subsequent HTTP messages
between same client/server
sent over open connection
client sends requests as soon
as it encounters a referenced
object
as little as one RTT for all the
referenced objects

Network Security, WS 2008/09, Chapter 9 28IN2097 - Master Course Computer Networks, WS 2009/2010 28

HTTP request message

two types of HTTP messages: request, response
HTTP request message:

ASCII (human-readable format)

GET /somedir/page.html HTTP/1.1
Host: www.someschool.edu
User-agent: Mozilla/4.0
Connection: close
Accept-language:fr

(extra carriage return, line feed)

request line
(GET, POST,

HEAD commands)

header
lines

Carriage return,
line feed

indicates end
of message

Network Security, WS 2008/09, Chapter 9 29IN2097 - Master Course Computer Networks, WS 2009/2010 29

HTTP request message: general format

Network Security, WS 2008/09, Chapter 9 30IN2097 - Master Course Computer Networks, WS 2009/2010 30

Uploading form input

Post method:
Web page often includes form
input
Input is uploaded to server in
entity body

URL method:
Uses GET method
Input is uploaded in URL field
of request line:

www.somesite.com/animalsearch?monkeys&banana

Network Security, WS 2008/09, Chapter 9 31IN2097 - Master Course Computer Networks, WS 2009/2010 31

Method types

HTTP/1.0
GET
POST
HEAD

asks server to leave
requested object out of
response

HTTP/1.1
GET, POST, HEAD
PUT

uploads file in entity
body to path specified in
URL field

DELETE
deletes file specified in
the URL field

Network Security, WS 2008/09, Chapter 9 32IN2097 - Master Course Computer Networks, WS 2009/2010 32

HTTP response message

HTTP/1.1 200 OK
Connection close
Date: Thu, 06 Aug 1998 12:00:15 GMT
Server: Apache/1.3.0 (Unix)
Last-Modified: Mon, 22 Jun 1998 …...
Content-Length: 6821
Content-Type: text/html

data data data data data ...

status line
(protocol

status code
status phrase)

header
lines

data, e.g.,
requested
HTML file

Network Security, WS 2008/09, Chapter 9 33IN2097 - Master Course Computer Networks, WS 2009/2010 33

HTTP response status codes

In first line in server->client response message.
A few sample codes:

200 OK

request succeeded, requested object later in this message
301 Moved Permanently

requested object moved, new location specified later in this
message (Location:)

400 Bad Request

request message not understood by server
404 Not Found

requested document not found on this server
505 HTTP Version Not Supported

Network Security, WS 2008/09, Chapter 9 34IN2097 - Master Course Computer Networks, WS 2009/2010 34

Trying out HTTP (client side) for yourself

1. Telnet to your favorite Web server:

Opens TCP connection to port 80
(default HTTP server port) at cis.poly.edu.
Anything typed in sent
to port 80 at cis.poly.edu

telnet cis.poly.edu 80

2. Type in a GET HTTP request:

GET /~ross/ HTTP/1.1
Host: cis.poly.edu

By typing this in (hit carriage
return twice), you send
this minimal (but complete)
GET request to HTTP server

3. Look at response message sent by HTTP server!

Network Security, WS 2008/09, Chapter 9 35IN2097 - Master Course Computer Networks, WS 2009/2010 35

Web caches (proxy server)

Goal: satisfy client request
without involving origin
server
non-transparent web
cache:
user sets browser: Web
accesses via cache
browser sends all HTTP
requests to cache

object in cache: cache
returns object
else cache requests
object from origin
server, then returns
object to client

client

Proxy
server

client

HTTP request

HTTP response

HTTP request HTTP request

origin
server

origin
server

HTTP response HTTP response

Network Security, WS 2008/09, Chapter 9 36IN2097 - Master Course Computer Networks, WS 2009/2010 36

More about Web caching

cache acts as both client
and server
typically cache is installed
by ISP (university,
company, residential ISP)

Why Web caching?
reduce response time for client
request
(Q.: under which condition is this
statement true?)
reduce traffic on an institution’s
access link.
Internet dense with caches:
enables “poor” content
providers to effectively deliver
content (but so does P2P file
sharing)

Network Security, WS 2008/09, Chapter 9 37IN2097 - Master Course Computer Networks, WS 2009/2010 37

Caching example

Assumptions
average object size = 100,000 bits
avg. request rate from institution’s
browsers to origin servers = 15/sec
delay from institutional router to any
origin server and back to router = 2
sec

Consequences
utilization on LAN = 15%
utilization on access link = 100%
total delay = Internet delay + access
delay + LAN delay

= 2 sec + minutes + milliseconds

origin
servers

public
Internet

institutional
network 10 Mbps LAN

1.5 Mbps
access link

institutional
cache

Network Security, WS 2008/09, Chapter 9 38IN2097 - Master Course Computer Networks, WS 2009/2010 38

Caching example (cont)

possible solution
increase bandwidth of access link
to, say, 10 Mbps

consequence
utilization on LAN = 15%
utilization on access link = 15%
Total delay = Internet delay + access
delay + LAN delay

= 2 sec + msecs + msecs
often a costly upgrade

origin
servers

public
Internet

institutional
network 10 Mbps LAN

10 Mbps
access link

institutional
cache

Network Security, WS 2008/09, Chapter 9 39IN2097 - Master Course Computer Networks, WS 2009/2010 39

Caching example (cont)

possible solution: install cache
suppose hit rate is 0.4

consequence
40% requests will be satisfied
almost immediately
60% requests satisfied by origin
server
utilization of access link reduced
to 60%, resulting in negligible
delays (say 10 msec)
total avg delay = Internet delay +
access delay + LAN delay =
.6*(2.01) secs + .4*milliseconds <
1.4 secs

origin
servers

public
Internet

institutional
network 10 Mbps LAN

1.5 Mbps
access link

institutional
cache

Network Security, WS 2008/09, Chapter 9 40IN2097 - Master Course Computer Networks, WS 2009/2010 40

Conditional GET

Goal: don’t send object if
cache has up-to-date cached
version
cache: specify date of cached
copy in HTTP request
If-modified-since:
<date>

server: response contains no
object if cached copy is up-to-
date:
HTTP/1.0 304 Not
Modified

cache server

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.0

304 Not Modified

object
not

modified

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.0 200 OK

<data>

object
modified

Network Security, WS 2008/09, Chapter 9 41IN2097 - Master Course Computer Networks, WS 2009/2010 41

Chapter 2: Application layer

Principles of network applications
Web and HTTP
DNS
P2P applications
Socket programming with TCP
Socket programming with UDP

Network Security, WS 2008/09, Chapter 9 42IN2097 - Master Course Computer Networks, WS 2009/2010 42

Paul Mockapetris

„Father“ of DNS
Did design DNS in 1983, while working
at Information Sciences Institute (ISI) of
University of Southern California (USC)
DNS Architecture: RFCs 882, 883
Obsoleted by RFCs 1034,1035
Company Nominum

Network Security, WS 2008/09, Chapter 9 43IN2097 - Master Course Computer Networks, WS 2009/2010 43

Jon Postel

Jon Postel (1943 – 1998)
Editor of RFC series
co-developer many Internet standards
such as TCP/IP, SMTP, and DNS
Internet Assigned Numbers Authority
(IANA)
"Be liberal in what you accept, and
conservative in what you send."
obituary published in RFC 2468

Postel Center at Information Sciences
Institute, http://www.postel.org/
Joe Touch
Postel Center Director, USC/ISI
Research Associate Professor, USC Dept.
of Computer Science

Network Security, WS 2008/09, Chapter 9 44IN2097 - Master Course Computer Networks, WS 2009/2010 44

DNS: Domain Name System

People: many identifiers:
Social Secuity Number,
name, passport #

Internet hosts, routers:
IP address (32 bit) - used
for addressing datagrams
“name”, e.g.,
ww.yahoo.com - used by
humans

Q: map between IP addresses
and name ?

Domain Name System:
distributed database
implemented in hierarchy of
many name servers
application-layer protocol
host, routers, name servers to
communicate to resolve
names (address/name
translation)

note: core Internet
function, implemented as
application-layer protocol
complexity at network’s
“edge”

Network Security, WS 2008/09, Chapter 9 45IN2097 - Master Course Computer Networks, WS 2009/2010 45

DNS

Why not centralize DNS?
single point of failure
traffic volume
distant centralized database
maintenance

doesn’t scale!

DNS services
hostname to IP address
translation
host aliasing

Canonical, alias names
mail server aliasing
load distribution

replicated Web servers:
set of IP addresses for
one canonical name

Network Security, WS 2008/09, Chapter 9 46IN2097 - Master Course Computer Networks, WS 2009/2010 46

Root DNS Servers

com DNS servers org DNS servers edu DNS servers

poly.edu
DNS servers

umass.edu
DNS serversyahoo.com

DNS servers
amazon.com
DNS servers

pbs.org
DNS servers

Distributed, Hierarchical Database

Client wants IP for www.amazon.com; 1st approx:
client queries a root server to find com DNS server
client queries com DNS server to get amazon.com DNS server
client queries amazon.com DNS server to get IP address for
www.amazon.com

Network Security, WS 2008/09, Chapter 9 47IN2097 - Master Course Computer Networks, WS 2009/2010 47

DNS: Root name servers

contacted by local name server that can not resolve name
root name server:

contacts authoritative name server if name mapping not
known
gets mapping
returns mapping to local name server

13 root name
servers worldwide

b USC-ISI Marina del Rey, CA
l ICANN Los Angeles, CA

e NASA Mt View, CA
f Internet Software C. Palo Alto,
CA (and 36 other locations)

i Autonomica, Stockholm (plus
28 other locations)

k RIPE London (also 16 other locations)

m WIDE Tokyo (also Seoul,
Paris, SF)

a Verisign, Dulles, VA
c Cogent, Herndon, VA (also LA)
d U Maryland College Park, MD
g US DoD Vienna, VA
h ARL Aberdeen, MD
j Verisign, (21 locations)

Network Security, WS 2008/09, Chapter 9 48IN2097 - Master Course Computer Networks, WS 2009/2010 48

DNS root servers

Only 13 physical servers?
No, there are 13 operators of a redundant set of DNS root
servers
nine of the servers operate in multiple geographical locations
using anycast routing (later), for better performance and
more fault toleranc

Network Security, WS 2008/09, Chapter 9 49IN2097 - Master Course Computer Networks, WS 2009/2010 49

TLD and Authoritative Servers

Top-level domain (TLD) servers:
responsible for com, org, net, edu, etc, and all top-level
country domains de, uk, fr, ca, jp…
the company Network Solutions maintains servers for com
TLD
the company Educause for edu TLD

Authoritative DNS servers:
organization’s DNS servers, providing authoritative
hostname to IP mappings for organization’s servers (e.g.,
Web, mail).
can be maintained by organization or service provider

Network Security, WS 2008/09, Chapter 9 50IN2097 - Master Course Computer Networks, WS 2009/2010 50

Local Name Server

does not strictly belong to hierarchy
each ISP (residential ISP, company, university) has one.

also called “default name server”
when host makes DNS query, query is sent to its local DNS
server

acts as proxy, forwards query into hierarchy

Network Security, WS 2008/09, Chapter 9 51IN2097 - Master Course Computer Networks, WS 2009/2010 51

requesting host
cis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2
3

4

5

6

authoritative DNS server
dns.cs.umass.edu

78

TLD DNS server

DNS name resolution example

Host at cis.poly.edu wants IP
address for gaia.cs.umass.edu

iterated query:
contacted server
replies with name of
server to contact
“I don’t know this
name, but ask this
server”

Network Security, WS 2008/09, Chapter 9 52IN2097 - Master Course Computer Networks, WS 2009/2010 52

requesting host
cis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2

45

6

authoritative DNS server
dns.cs.umass.edu

7

8

TLD DNS server

3recursive query:
puts burden of name
resolution on contacted
name server
heavy load?

DNS name resolution example

Network Security, WS 2008/09, Chapter 9 53IN2097 - Master Course Computer Networks, WS 2009/2010 53

DNS: caching and updating records

once (any) name server learns mapping, it caches mapping
cache entries timeout (disappear) after some time
TLD servers typically cached in local name servers

• Thus root name servers not often visited
update/notify mechanisms designed by IETF

RFC 2136

Network Security, WS 2008/09, Chapter 9 54IN2097 - Master Course Computer Networks, WS 2009/2010 54

DNS records

DNS: distributed database storing resource records (RR)

Type=NS
name is domain (e.g.
foo.com)
value is hostname of
authoritative name server
for this domain

RR format: (name, value, type, ttl)

Type=A
name is hostname
value is IP address

Type=CNAME
name is alias name for some
“canonical” (the real) name
www.ibm.com is really
servereast.backup2.ibm.com
value is canonical name

Type=MX
value is name of mailserver
associated with name

Network Security, WS 2008/09, Chapter 9 55IN2097 - Master Course Computer Networks, WS 2009/2010 55

DNS protocol, messages

DNS protocol : query and reply messages, both with same
message format

msg header
identification: 16 bit # for
query, reply to query uses
same #
flags:

query (0) or reply (1)
recursion desired (1)

recursion available (1)
reply is authoritative (1)

Network Security, WS 2008/09, Chapter 9 56IN2097 - Master Course Computer Networks, WS 2009/2010 56

DNS protocol, messages

Name, type fields
for a query

RRs in response
to query

records for
authoritative servers

additional “helpful”
info that may be used

Network Security, WS 2008/09, Chapter 9 57IN2097 - Master Course Computer Networks, WS 2009/2010 57

Inserting records into DNS

example: new startup “Network Utopia”
register name networkuptopia.com at DNS registrar (e.g.,
Network Solutions)

provide names, IP addresses of authoritative name server
(primary and secondary)
registrar inserts two RRs into com TLD server:

(networkutopia.com, dns1.networkutopia.com,
NS)

(dns1.networkutopia.com, 212.212.212.1, A)

create authoritative server Type A records for
www.networkuptopia.com;
Type MX record for networkutopia.com
How do people get IP address of your Web site?

Network Security, WS 2008/09, Chapter 9 58IN2097 - Master Course Computer Networks, WS 2009/2010 58

Chapter 2: Application layer

Principles of network applications
Web and HTTP
DNS
P2P applications
Socket programming with TCP
Socket programming with UDP

Network Security, WS 2008/09, Chapter 9 59IN2097 - Master Course Computer Networks, WS 2009/2010 59

Pure P2P architecture

no always-on server
arbitrary end systems directly
communicate
peers are intermittently
connected and change IP
addresses

Three topics:
File distribution
Searching for information
Case Study: Skype

peer-peer

Network Security, WS 2008/09, Chapter 9 60IN2097 - Master Course Computer Networks, WS 2009/2010 60

File Distribution: Server-Client vs P2P

Question : How much time to distribute file from one server to N
peers?

us

u2d1 d2
u1

uN

dN

Server

Network (with
abundant bandwidth)

File, size F

us: server upload
bandwidth
ui: peer i upload
bandwidth

di: peer i download
bandwidth

Network Security, WS 2008/09, Chapter 9 61IN2097 - Master Course Computer Networks, WS 2009/2010 61

File distribution time: server-client

server sequentially sends N
copies:

NF/us time
client i takes F/di time to
download

us

u2d1 d2
u1

uN

dN

Server

Network (with
abundant bandwidth)

F

increases linearly in N
(for large N)

= dcs = max { NF/us, F/min(di) }
i

Time to distribute F
to N clients using

client/server approach

Network Security, WS 2008/09, Chapter 9 62IN2097 - Master Course Computer Networks, WS 2009/2010 62

File distribution time: P2P

server must send one copy: F/us
time
client i takes F/di time to
download
NF bits must be downloaded
(aggregate)

us

u2d1 d2
u1

uN

dN

Server

Network (with
abundant bandwidth)

F

fastest possible upload rate:
us + Sui

dP2P = max { F/us, F/min(di) , NF/(us + Σui) }
i

Network Security, WS 2008/09, Chapter 9 63IN2097 - Master Course Computer Networks, WS 2009/2010 63

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30 35

N

M
in

im
um

 D
is

tri
bu

tio
n

Ti
m

e P2P
Client-Server

Client upload rate = u, F/u = 1 hour, us = 10u, dmin ≥ us

Server-client vs. P2P: example

Network Security, WS 2008/09, Chapter 9 64IN2097 - Master Course Computer Networks, WS 2009/2010 64

File distribution: BitTorrent

tracker: tracks peers
participating in torrent

torrent: group of
peers exchanging
chunks of a file

obtain list
of peers

trading
chunks

peer

P2P file distribution

Network Security, WS 2008/09, Chapter 9 65IN2097 - Master Course Computer Networks, WS 2009/2010 65

BitTorrent (1)

file divided into 256KB chunks.
peer joining torrent:

has no chunks, but will accumulate
them over time
registers with tracker to get list of
peers, connects to subset of peers
(“neighbors”)

while downloading, peer uploads
chunks to other peers.
peers may come and go
once peer has entire file, it may
(selfishly) leave or (altruistically)
remain

Network Security, WS 2008/09, Chapter 9 66IN2097 - Master Course Computer Networks, WS 2009/2010 66

BitTorrent (2)

Pulling Chunks
at any given time, different
peers have different subsets
of file chunks
periodically, a peer (Alice)
asks each neighbor for list of
chunks that they have.
Alice sends requests for her
missing chunks

rarest first

Sending Chunks: tit-for-tat
Alice sends chunks to four
neighbors currently sending
her chunks at the highest rate

re-evaluate top 4 every 10
secs

every 30 secs: randomly
select another peer, starts
sending chunks

newly chosen peer may
join top 4
“optimistically unchoke”

Network Security, WS 2008/09, Chapter 9 67IN2097 - Master Course Computer Networks, WS 2009/2010 67

BitTorrent: Tit-for-tat

(1) Alice “optimistically unchokes” Bob
(2) Alice becomes one of Bob’s top-four providers; Bob reciprocates
(3) Bob becomes one of Alice’s top-four providers

With higher upload rate,
can find better trading
partners & get file faster!

Network Security, WS 2008/09, Chapter 9 68IN2097 - Master Course Computer Networks, WS 2009/2010 68

Distributed Hash Table (DHT)

DHT = distributed P2P database
Database has (key, value) pairs;

key: ss number; value: human name
key: content type; value: IP address

Peers query DB with key
DB returns values that match the key

Peers can also insert (key, value) peers

Network Security, WS 2008/09, Chapter 9 69IN2097 - Master Course Computer Networks, WS 2009/2010 69

DHT Identifiers

Assign integer identifier to each peer in range [0,2n-1].
Each identifier can be represented by n bits.

Require each key to be an integer in same range.
To get integer keys, hash original key.

eg, key = h(“Led Zeppelin IV”)
This is why they call it a distributed “hash” table

Network Security, WS 2008/09, Chapter 9 70IN2097 - Master Course Computer Networks, WS 2009/2010 70

How to assign keys to peers?

Central issue:
Assigning (key, value) pairs to peers.

Rule: assign key to the peer that has the closest ID.
Convention in lecture: closest is the immediate successor of the
key.
Ex: n=4; peers: 1,3,4,5,8,10,12,14;

key = 13, then successor peer = 14
key = 15, then successor peer = 1

Network Security, WS 2008/09, Chapter 9 71IN2097 - Master Course Computer Networks, WS 2009/2010 71

1

3

4

5

8
10

12

15

Circular DHT (1)

Each peer only aware of immediate successor and predecessor.
“Overlay network”

Network Security, WS 2008/09, Chapter 9 72IN2097 - Master Course Computer Networks, WS 2009/2010 72

Circle DHT (2)

0001

0011

0100

0101

1000
1010

1100

1111

Who’s resp

for key 1110 ?
I am

O(N) messages
on avg to resolve
query, when there
are N peers

1110

1110

1110

1110

1110

1110

Define closest
as closest
successor

Network Security, WS 2008/09, Chapter 9 73IN2097 - Master Course Computer Networks, WS 2009/2010 73

Circular DHT with Shortcuts

Each peer keeps track of IP addresses of predecessor,
successor, short cuts.
Reduced from 6 to 2 messages.
Possible to design shortcuts so O(log N) neighbors, O(log N)
messages in query

1

3

4

5

8
10

12

15

Who’s resp
for key 1110?

Network Security, WS 2008/09, Chapter 9 74IN2097 - Master Course Computer Networks, WS 2009/2010 74

Peer Churn

Peer 5 abruptly leaves
Peer 4 detects; makes 8 its immediate successor; asks 8 who its
immediate successor is; makes 8’s immediate successor its second
successor.
What if peer 13 wants to join?

1

3

4

5

8
10

12

15

•To handle peer churn, require
each peer to know the IP address
of its two successors.
• Each peer periodically pings its
two successors to see if they
are still alive.

Network Security, WS 2008/09, Chapter 9 75IN2097 - Master Course Computer Networks, WS 2009/2010 75

P2P Case study: Skype

inherently P2P: pairs of users
communicate.
proprietary application-layer
protocol (inferred via reverse
engineering)
hierarchical overlay with SNs
Index maps usernames to IP
addresses; distributed over
SNs

Skype clients (SC)

Supernode
(SN)

Skype
login server

Network Security, WS 2008/09, Chapter 9 76IN2097 - Master Course Computer Networks, WS 2009/2010 76

Peers as relays

Problem when both Alice and Bob
are behind “NATs”.

NAT prevents an outside peer
from initiating a call to insider
peer

Solution:
Using Alice’s and Bob’s SNs,
Relay is chosen
Each peer initiates session
with relay.
Peers can now communicate
through NATs via relay

Network Security, WS 2008/09, Chapter 9 77IN2097 - Master Course Computer Networks, WS 2009/2010 77

Chapter 2: Application layer

Principles of network applications
Web and HTTP
DNS
P2P applications
Socket programming with TCP
Socket programming with UDP

Network Security, WS 2008/09, Chapter 9 78IN2097 - Master Course Computer Networks, WS 2009/2010 78

Socket programming

Socket API
introduced in BSD4.1
UNIX, 1981
explicitly created, used,
released by apps
client/server paradigm
two types of transport
service via socket API:

unreliable datagram
reliable, byte stream-
oriented

a host-local,
application-created,

OS-controlled interface
(a “door”) into which

application process can
both send and

receive messages
to/from another

application process

socket

Goal: learn how to build client/server application that
communicate using sockets

Network Security, WS 2008/09, Chapter 9 79IN2097 - Master Course Computer Networks, WS 2009/2010 79

Socket-programming using TCP

Socket: a door between application process and end-end-transport
protocol (UCP or TCP)

TCP service: reliable transfer of bytes from one process to another

process

TCP with
buffers,

variables

socket

controlled by
application
developer

controlled by
operating

system

host or
server

process

TCP with
buffers,

variables

socket

controlled by
application
developer

controlled by
operating
system

host or
server

internet

Network Security, WS 2008/09, Chapter 9 80IN2097 - Master Course Computer Networks, WS 2009/2010 80

Socket programming with TCP

Client must contact server
server process must first be
running
server must have created socket
(door) that welcomes client’s
contact

Client contacts server by:
creating client-local TCP socket
specifying IP address, port
number of server process
When client creates socket: client
TCP establishes connection to
server TCP

When contacted by client, server
TCP creates new socket for
server process to communicate
with client

allows server to talk with
multiple clients
source port numbers used to
distinguish clients (more in
Chap 3)

TCP provides reliable, in-order
transfer of bytes (“pipe”)

between client and server

application viewpoint

Network Security, WS 2008/09, Chapter 9 81IN2097 - Master Course Computer Networks, WS 2009/2010 81

Client/server socket interaction: TCP

wait for incoming
connection request
connectionSocket =
welcomeSocket.accept()

create socket,
port=x, for
incoming request:
welcomeSocket =

ServerSocket()

create socket,
connect to hostid, port=x
clientSocket =

Socket()

close
connectionSocket

read reply from
clientSocket

close
clientSocket

Server (running on hostid) Client

send request using
clientSocketread request from

connectionSocket

write reply to
connectionSocket

TCP
connection setup

Network Security, WS 2008/09, Chapter 9 82IN2097 - Master Course Computer Networks, WS 2009/2010 82

Stream Jargon

A stream is a sequence of
characters that flow into or
out of a process.
An input stream is attached
to some input source for the
process, e.g., keyboard or
socket.
An output stream is
attached to an output
source, e.g., monitor or
socket.

ou
tT

oS
er

ve
r

to network from network

in
Fr

om
S

er
ve

r

in
Fr

om
U

se
r

keyboard monitor

Process

clientSocket

input
stream

input
stream

output
stream

TCP
socket

Client
process

client TCP
socket

Network Security, WS 2008/09, Chapter 9 83IN2097 - Master Course Computer Networks, WS 2009/2010 83

Socket programming with TCP

Example client-server app:
1) client reads line from standard input (inFromUser stream) , sends to

server via socket (outToServer stream)
2) server reads line from socket
3) server converts line to uppercase, sends back to client
4) client reads, prints modified line from socket (inFromServer stream)

Network Security, WS 2008/09, Chapter 9 84IN2097 - Master Course Computer Networks, WS 2009/2010 84

Example: Java client (TCP)

import java.io.*;
import java.net.*;
class TCPClient {

public static void main(String argv[]) throws Exception
{

String sentence;
String modifiedSentence;

BufferedReader inFromUser =
new BufferedReader(new InputStreamReader(System.in));

Socket clientSocket = new Socket("hostname", 6789);

DataOutputStream outToServer =
new DataOutputStream(clientSocket.getOutputStream());

Create
input stream

Create
client socket,

connect to server
Create

output stream
attached to socket

Network Security, WS 2008/09, Chapter 9 85IN2097 - Master Course Computer Networks, WS 2009/2010 85

Example: Java client (TCP), cont.

BufferedReader inFromServer =
new BufferedReader(new
InputStreamReader(clientSocket.getInputStream()));

sentence = inFromUser.readLine();

outToServer.writeBytes(sentence + '\n');

modifiedSentence = inFromServer.readLine();

System.out.println("FROM SERVER: " + modifiedSentence);

clientSocket.close();

}
}

Create
input stream

attached to socket

Send line
to server

Read line
from server

Network Security, WS 2008/09, Chapter 9 86IN2097 - Master Course Computer Networks, WS 2009/2010 86

Example: Java server (TCP)

import java.io.*;
import java.net.*;

class TCPServer {

public static void main(String argv[]) throws Exception
{

String clientSentence;
String capitalizedSentence;

ServerSocket welcomeSocket = new ServerSocket(6789);

while(true) {

Socket connectionSocket = welcomeSocket.accept();

BufferedReader inFromClient =
new BufferedReader(new
InputStreamReader(connectionSocket.getInputStream()));

Create
welcoming socket

at port 6789

Wait, on welcoming
socket for contact

by client

Create input
stream, attached

to socket

Network Security, WS 2008/09, Chapter 9 87IN2097 - Master Course Computer Networks, WS 2009/2010 87

Example: Java server (TCP), cont

DataOutputStream outToClient =
new DataOutputStream(connectionSocket.getOutputStream());

clientSentence = inFromClient.readLine();

capitalizedSentence = clientSentence.toUpperCase() + '\n';

outToClient.writeBytes(capitalizedSentence);
}

}
}

Read in line
from socket

Create output
stream, attached

to socket

Write out line
to socket

End of while loop,
loop back and wait for
another client connection

Network Security, WS 2008/09, Chapter 9 88IN2097 - Master Course Computer Networks, WS 2009/2010 88

Chapter 2: Application layer

Principles of network applications
Web and HTTP
DNS
P2P applications
Socket programming with TCP
Socket programming with UDP

Network Security, WS 2008/09, Chapter 9 89IN2097 - Master Course Computer Networks, WS 2009/2010 89

Socket programming with UDP

UDP: no “connection” between
client and server
no handshaking
sender explicitly attaches IP
address and port of
destination to each packet
server must extract IP
address, port of sender
from received packet

UDP: transmitted data may be
received out of order, or lost

application viewpoint

UDP provides unreliable transfer
of groups of bytes (“datagrams”)

between client and server

Network Security, WS 2008/09, Chapter 9 90IN2097 - Master Course Computer Networks, WS 2009/2010 90

Client/server socket interaction: UDP

Server (running on hostid)

close
clientSocket

read datagram from
clientSocket

create socket,
clientSocket =
DatagramSocket()

Client

Create datagram with server IP and
port=x; send datagram via
clientSocket

create socket,
port= x.
serverSocket =
DatagramSocket()

read datagram from
serverSocket

write reply to
serverSocket
specifying
client address,
port number

Network Security, WS 2008/09, Chapter 9 91IN2097 - Master Course Computer Networks, WS 2009/2010 91

Example: Java client (UDP)

se
nd

P
ac

ke
t

to network from network
re

ce
iv

eP
ac

ke
t

in
Fr

om
U

se
r

keyboard monitor

Process

clientSocket

UDP
packet

input
stream

UDP
packet

UDP
socket

Output: sends
packet (recall
that TCP sent “byte
stream”)

Input: receives
packet (recall
thatTCP received
“byte stream”)

Client
process

client UDP
socket

Network Security, WS 2008/09, Chapter 9 92IN2097 - Master Course Computer Networks, WS 2009/2010 92

Example: Java client (UDP)

import java.io.*;
import java.net.*;

class UDPClient {
public static void main(String args[]) throws Exception
{

BufferedReader inFromUser =
new BufferedReader(new InputStreamReader(System.in));

DatagramSocket clientSocket = new DatagramSocket();

InetAddress IPAddress = InetAddress.getByName("hostname");

byte[] sendData = new byte[1024];
byte[] receiveData = new byte[1024];

String sentence = inFromUser.readLine();

sendData = sentence.getBytes();

Create
input stream

Create
client socket

Translate
hostname to IP

address using DNS

Network Security, WS 2008/09, Chapter 9 93IN2097 - Master Course Computer Networks, WS 2009/2010 93

Example: Java client (UDP), cont.

DatagramPacket sendPacket =
new DatagramPacket(sendData, sendData.length, IPAddress, 9876);

clientSocket.send(sendPacket);

DatagramPacket receivePacket =
new DatagramPacket(receiveData, receiveData.length);

clientSocket.receive(receivePacket);

String modifiedSentence =
new String(receivePacket.getData());

System.out.println("FROM SERVER:" + modifiedSentence);
clientSocket.close();
}

}

Create datagram with
data-to-send,

length, IP addr, port

Send datagram
to server

Read datagram
from server

Network Security, WS 2008/09, Chapter 9 94IN2097 - Master Course Computer Networks, WS 2009/2010 94

Example: Java server (UDP)

import java.io.*;
import java.net.*;

class UDPServer {
public static void main(String args[]) throws Exception

{

DatagramSocket serverSocket = new DatagramSocket(9876);

byte[] receiveData = new byte[1024];
byte[] sendData = new byte[1024];

while(true)
{

DatagramPacket receivePacket =
new DatagramPacket(receiveData, receiveData.length);

serverSocket.receive(receivePacket);

Create
datagram socket

at port 9876

Create space for
received datagram

Receive
datagram

Network Security, WS 2008/09, Chapter 9 95IN2097 - Master Course Computer Networks, WS 2009/2010 95

Example: Java server (UDP), cont

String sentence = new String(receivePacket.getData());

InetAddress IPAddress = receivePacket.getAddress();

int port = receivePacket.getPort();

String capitalizedSentence = sentence.toUpperCase();

sendData = capitalizedSentence.getBytes();

DatagramPacket sendPacket =
new DatagramPacket(sendData, sendData.length, IPAddress,

port);

serverSocket.send(sendPacket);
}

}

}

Get IP addr
port #, of

sender

Write out
datagram
to socket

End of while loop,
loop back and wait for
another datagram

Create datagram
to send to client

Network Security, WS 2008/09, Chapter 9 96IN2097 - Master Course Computer Networks, WS 2009/2010 96

Chapter 2: Summary

our study of network apps now finished!
application architectures

client-server
P2P
hybrid

application service requirements:
reliability, bandwidth, delay

Internet transport service model
connection-oriented, reliable: TCP
unreliable, datagrams: UDP

specific protocols:
HTTP
DNS
P2P: BitTorrent, Skype

socket programming

Network Security, WS 2008/09, Chapter 9 97IN2097 - Master Course Computer Networks, WS 2009/2010 97

Chapter 2: Summary

Most importantly: learned about protocols
typical request/reply message exchange:

client requests info or service
server responds with data, status code

message formats:
headers: fields giving info about data
data: info being communicated

Important themes:
control vs. data msgs

in-band, out-of-band
centralized vs. decentralized
stateless vs. stateful
reliable vs. unreliable msg transfer
“complexity at network edge”

