

Motivierende Fragen

- Wie kann ein Protokoll eindeutig beschrieben werden?
- Welche Grundmechanismen können in Protokollen identifiziert werden?
- Wie können Nachrichten übermittelt werden und mit welchen Problemen muss man rechnen?
- Welche Schichten gibt es im Kommunikationsmodell?

Lehrstuhl für Netzarchitekturen und Netzdienste Institut für Informatik – Technische Universität München Prof. Dr.-Ing. Georg Carle

Grundlagen: Rechnernetze und Verteilte Systeme

Kapitel 2:

Begriffswelt und Standards

Dienst, Protokoll, Automat, IETF, ITU, IEEE

Prof. Dr.-Ing. Georg Carle
Lehrstuhl für Netzarchitekturen und Netzdienste
Technische Universität München
carle@net.in.tum.de
http://www.net.in.tum.de

- Einführung und Motivation
 - Bedeutung, Beispiele
- 2. Begriffswelt und Standards
 - Dienst, Protokoll, Standardisierung
- 3. Direktverbindungsnetze
 - Fehlererkennung, Protokolle
 - Ethernet
- 4. Vermittlung
 - Vermittlungsprinzipien
 - Wegwahlverfahren
- 5. Internet-Protokolle
 - IP, ARP, DHCP, ICMP
 - Routing-Protokolle
- 6. Transportprotokolle
 - UDP, TCP
- 7. Verkehrssteuerung
 - Kriterien, Mechanismen
 - Verkehrssteuerung im Internet

- 8. Anwendungsorientierte Protokolle und Mechanismen
 - Netzmanagement
 - DNS, SMTP, HTTP
- 9. Verteilte Systeme
 - Middleware
 - RPC, RMI
 - Web Services
- 10. Netzsicherheit
 - Kryptographische Mechanismen und Dienste
 - Protokolle mit sicheren Diensten: IPSec etc.
 - Firewalls, Intrusion Detection
- 11. Nachrichtentechnik
 - Daten, Signal, Medien, Physik
- 12. Bitübertragungsschicht
 - Codierung
 - Modems

- In diesem Kapitel wollen wir vermitteln
 - Grundlegende Begriffe
 - Kommunikationsprobleme
 - Funktionsweise der Nachrichtenübermittlung
 - Geschichtete Kommunikationsmodelle
 - Formale Protokollspezifikation

Kapitelgliederung

- 2.1. Grundlegende Begriffe
- 2.2. Grundlegende Problemstellungen der Kommunikation
- 2.3. Charakterisierung von Kommunikationsvorgängen/-beziehungen
 - 2.3.1. Menge der beteiligten Kommunikationspartner (KP)
 - 2.3.2. Übertragungsverfahren/Schnittstellen
 - 2.3.3. Nutzungsrichtung
 - 2.3.4. Auslieferungsdisziplin
 - 2.3.5. Qualität
- 2.4. Technischer Hintergrund
- 2.5. Kommunikationsarchitekturen
 - 2.5.1. Netztopologien
 - 2.5.2. Dienste und Protokolle
- 2.6. ISO/OSI-Basisreferenzmodell
 - 2.6.1. OSI-Kommunikationseinheiten
 - 2.6.2. Bezeichnungskonventionen
 - 2.6.3. Charakterisierung der Schichten
- 2.7. Protokollspezifikation mit SDL

2.1. Grundlegende Begriffe - Der Begriff "Daten"

Daten

- Was wird dargestellt? Und wie?
- Darstellung von Fakten, Konzepten, Vorstellungen und Anweisungen in formalisierter Weise, geeignet für
 - Kommunikation,
 - Interpretation und die
 - Verarbeitung

durch Menschen und/oder technische Mittel.

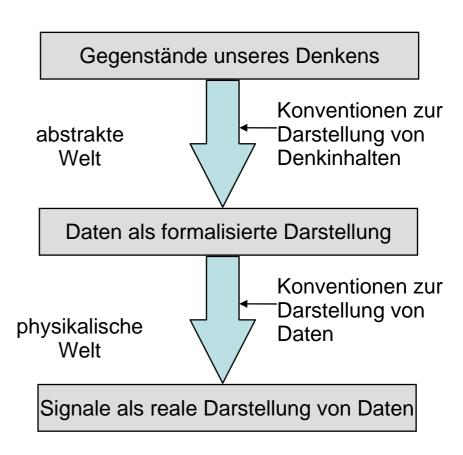
- Allgemeine Beispiele für Datendarstellungen:
 - gesprochene Sprache
 - Zeichen-/Gebärden-Sprache
 - geschriebene Sprache
- Datenkommunikation:
 Datenaustausch über immaterielle Träger (Energieflüsse, meist elektrische Ströme, elektromagnetische Wellen) und größere Entfernungen zwischen Menschen und/oder Maschinen.

Modell zur Erzeugung von Daten durch den Menschen:

Gegenstände des Denkens

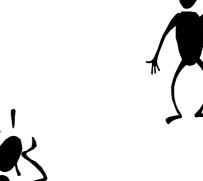
Fakten, Konzepte, Vorstellungen, Modelle, Anweisungen usw.

> Konventionen zur Darstellung von Denkinhalten


Daten als formalisierte Darstellung von Denkinhalten

Der Begriff "Signal"

□ Signal


- Ein Signal ist die physikalische Darstellung (Repräsentation) von Daten durch charakteristische räumliche und/oder zeitliche Veränderungen der Werte physikalischer Größen.
- Signale sind somit die reale physikalische Repräsentation abstrakter Darstellungen der Daten Beispieldarstellungen:
 - Sprache, 8 Bit PCM codiert
 - Text als ASCII-Character

2.2. Grundlegende Problemstellungen der Kommunikation

- □ Regelung des Kommunikationsablaufs→ Protokolle, Protokollschichten
- □ Ressourcenverteilung bei mehreren Kommunikationspartnern
 → Vielfachzugriff (Multiple Access)
- □ Kommunikation über Zwischenknoten→ Vermittlung (Switching)
- Abarbeitung paralleler Kommunikationsvorgänge
 Scheduling
- □ Identifikation von Kommunikationspartnern
 → Namen und Adressen
- Wahl des besten Kommunikationspfades→ Routing
- □ Umgang mit Übertragungsfehlern→ Fehlerkontrolle (Error Control)
- Anpassung der Übertragungsgeschwindigkeit
 → Flusskontrolle (Flow Control)

Protokolle, Protokollschichten

 Definition einer gemeinsamen Sprache und Anwendung vereinbarter Abläufe

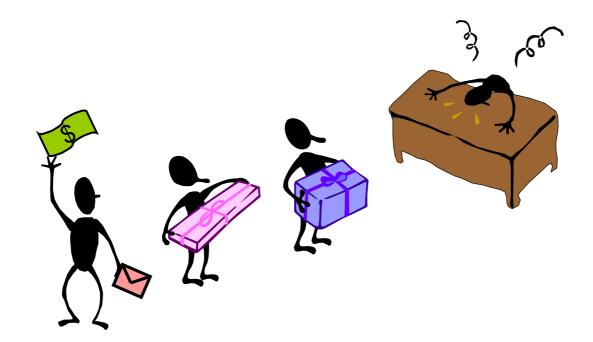
Protokollschichten ermöglichen Arbeitsteilung

→ mehr dazu noch in diesem Kapitel

Vielfachzugriff (Multiple Access)

□ Regelung des Zugriffs auf gemeinsames Medium zur Vermeidung von Störungen und Kollisionen

→ mehr dazu in Kapitel 3



Vermittlung (Switching)

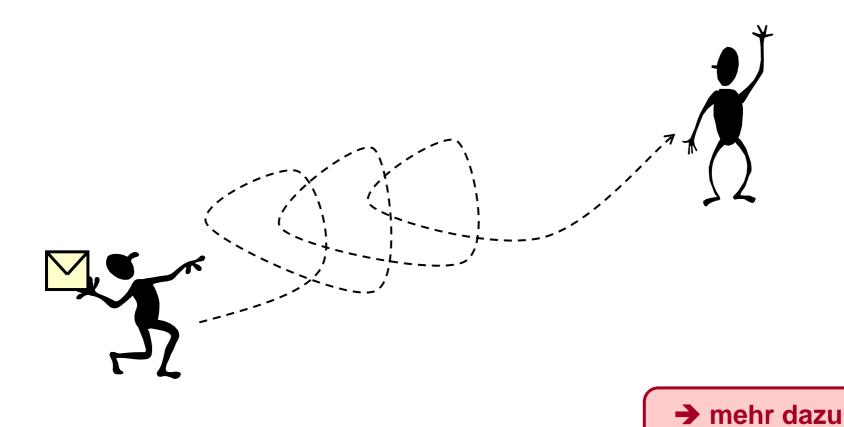
Funktion von Nachrichtenvermittlern/Zwischenknoten mehr dazu in Kapitel 4

Bestimmung der Abarbeitungsreihenfolge für verschiedene Aufgaben

→ mehr dazu in Kapitel 7

Namen und Adressen

□ Bestimmung des Empfängers und ggf. auch des Absenders



→ mehr dazu in Kapitel 4

Wegewahl (Routing)

Auffinden des günstigsten Pfades zum Empfänger

Grundlagen: Rechnernetze und Verteilte Systeme – IN0010, SS 2009, Kapitel 2

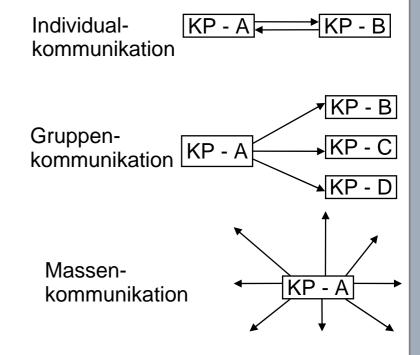
in Kapitel 4,5


□ Erkennen und Behebung von Übertragungsfehlern

→ mehr dazu in Kapitel 3,6

 Anpassung der Übertragsgeschwindigkeit an die Empfangsfähigkeiten des Empfängers

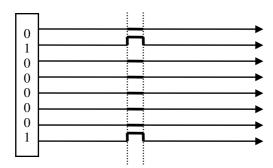
→ mehr dazu in Kapitel 6,7


2.3. Charakterisierung von Kommunikationsvorgängen

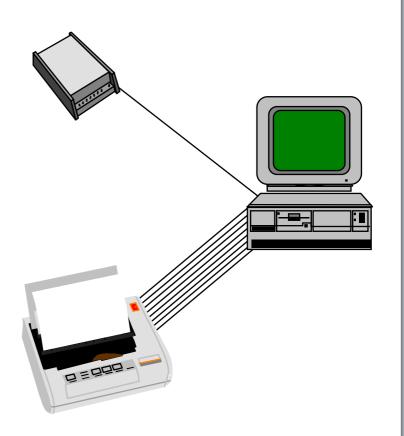
- □ Ein Kommunikationsvorgang kann aufgrund folgender Kriterien charakterisiert werden:
 - (1) Beteiligten Kommunikationspartner (KP)
 - (2) Übertragungsverfahren/Schnittstellen
 - (3) Nutzungsrichtung
 - (4) Auslieferungsdisziplin
 - (5) Qualität

(1) Beteiligte Kommunikationspartner (KP)

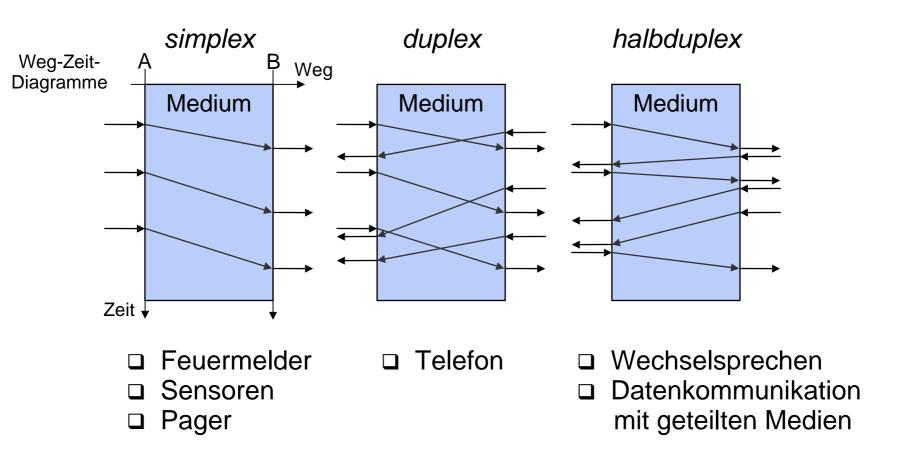

- Akteure
 - Mensch-Mensch
 - Mensch-Maschine
 - Maschine-Maschine
- Menge der Kommunikationspartner
 - Dialog (*Unicast*): Zwei Partner tauschen über eine Punkt-zu-Punkt-Kommunikationsstrecke Daten aus.
 - Gruppenruf (*Multicast*): Ein Kommunikationspartner spricht gleichzeitig mehrere empfangende Kommunikationspartner an.
 - Rundruf (*Broadcast*): Es werden von einem Kommunikationspartner sehr viele (in der Regel unbekannte) Empfänger angesprochen, potentiell alle (Rundfunk).
 - Anycast: Ein beliebiger Kommunikationspartner einer Gruppe wird angesprochen.
 - Concast: viele Kommunikationsknoten senden an einen Einzelnen.



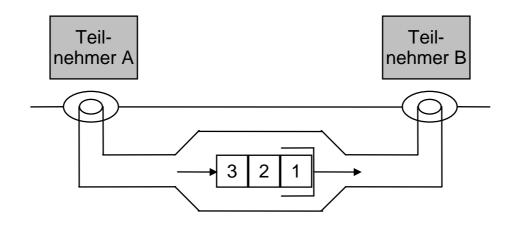
(2) Übertragungsverfahren/Schnittstellen


Serielle Übertragung

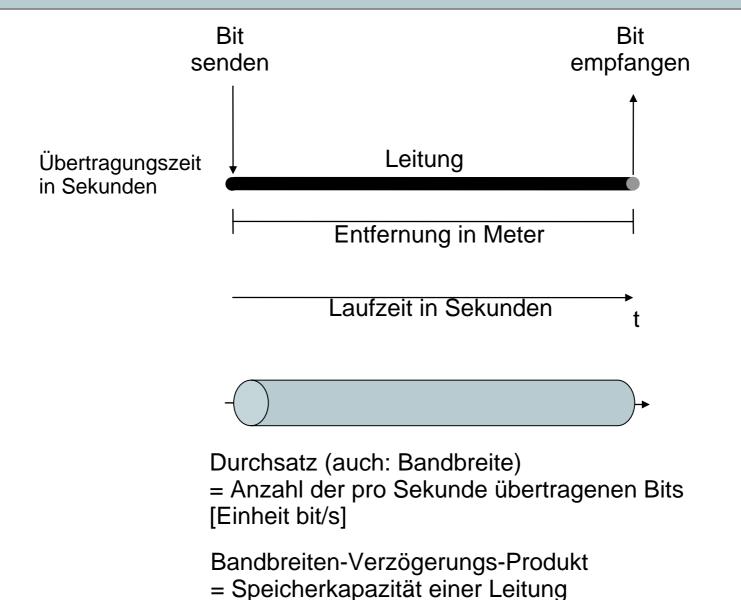
Parallele Übertragung



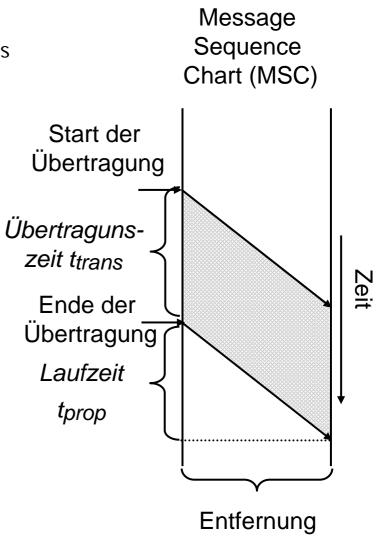
8 bit pro Zeitintervall, 8 Leitungen


(3) Verbindungseigenschaften: Nutzungsrichtung

(4) Auslieferungsdisziplin

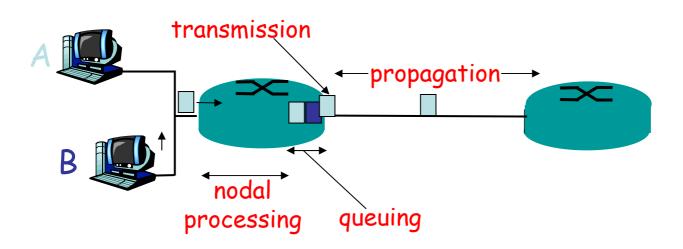

- Die Auslieferungsdisziplin beschreibt die Reihenfolge der beim Empfänger ankommenden Daten in Bezug auf die Reihenfolge, wie sie abgeschickt wurden:
 - treu zur Einlieferungsreihenfolge (FIFO)
 - FIFO + priorisiert
 - keine Reihenfolgentreue garantiert

- Bezüglich Qualität sind folgende Eigenschaften von Kommunikationsdiensten zu betrachten:
 - Technische Leistung
 - Antwortzeit, Durchsatz, Sende-/Empfangsrate, ...
 - Kosten
 - Investitionskosten, Betriebskosten, ...
 - Zuverlässigkeit
 - Fehlertoleranz, Ausfallsicherheit, Störunanfälligkeit, Verfügbarkeit, ...
 - Schutz
 - Abhörsicherheit, Manipulationssicherheit, Authentifizierung, Autorisierung, Maßnahmen gegen Dienstverweigerung, ...


2.4. Technischer Hintergrund - Technische Leistung

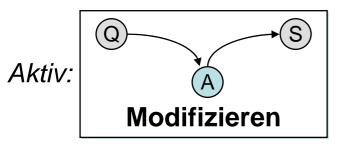
Signalausbreitung im Medium, Datenspeicherung

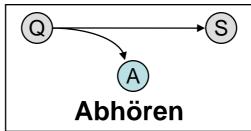
- Senden einer Nachricht benötigt
 Übertragungszeit (transmission delay) t_{trans}
 - Übertragungszeit abhängig von
 Datenrate r and Länge der Nachricht N:
 t_{trans}= N / r
- Signale erreichen nach Laufzeit (propagation delay) t_{prop} ihr Ziel
 - Abhängig von Entfernung und Ausbreitungsgeschwindigkeit im Übertragungsmedium
- Uber die Laufzeit t_{prop}
 werden r* t_{prop} bit generiert
 - Gespeichert im Medium
- □ Gesamtverzögerung:
 - t = t_{trans +} t_{prop} (+ t_{proc +} t_{queue})
 - t_{proc}: Verarbeitungszeit (processing delay)
 - t_{queue}: Wartezeit (queuing delay)



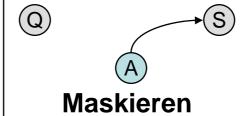
Verzögerungen in paketvermittelten Netzen

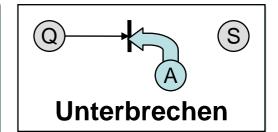
Vier unterschiedliche Verzögerungen an jedem Knoten


- 1) Verarbeitungszeit (processing delay)
- 2) Wartezeit (queuing delay)
- 3) Übertragungszeit (transmission delay)
- 4) Laufzeit (propagation delay)



Sicherheitsgefahren und Schutzmaßnahmen

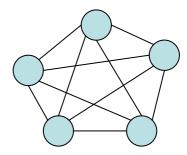

- Schutzmaßnahmen
 - Verschlüsselung (kryptographische Codes)
 - Schaffung vertrauenswürdiger Systeme (Authentisierung, Autorisierung)
- Angriffe Passiv:



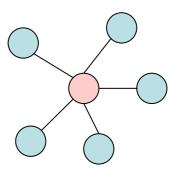
Informationsquelle

Normaler Informationsfluss

Informationssenke

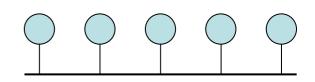

2.5. Kommunikationsarchitekturen

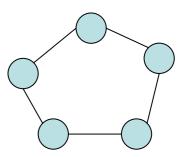
- Zur Realisierung von Kommunikationsvorgängen wird eine Kommunikationsarchitektur benötigt für:
 - physikalische Konnektivität
 Verbindung über Kupferkabel, Lichtwellenleiter, Luftschnittstelle, ...
 - Kommunikationsfunktionalität
 - Steuerung des Ablaufs
 - Adressierung der Kommunikationspartner
 - Garantie einer geforderten Qualität
 - Anpassung unterschiedlicher Formate
 - ...
 - Schnittstelle zu den Anwendungen
- Aufgrund der unterschiedlichen Aufgaben:
 - Kommunikationsarchitektur mit geschichtetem Aufbau üblich
 - eine Schicht nutzt die Funktionalität der darunter liegenden Schicht, um ihre eigenen Funktionen zu realisieren



2.5.1. Netztopologien

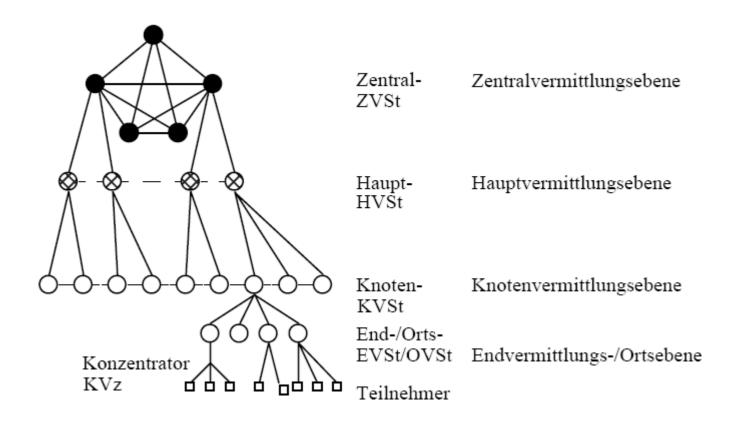
- vermaschtes Netz
 - voll vermascht:
 - N Knoten
 - N(N-1)/2 Kanten/Verbindungen
 - stets direkte Verbindung zwischen zwei Kanten, zusätzlich N-2 alternative Pfade mit 2 Hops
 - unwirtschaftlich für große N

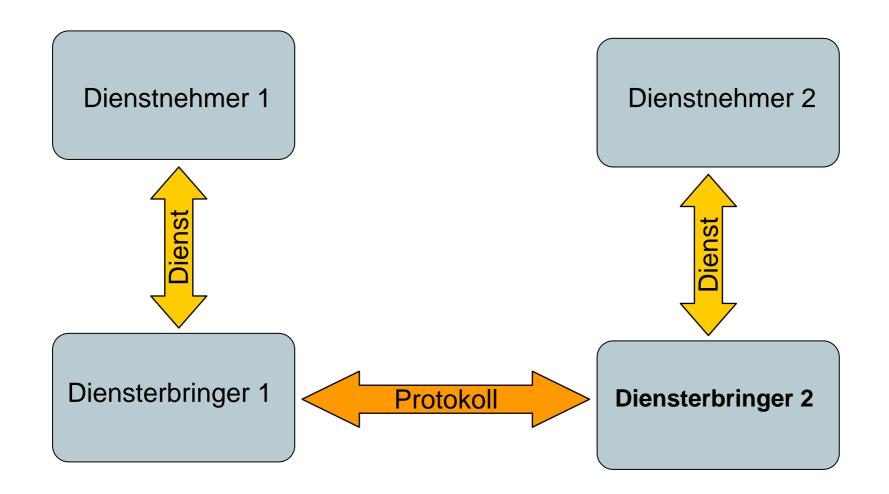

- → Sternnetz
 - Kanten mit unterschiedlichen Rollen:
 - Zentraler Vermittlungsknoten
 - Endknoten
 - Grundkonzept eines hierarchischen Netzes
 - N Endknoten → N Kanten/Verbindungen
 - 2 Hops zwischen zwei beliebigen Endknoten
 - keine alternativen Pfade
 - wirtschaftlich für große N



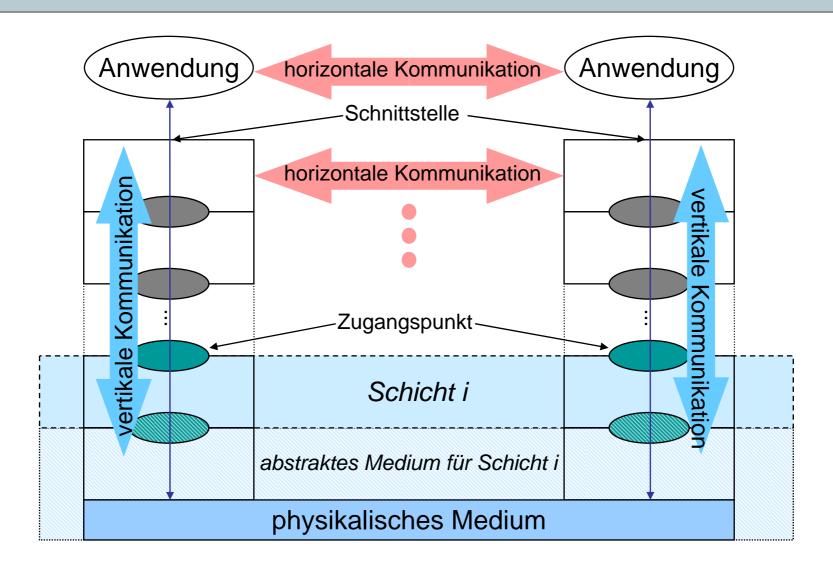
Netztopologien

- Busnetz
 - gemeinsamer Bus als Broadcast-Medium
 - passive Kopplung der Knoten an den Bus
 - Vielfachfachzugriffssteuerung notwendig


- Ringnetz
 - gemeinsamer Ringbus
 - aktive Kopplung der Knoten an den Bus
 - Kanten/Verbindungen unidirektional (simplex) oder bidirektional (duplex)
 - bidirektionale Verbindungen
 ⇒ zwei unabhängige Pfade zwischen zwei Knoten
 - Vielfachzugriffsteuerung durch reservierte Zeitschlitze (TDM) oder Token

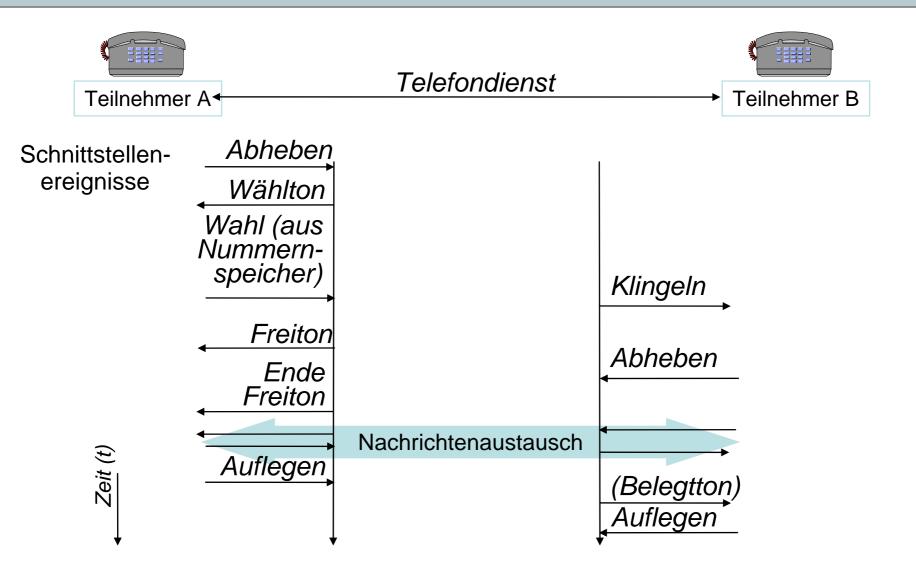

Hierarchische Netztopologien

Beispiel: klassisches Telefonnetz



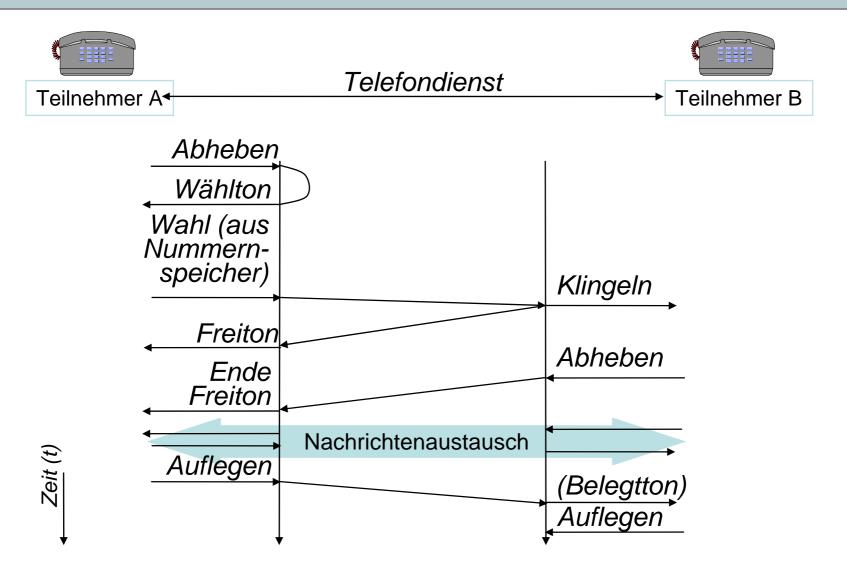
2.5.2. Dienst und Protokoll - Übersicht

Geschichtetes Kommunikationssystem

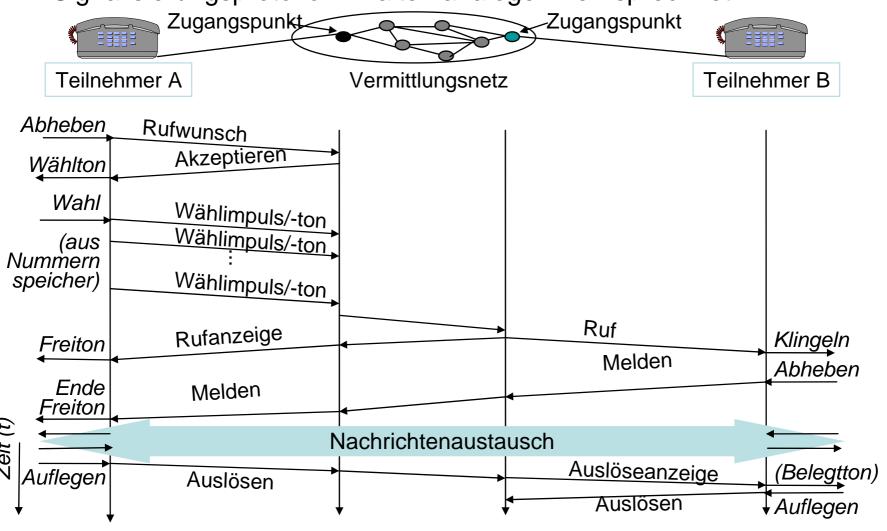


Dienst und Protokoll

- Partner einer Schicht
 - benutzen einen Dienst (außer unterste Schicht)
 - bieten einen Dienst (außer oberste Schicht)
 - brauchen nichts zu sehen / kennen außer direkt unterliegendem Dienst (Konzept der "virtuellen Maschine")
 - "unterhalten sich" gemäß Regeln (Protokollen)
 - z.B. "Telefon"-Schicht: wählen/klingeln/besetzt
 - Bei Menschen viel kontextsensitiv / implizit:
 - z.B. "Melden am Telefon"
 - Übersetzer:
 "Übersetz-Modus", "Rückfragen-Modus", "Selbst-Vorstellen", "Chef-Vorstellen", …
- Kommunikationsarchitekturen basieren auf
 - "Dienst" = (Kommunikations-) Dienst [(Communication) Service]
 - "Regeln" = (Kommunikations-) Protokoll [(Communication) Protocol]



Beispiel Telefon – Dienstnehmersicht (1)


Beispiel Telefon – Dienstnehmersicht (2)

Beispiel Telefon - Dienst und Protokoll

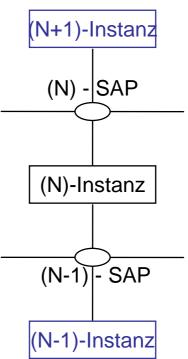
□ Signalisierungsprotokoll im alten analogen Fernsprechnetz:

Begriffswelt "Dienst"

- Funktionalität einer Schicht wird als Menge von **Diensten** zur Verfügung gestellt.
- Die Dienste einer Schicht werden durch den Datenaustausch zwischen (Partner-)Instanzen erbracht. Dieser Datenaustausch erfolgt gemäß festgelegten Regeln und Formaten, die man Protokoll nennt.
- □ Ein Dienst wird an der **Dienstschnittstelle** einem Dienstbenutzer von einem Diensterbringer angeboten.
- Die **Dienstdefinition** spezifiziert verfügbare Dienste und Regeln für ihre Benutzung (in der darüber liegenden Schicht).
- Ein Dienstprimitiv (Schnittstellenereignis) dient zur Anforderung oder Anzeige eines Dienstes beim Dienstbenutzer, Grundtypen sind:
 - Anforderung (Req , Request)
 - Anzeige (Ind , Indication)
 - Antwort (Rsp , Response)
 - Bestätigung (Cnf , Confirmation)

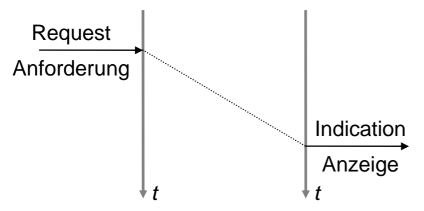
Dienst der Schicht N

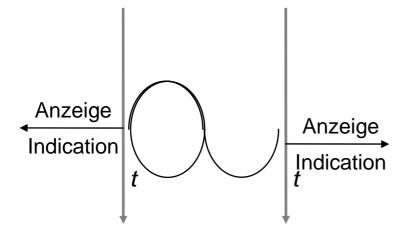
□ (N) - Dienst / (N) - Service


- Menge von Funktionen, welche die (N)-Schicht den (N+1)-Instanzen an der Schnittstelle zwischen der (N)- und (N+1)-Schicht anbietet (vertikale Kommunikation).
- Die (N)-Instanzen erbringen die Dienste der (N)-Schicht mit Hilfe von Nachrichtenaustausch (horizontale Kommunikation). Dazu verwenden sie die Dienste der (N-1)-Schicht.
- Wie die Dienste der (N) Schicht erbracht werden, bleibt der (N+1) -Schicht verborgen.

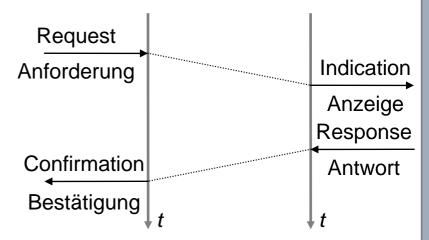
(N) - Dienstzugangspunkt / (N) - SAP

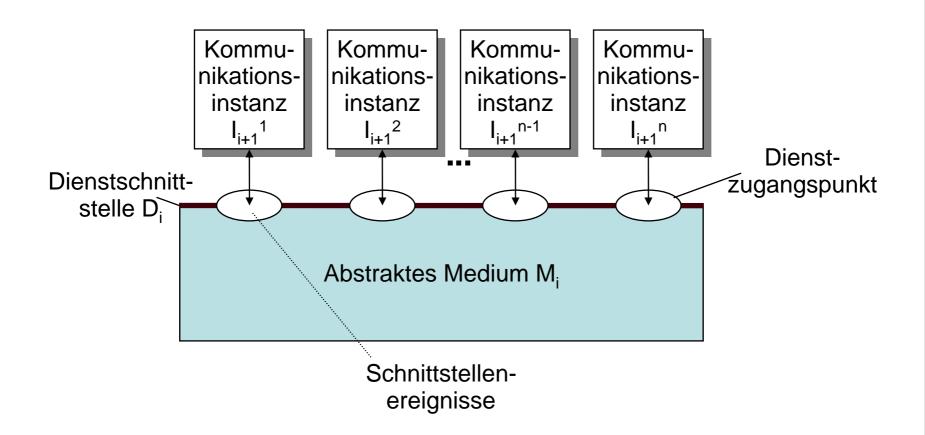
- Innerhalb eines geschichteten Kommunikationssystems kommunizieren (N+1)-Instanzen (// und (N)-Instanzen über einen (N)-Dienstzugangspunkt [(N)-SAP, (N)-Service Access Point] miteinander.
- Die (N)-Instanz bietet die von ihr erbrachten (N)-Dienste der (N+1)-Instanz am (N)-SAP an.
- Die (N)-Instanz benutzt die Dienste,
 die ihr am (N-1)-SAP angeboten werden.


Beziehungen zwischen (N-1)-SAP, (N)-Instanz und (N)-SAP

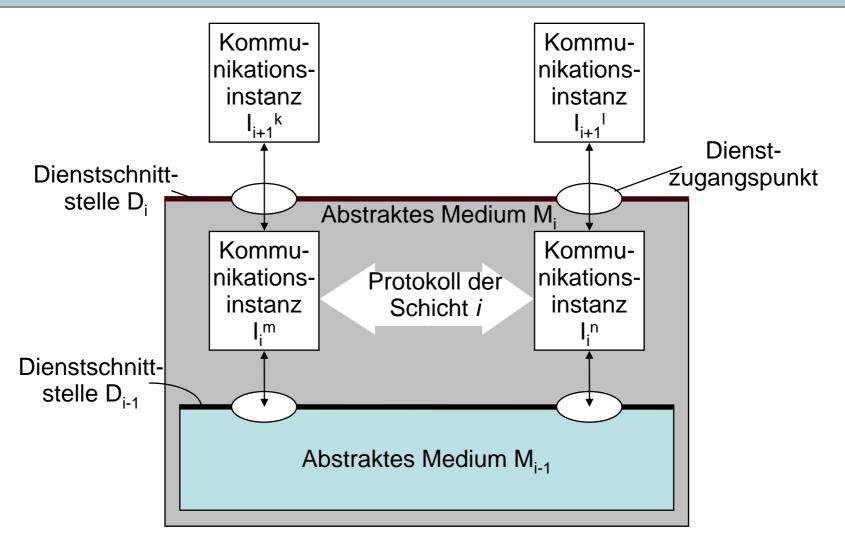


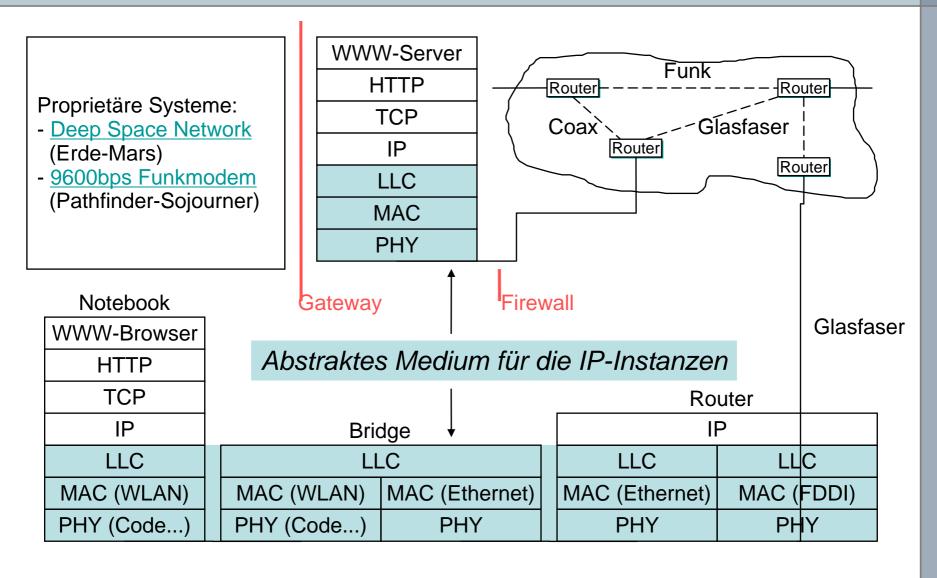
Diensttypen


- Unbestätigter Dienst
 - Beispiel: Briefübermittlung
 - Vom Dienstnehmer initiiert:



Vom Diensterbringer initiiert:


- □ Bestätigter Dienst
 - Beispiel: Buchung

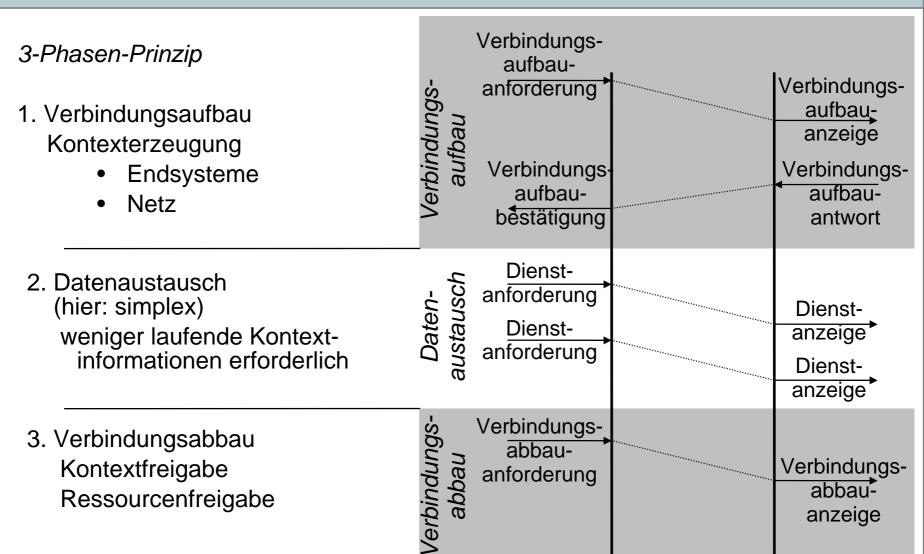


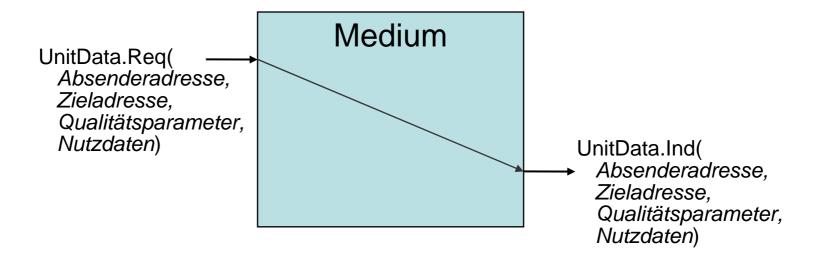
Diensterbringung: Protokollablauf

Abstraktes Medium im Beispiel

Funk

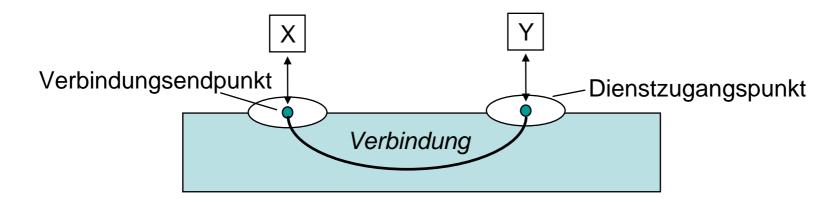
UTP5 - Twisted Pair




Verbindungsorientierte vs. verbindungslose Kommunikation

- Verbindungsorientierte Dienste
 - Vor dem Datenaustausch zwischen Dienstnehmern auf Schicht n wird eine Verbindung durch die beteiligten Instanzen der Schicht n-1 aufgebaut
 - Anforderung erfolgt mithilfe entsprechender Dienstprimitive der Schicht n-1
 - Protokollabhängige Aushandlung von Übertragungsparametern
 - z.B. Teilnehmer (immer), Dienstqualität, Übertragungsweg
 - Datenaustausch innerhalb dieser Verbindung erfolgt unter Berücksichtigung des aktuellen Verbindungszustandes
 - ⇒ Der Kontext einer jeden Datenübertragung wird somit berücksichtigt.
- Verbindungslose Dienste
 - Jeder Datenaustausch wird gesondert betrachtet, ohne Betrachtung vorhergegangener Kommunikationsvorgänge (gedächtnislos)
 - ⇒ Der Kontext einer Datenübertragung wird somit nicht berücksichtigt.

Verbindungsorientierte Dienste



- □ Vom Datagramm-Dienst wird *kein Zusammenhang* zwischen verschiedenen Übertragungsleistungen unterstützt.
- Der Datagramm-Dienst unterstützt keine Auslieferungsdisziplin,
 z.B. keine Garantie für Reihenfolgetreue.
- Der Datagramm-Dienst realisiert eine unbestätigte Dienstleistung (keine Aushandlung zwischen Kommunikationspartnern).

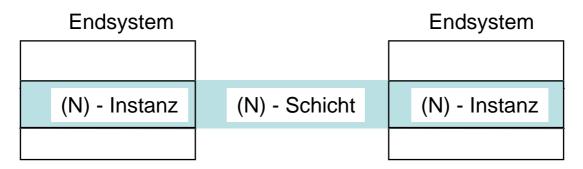
Dienstnehmer-Adressierung

- Datagramm
 - Anforderung: Mit Adresse des Beantworters
 - Anzeige: Ggf. mit Adresse des Initiators
- Verbindungen
 - Kontext, etabliert durch Verbindungsaufbau, beinhaltet Adressierungsinformation
 - Bei mehreren Verbindungen vom selben Dienstzugangspunkt: Verbindungsidentifikation

2.6. Das ISO/OSI-Basisreferenzmodell

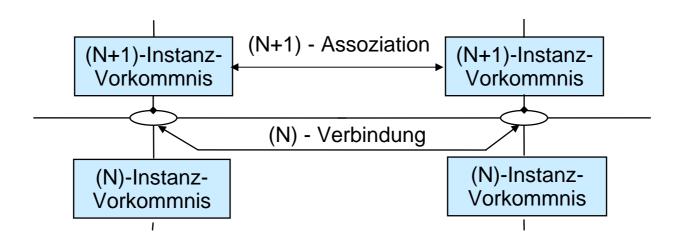
□ Ziel:

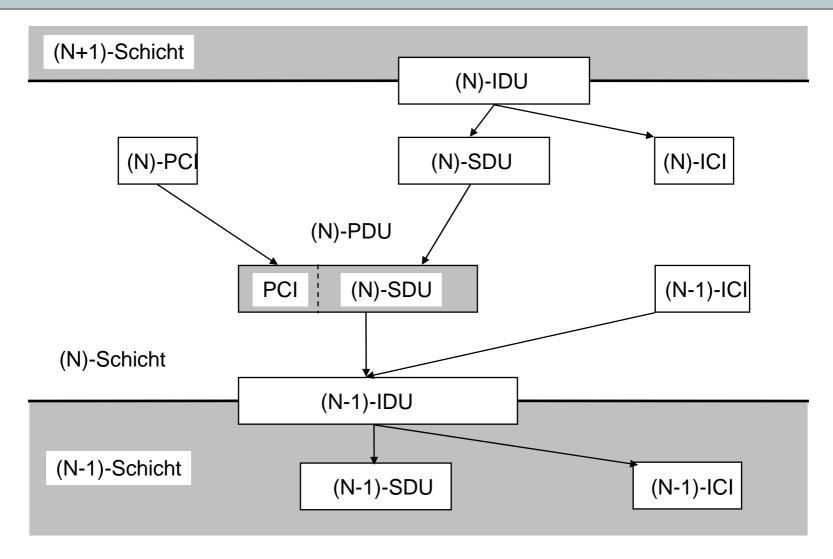
- Internationale Standardisierung (<u>ISO</u> = International Organization for Standardization) von Diensten und Protokollen zur Realisierung sogenannter "Offener Systeme" (OSI = Open System Interconnection)
- Grundlage zur Kommunikation von Systemen unterschiedlicher Hersteller
- Wichtig: Das Basisreferenzmodell dient als Denkmodell, anhand dessen sich Kommunikationssysteme erklären und klassifizieren lassen.
- Implementierung des Modells vor allem in öffentlichen Netzen in Europa (weitgehende Verdrängung durch Internet-Protokolle)


Standard:

- ISO/IEC IS 7498: Information Processing Systems Open Systems Interconnection - Basic Reference Model, Internationaler Standard, 15. Oktober 1994.
- Übernommen von der CCITT bzw. ITU-T in der Norm X.200

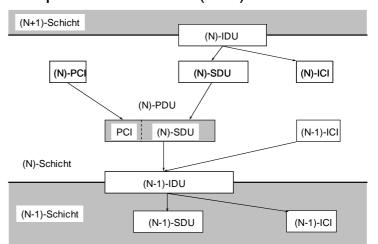
Prinzipien des ISO/OSI-Basisreferenzmodells


- OSI Endsystem
 - Rechnersysteme, die sich bei der Kommunikation an OSI-Standards halten
- □ (N) Schicht (Layer)
 - Sämtliche Einheiten einer (N) Hierarchiestufe in allen Endsystemen
- ☐ (N) Instanz (Entity)
 - Implementierung eines (N) Dienstes in einem Endsystem.
 - Es kann verschiedene Typen von (N) Instanzen geben ((N) Instanz Typen), z.B. IP im Router/Endsystem, oder die z.B. verschiedene Protokolle für eine Schicht implementieren. Eine Kopie einer (N) Instanz wird Vorkommnis der (N) Instanz genannt.
- Partnerinstanzen (Peer-Entities)
 - Instanzen einer Schicht.
 - Partnerinstanzen erfüllen Funktionen eines Dienstes durch Datenaustausch.

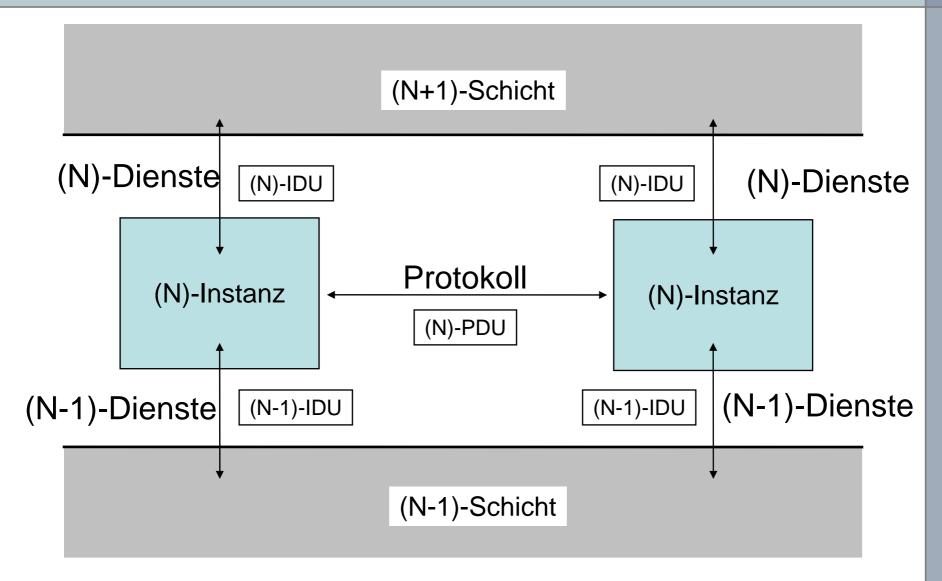

Verbindung und Assoziation

- □ (N) Assoziation (Association)
 - Kooperative Beziehungen zwischen zwei (N)-Instanz-Vorkommnissen. Dazu gehört Verwaltung von Zustandsinformationen.
 - (N)-Assoziation wird durch (N-1)-Verbindungen (oder (N-1)-verbindungslosen Dienst) unterstützt. Sie kann zeitlich nacheinander verschiedene (N-1)-Verbindungen verwenden.
- (N) Verbindung (Connection)
 - Beziehung zwischen zwei (oder mehr) (N+1)-Instanz-Vorkommnissen auf Ebene der (N)-Schicht. Diese Beziehung wird mit Hilfe des (N)-Protokolls unterstützt.

Generische OSI-Kommunikationseinheiten



2.6.1. OSI-Kommunikationseinheiten, Beschreibung


- □ (N)-Schnittstellendateneinheiten
 - Interface Data Unit, IDU
 - Zwischen (N+1)- und (N)-Instanzen über einen (N)-SAP ausgetauschte Dateneinheit.
 - Setzt sich zusammen aus (N)-ICI und (N)-SDU.
- □ (N)-Schnittstellenkontrollinformation
 - Interface Control Information, ICI
 - Zwischen (N)-Schicht und (N+1)-Schicht ausgetauschte Parameter zur Steuerung von Dienstfunktionen (z.B. Adressen).
- □ (N)-Dienstdateneinheiten
 - Service Data Unit, SDU
 - Daten, die transparent zwischen (N)-SAPs übertragen werden.

- □ (N)-Protokollkontrolldaten
 - Protocol Control Information, PCI
 - Daten, die zwischen (N)-Instanzen ausgetauscht werden, um die Ausführung von Operationen zu steuern (z.B. Folgenummern o.ä.).
- □ (N)-Protokolldateneinheit
 - Protocol Data Unit, PDU
 - Dateneinheit, die zwischen (N)-Instanzen unter Benutzung eines Dienstes der (N-1)-Schicht ausgetauscht wird.
 - Zusammengesetzt aus (N)-PCI und (N)-SDU.
 - Entspricht somit der (N-1)-SDU.

Kommunikationsmodell - OSI-Systeme

Die OSI-Schichten im Überblick

Anwendungsschicht

Darstellungsschicht

Kommunikationssteuerungsschicht

Transportschicht

Vermittlungsschicht

Sicherungsschicht

Bitübertragungsschicht

Schicht 7 (A - Schicht)

Schicht 6 (P - Schicht)

Schicht 5 (S - Schicht)

Schicht 4 (T - Schicht)

Schicht 3 (N - Schicht)

Schicht 2 (DL - Schicht)

Schicht 1 (Ph - Schicht)

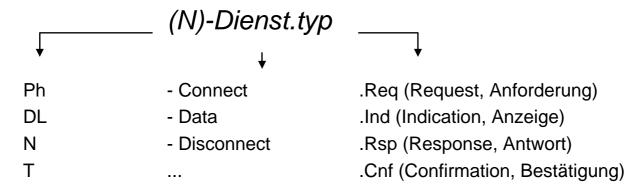
Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer


Data Link Layer

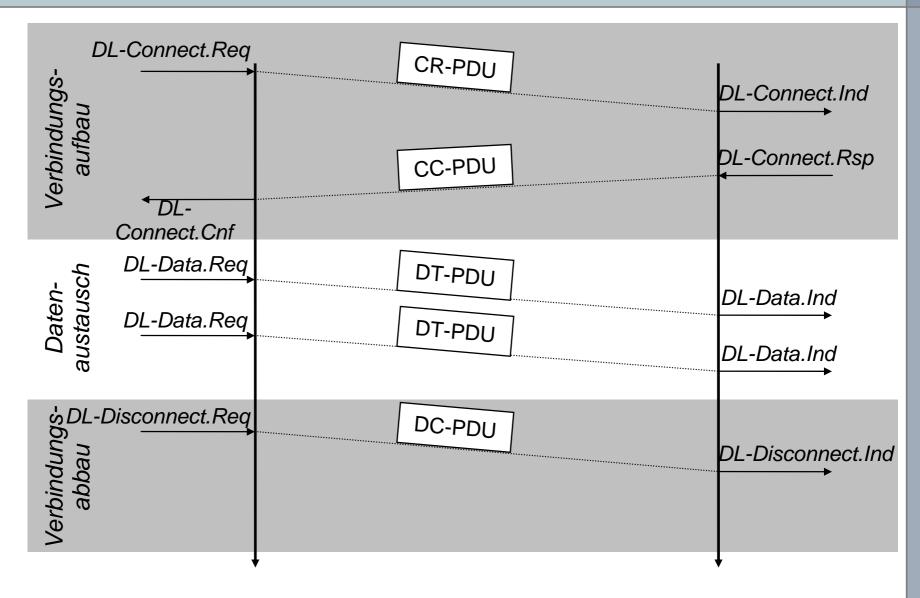
Physical Layer

2.6.2. Bezeichnungskonventionen

- □ (N)-Schicht
 - A -Schicht: Anwendungsschicht (Application Layer)
 - P -Schicht: Darstellungsschicht (Presentation Layer)
 - S -Schicht: Kommunikationssteuerungsschicht (Session Layer)
 - T -Schicht: Transportschicht (Transport Layer)
 - N -Schicht: Vermittlungsschicht (Network Layer)
 - DL -Schicht: Sicherungsschicht (Data Link Layer)
 - Ph -Schicht: Bitübertragungsschicht (Physical Layer)
- (N)-Dienstprimitive

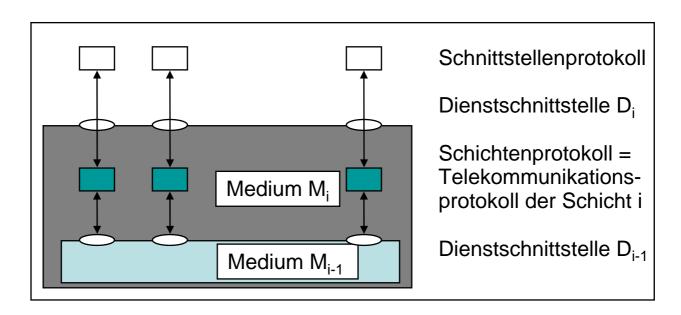
 Dienstprimitive in der A-Schicht werden gemäß ihres Application Service Element (ASE) benannt.

□ Die Benennung eines Dienstprimitivs besteht aus folgenden Komponenten:


Name der Schicht/Anwendung	Dienstleistung	Ereignistyp	Parameter
Physical (Ph)	Connect (Con)	Request (Req)	(beliebig)
Data Link (DL)	Data (Dat)	Indication (Ind)	
Network (N)	Release (Rel)	Response (Rsp)	
Transport (T)	Abort (Abo)	Confirmation (Cnf)	
HTTP	Provider Abort (PAbo)		
FTP	Disconnect (Dis)		

Beispiel:

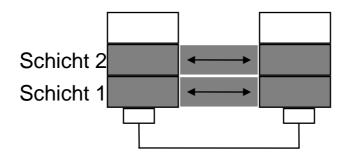
- T-Con.Req(Adressen) = Verbindungsaufbauanforderung an der Schnittstelle zum Transportdienst
- HTTP-Get.[Req](URL) = Anforderung der HTML-Seite, die durch URL identifiziert wird


Bezeichnungskonventionen am Beispiel

Protokoll: Modelle

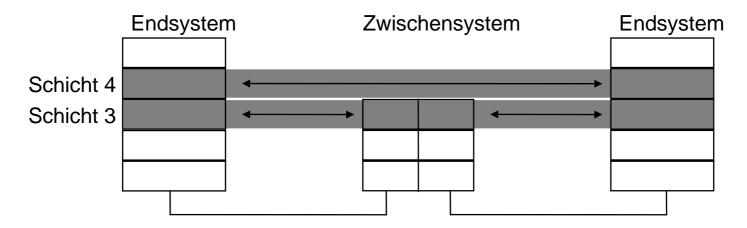
- □ Überbrückung funktionaler und qualitativer Unterschiede zwischen D_{i-1} und D_i
- Art und Weise der Erbringung der Dienste D_i durch Instanzen I_i auf Basis der Dienste D_{i-1}
- □ Nebenläufiger Algorithmus
- Verteilter Algorithmus, wobei Dienste D_{i-1} das Zusammenwirken der I_i-Instanzen ermöglichen
- □ Berücksichtigung der Auswirkungen von Störungen in D_{i-1}
- Beschreibung: i.allg. nur 2 Instanzen, Automatenmodell, Weg-Zeit-Diagramm

Protokollmechanismen


- Ein Protokollmechanismus ist ein Verfahren, welches abgeschlossene Teilfunktion innerhalb des Protokollablaufs beschreibt: generischer Charakter (ähnlich 'Systemfunktion').
- In verschiedenen Kommunikationsarchitekturen verwendet.
- Oft in mehreren Protokollen/Schichten einer Kommunikationsarchitektur anzutreffen.
- Multiplexen / Demultiplexen
- Teilung / Vereinigung
- Segmentieren / Reassemblieren
- Blocken / Entblocken
- Verkettung / Trennung
- (Mehrfach-)Kapselung
- Fehlerbehandlung
- Sicherung (ggf. fehlererkennend)
- Sequenzüberwachung
- Quittierung (Acknowledgement)

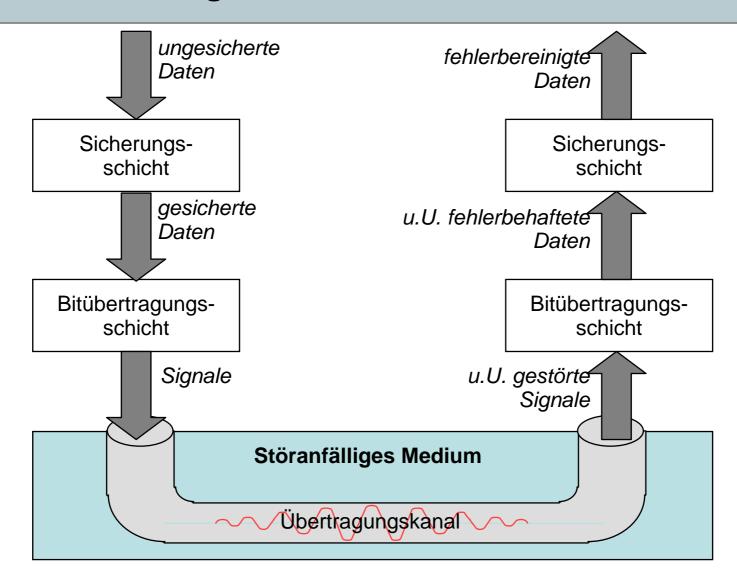
- Zeitüberwachung (Timeout)
- Wiederholen; Rücksetzen
- Flusskontrolle (Sliding window)
- Routing (Wegewahl, Weiterleiten)
- Medienzuteilung für geteilte Medien
- Synchronisation
- Adressierung
- Verbindungsverwaltung
- Datentransfer

2.6.3. Charakterisierung der Schichten Bitübertragungsschicht und Sicherungsschicht


- Bitübertragungsschicht (Schicht 1)
 - ungesicherte Verbindung zwischen Systemen
 - Übertragung unstrukturierter Bitfolgen über physikalisches Medium
 - umfasst u.a. physikalischen Anschluss, Umsetzung Daten ↔ Signale
 - Normung vor allem der physikalischen Schnittstelle Rechner/Medien
- □ Sicherungsschicht (Schicht 2)
 - gesicherter Datentransfer
 - Zerlegung des Bitstroms (Schicht 1) in Rahmen (Frames)
 - Fehlererkennung und -behandlung
 - Protokollmechanismen: Quittierung, Zeit-/Sequenzüberwachung, Wiederholen/Rücksetzen

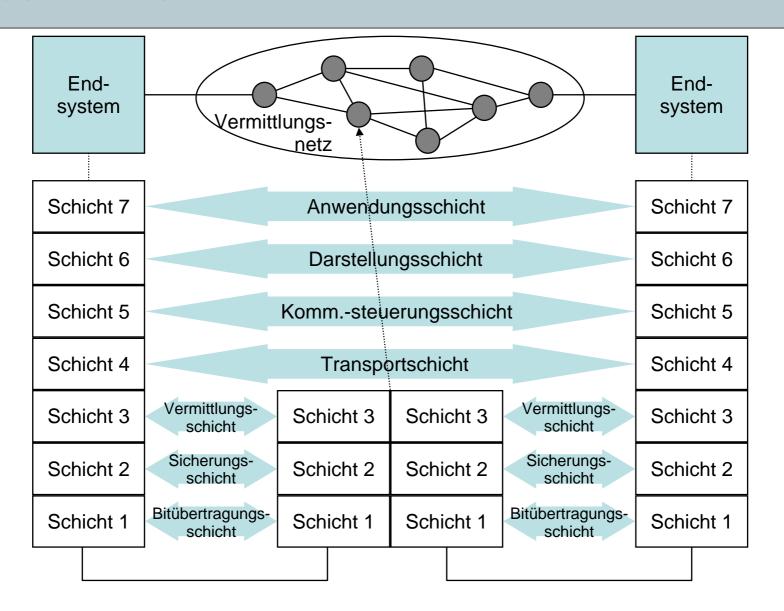
Vermittlungsschicht und Transportschicht

- Vermittlungsschicht (Schicht 3, auch 'Netzwerkschicht')
 - verknüpft Teilstreckenverbindung zu Endsystemverbindungen
 - Wegewahl (Routing) bei Vermittlung, Staukontrolle
 - evtl. aufgeteilt in 'Internetzwerk-/Subnetz-/Routing-'Subschichten
 - verbindungslos oder -orientiert
- Transportschicht (Schicht 4)
 - Adressierung von Transportdienstbenutzern
 - Datentransfer zwischen Benutzern in Endsystemen
 - bietet Transparenz bzgl. Übertragungs- und Vermittlungstechnik, Subnetzen
 - verbindungsorientiert, ggf. –los

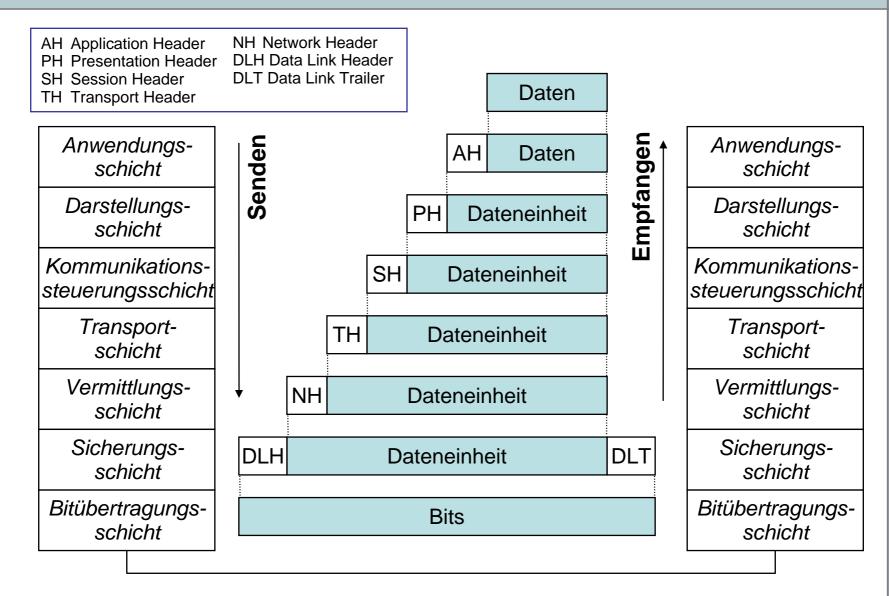


Anwendungsorientierte Schichten

- Kommunikationssteuerungsschicht (Schicht 5)
 - Ablaufsteuerung und -koordinierung (Synchronisation im weitesten Sinne)
 - Sitzung (Session)
 - ergibt erst Sinn bei Verwendung durch den Benutzer
- Darstellungsschicht (Schicht 6)
 - behandelt die Darstellung von Informationen (Syntax) für den Datentransfer
 - Marshalling
 - Prozess des Packens von Daten in einen Puffer, bevor dieser über die Leitung übertragen wird. Dabei werden nicht nur Daten verschiedenen Typs gesammelt, sondern diese werden auch in eine Standard-Repräsentation umgewandelt, die auch der Empfänger versteht.
- Anwendungsschicht (Schicht 7)
 - macht dem OSI-Benutzer Dienste verfügbar
 - stellt verschiedene Dienste zur Verfügung, je nach Anwendung, z.B.
 - Dateitransfer
 - zuverlässiger Nachrichtenaustausch
 - entfernter Prozeduraufruf



Daten und Signale



OSI: Die 7 Schichten

Einkapselung von Daten

Internet-Referenzmodell

Application Layer	Anwendungsspezifische Funktionen zusammengefasst in Anwendungsprotokollen
Transport Layer	Ende-zu-Ende-Datenübertragung zwischen zwei Rechnern
Network Layer	Wegewahl im Netz auch "Internet Layer" genannt
Net-to-Host	Schnittstelle zum physikalischen Medium "Netzwerkkartentreiber"

Gegenüber ISO/OSI sind die drei anwendungsorientierten Schichten zu einer einzigen Schicht zusammengefasst.

OSI-Referenzmodell

7	Anwendung
6	Darstellung
5	Kommsteuerung
4	Transport
3	Vermittlung
2	Sicherung
1	Bitübertragung

Internet-Referenzmodell

Anwendung
Transport
Internet
Rechner-Netzanschluss

Unterschiede:

- Aufgaben der OSI-Schichten 5 und 6 werden beim Internet-Referenzmodell als Teil der Anwendung betrachtet.
- Die OSI-Schichten 1 und 2 sind zu einer den Anschluss des Rechensystems an das Kommunikationsnetz beschreibenden Schicht zusammengefasst.

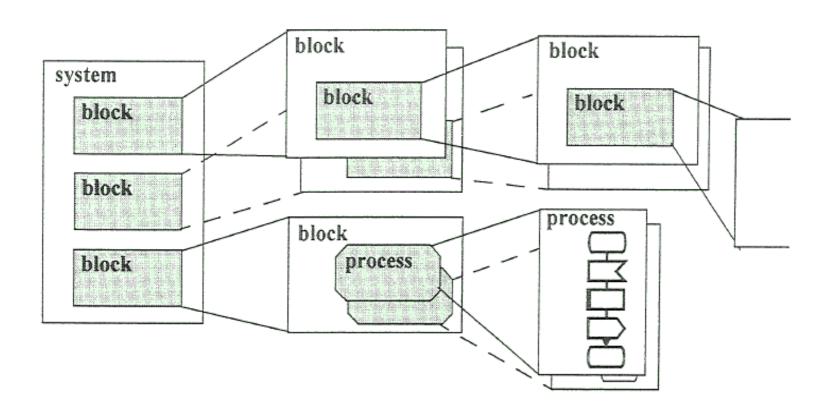
Lehrstuhl für Netzarchitekturen und Netzdienste

Institut für Informatik – Technische Universität München Prof. Dr.-Ing. Georg Carle

2.7. Protokollspezifikation mit SDL

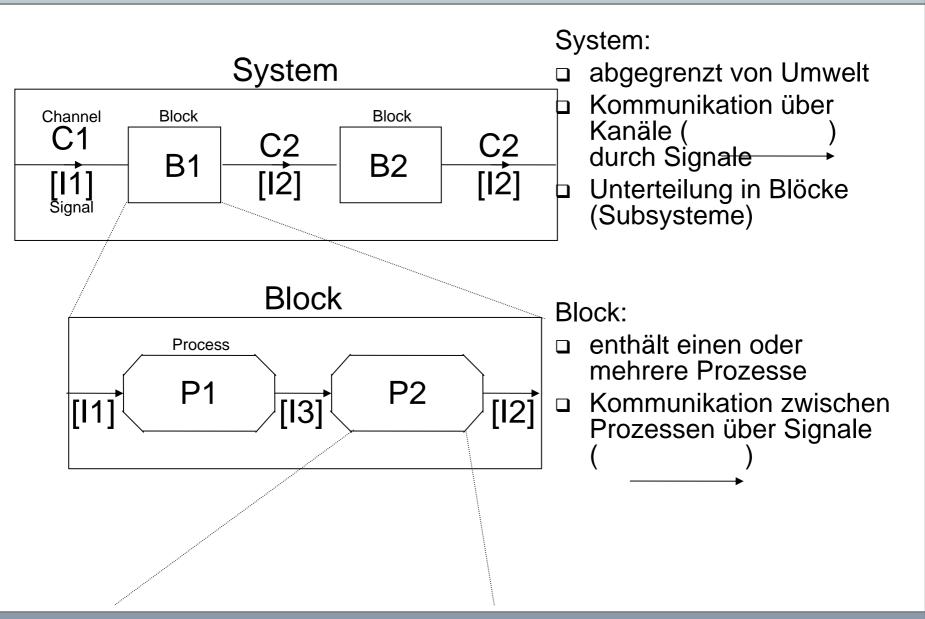
Specification and Description Language (SDL)

- Formale Sprache zur Beschreibung und Spezifizierung von Kommunikationssystemen
- □ Standard der ITU (früher: CCITT) (1984, 1988, 1992)
 - ITU = International Telecommunications Union
 - CCITT = Comité Consultatif International Téléphonique et Télégraphique
- □ Ziele:
 - Beschreibung des Verhaltens bestehender Systeme
 - Spezifizierung des Verhaltens neuer Systemkonzepte
- Verwendung u.a. bei der Spezifikation digitaler, leitungsvermittelter Systeme:
 - ISDN (Integrated Services Digital Network)
 - SS7 (Signaling System No 7)

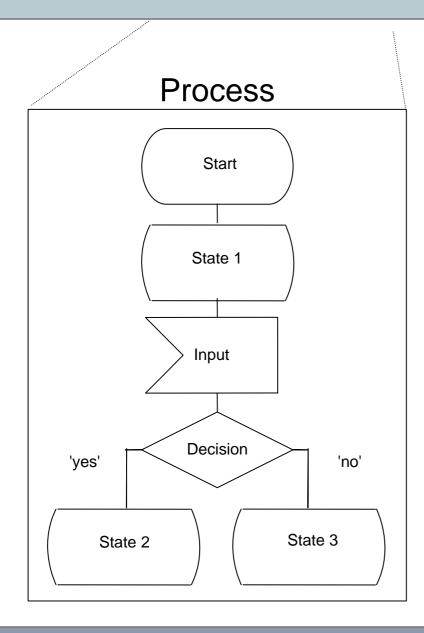


Eigenschaften von SDL

- Prozess als Grundelement
 - erweiterter endlicher Automat (Extended Finite State Machine EFSM)
 - kommuniziert mit anderen Prozessen durch den Austausch von Nachrichten (Signalen) über Verbindungswege (Kanäle)
 - mehrere Prozesse arbeiten parallel und existieren gleichberechtigt nebeneinander
- Vordefinierte und benutzerdefinierte Datentypen
- Zwei äquivalente Darstellungsformen:
 - SDL/GR (Graphical Representation)
 - SDL/PR (Phrase Representation)
- Vorteile einer formalen Sprache
 - Exakte Spezifizierung
 - Möglichkeit von Werkzeugen Editoren, Simulatoren, Prototyp-Generatoren,
 Testfall-Generatoren, Werkzeuge zur formalen Verfiikation
 - Generatoren (Compiler) zur direkten Übersetzung von SDL in ausführbare Programme oder Programmgerüste

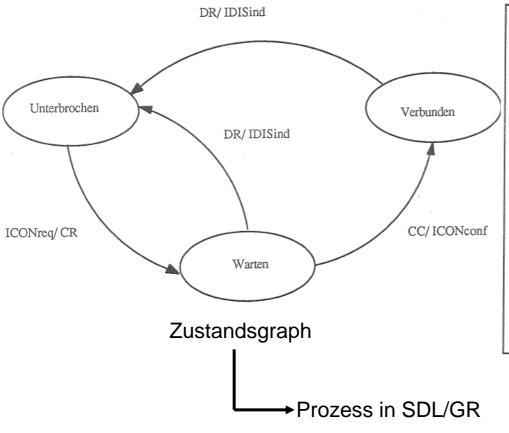

Hierarchische Strukturierung in SDL

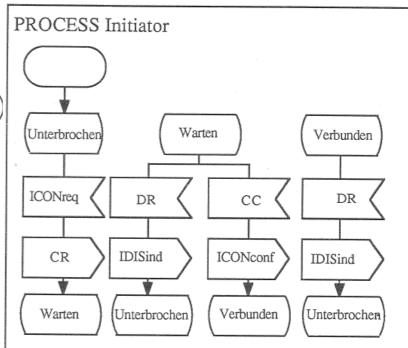
Aus König: SDL, Kap. 8



Hierarchische Strukturierung in SDL

Hierarchische Strukturierung in SDL


Prozess:


- kommunizierende
 Extended Finite State
 Machine (EFSM)
- Zustände, Übergänge, Aufgaben
- weitere Unterteilung in Prozeduren und Macros

Übersetzbarkeit von Automaten in SDL-Graphen

Beispiel ⇒ InRes-Protokoll (InRes= Initiator-Responder), c.f. Folie 81

Signale von/zu Dienstnehmer

- ICONreq: InRes-Connection-Request
- ICONconf: InRes-Connection-Confirm
- IDISreq: InRes-Disconnection-Request
- IDISind: InRes-Disconnection-Indication Signale von/zu entfernter Instanz
- CC, DR, ...

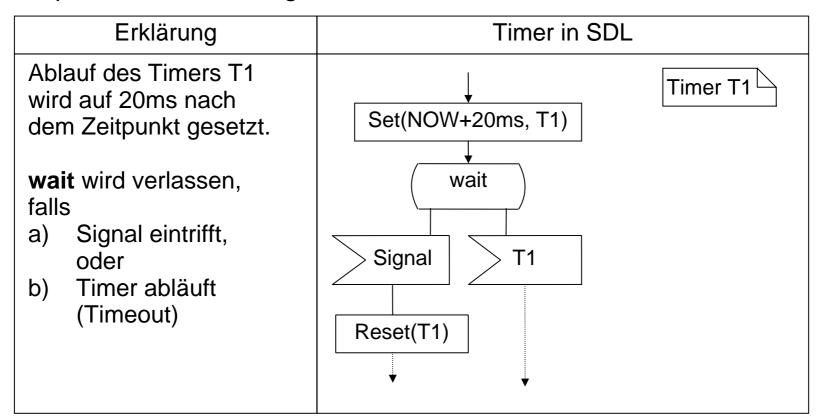
aus: Hogrefe, "ESTELLE, LOTOS und SDL", Springer Compass, 1989, S.121ff

Prozesse in SDL

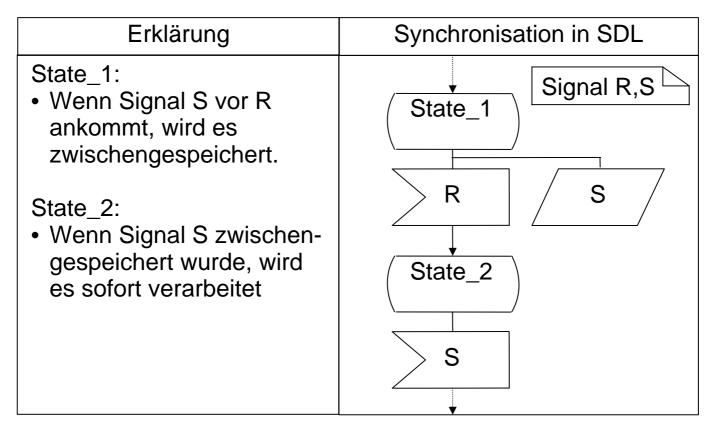
- Prozesse auf Basis erweiterter endlicher Automaten (EFSM):
 - endliche Zustandsanzahl und vorgegebene Zustandsübergänge
 - Eingangssignale lösen Zustandsübergänge aus
 - Aufgaben werden während eines Zustandsübergangs ausgeführt, z.B. auch Aussendung von Ausgangssignalen an andere Prozesse
 - eine Eingabewarteschlange puffert eingehende Nachrichten zwischen, falls Prozess sich gerade in einem Zustandsübergang befindet
 - es kann mehrere Instanzen eines Prozesses geben
- Erzeugung von Prozessen
 - bei Systemstart
 - zur Laufzeit durch andere Prozesse (CREATE)
- Beendigung von Prozessen
 - bei Erreichen eines STOP-Knotens

Symbol	Bedeutung des Knotens
	Start Node (Startknoten): • kennzeichnet Beginn eines Prozesses • enthält Name des Prozesses
	State Node (Zustandsknoten): • für einen oder mehrere Zustände • enthält den/die Zustandsnamen
	 Task Node (Aufgabenknoten): zwischen zwei Zuständen führt Befehle aus enthält Namen und optional die Befehlsabfolge oder informellen Text

Symbol	Bedeutung des Knotens
	 Create Request Node: erstellt und startet neue Prozessinstanz innerhalb eines Übergangs wohldefiniert, enthält Name des Prozesses und seine Parameter
	Stop Node: • beendet die Prozessinstanz
	Decision Node: • ermöglicht Auswahl zwischen alternativen Pfaden innerhalb eines Übergangs • enthält eine Bedingung oder Abfrage • Antworten kennzeichnen Pfade/Alternativen


Symbol	Bedeutung des Knotens
	Save Node (SYNCHRONISATION): • verzögert ein Signal innerhalb eines Übergangs (ohne dass dazu ein Zustand existieren muss) • enthält gespeicherte Signale
	Input Node: • wartet auf den Erhalt eines oder mehrerer Signale innerhalb eines Übergangs • enthält den/die Signalnamen
	Output Node: • sendet ein oder mehrere Signale innerhalb eines Übergangs • enthält den/die Signalnamen und optional Zielprozessname/Kommunikationspfad

Symbol	Bedeutung des Knotens
	Flow Line: • Pfad (Kante), um zwei Symbole (Knoten) miteinander zu verbinden
	Input Node (In-Connector): • markiert die Stelle, an der der Pfad von gleichnamigem Out-Connector weitergeht
	Output Node (Out-Connector): • markiert die Stelle, an der der Pfad unterbrochen wird, um an In-Connector weiterzulaufen
	Comment: • zusätzlicher informeller Text


- Zeitverhalten spielt eine große Rolle in der Telekommunikation
- Einführen von Timer-Prozessen:
 - gibt vor, wie lange ein Zustand maximal gehalten wird, bis eines der erwarteten Eingangssignale eintrifft
- Beispiel zur Verwendung eines Timers:

Signalverzögerung (Implicit Delays)

- Normalerweise Abarbeitung der Eingangssignale nach dem FIFO-Prinzip
- □ Bei gleichzeitigem Eintreffen zweier Eingangssignale zufällige Auswahl
- Reihenfolge für die Verarbeitung von Eingangssignalen kann durch SAVE-Knoten geändert werden
- Beispiel zur Verarbeitung zweier Signale R und S mit der Reihenfolge R,S:

InRes-Protokoll:
 Einfaches Protokoll zum
 Verbindungsaufbau zwischen zwei Protokollinstanzen

□ Signale:

ICONreq: Verbindungsanforderung

durch Benutzer

ICONconf: Verbindungsbestätigung

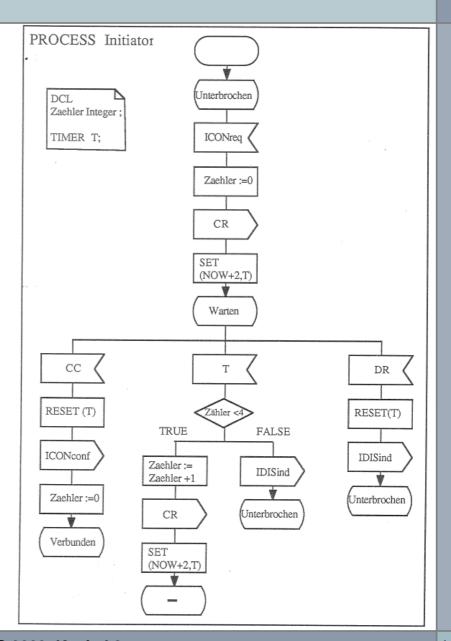
an Benutzer

■ IDISind: Meldung eines

Verbindungsabbruchs an

den Benutzer

CR: Connection-Request-


Nachricht an Gegenstelle

CC: Connection-Confirm-

Nachricht von Gegenstelle

DR: Disconnect-Request-

Nachricht von Gegenstelle

Standardisierung: Überblick

- Die Erfordernisse einer internationalen Telekommunikation erzwingen die Festlegung international gültiger Standards.
 - Standardisierung des Fernmeldewesens
 - Gremienarbeit mit gut strukturierten Lösungen, aber lange "Time To Market"
 - Weltweit einheitlich über Fernmelde-Betriebsgesellschaften (Telekommunikations-Dienstanbieter)
 - Beispiele: ITU-T, ETSI (European Telecommunication Standards Institute)
 - Internet
 - Diskussionen direkt Betroffener und <u>IETF</u> (Internet Engineering Task Force) führen zu Standards
 - Beispielimplementierungen stehen im Vordergrund, daher sehr schnelle "Time To Market"
 - Herstellervereinigungen
 - Ebenfalls realisierungsorientiert mit relativ schneller "Time To Market"
 - Beispiele: <u>The Open Group</u> (ehemals OSF und X/Open),
 <u>ECMA</u> (European Computer Manufacturers Association),
 ATM-Forum

Standardisierung: Traditionelle Organisationen

ITU

International Telecommunication Union (ehemals CCITT und CCIR) Internationaler beratender Ausschuss für Telekommunikation

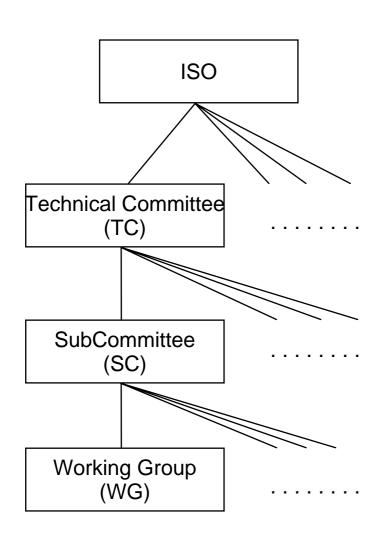
CCITT

Consultative Committee on International Telegraphy and Telephony Comité Consultatif International Télégraphique et Téléphonique ehem. Internationaler beratender Ausschuss für Telefon und Telegrafie (neue Bezeichnung: ITU-T)

CCIR

Consultative Committee on International Radio ehem. Internationaler beratender Ausschuss für den Funkdienst (neue Bezeichnung: ITU-R)

ISO


International Organization for Standardization (ISO griech. "gleich")
Internationale Organisation für Standardisierung
ISO koordiniert die internationale Normungsarbeit außerhalb des Telekommunikations-Bereichs.

DIN

(Deutsches Institut für Normung) ist deutscher Partner der ISO.

Standardisierung: Beispiel ISO

WG-Meetings:

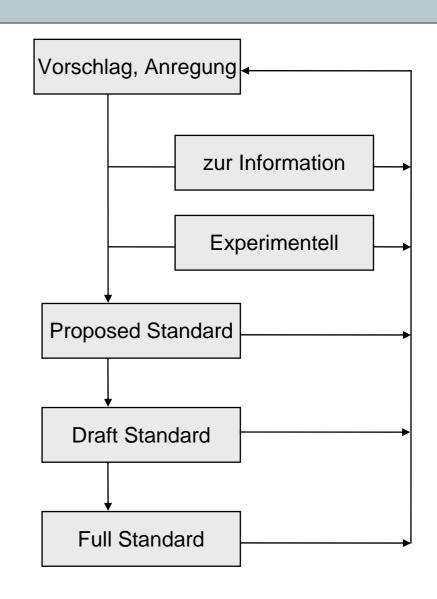
Alle 6-9 Monate, damit die nationalen Organisationen Einverständnis mit den Konzepten erreichen. Dann startet der **Standardisierungsprozess:**

DP: Draft Proposal

DIS: Draft International Standard

IS: International Standard

Das Fortschreiten auf eine höhere Stufe erfolgt durch eine internationale Abstimmung und die Einarbeitung der Kritik der "Nein"-Stimmen.



sehr langer Prozess!

Standardisierung: Beispiel Internet

- Der Standardisierungsweg geht über die Internet Engineering Task Force (IETF).
- Die Internet Engineering Steering Group (IESG) steuert die Diskussionen.
- Allgemein akzeptierte
 Arbeitsdokumente (Internet Drafts)
 erhalten permanenten Status (Request for Comments, RFC)
- □ Mögliche Ergebnisse:
 - Standard Track RFC (Proposed/Draft/Full Standard)
 - Experimenteller RFC
 - RFC zur Information
- Bereits ab dem Status Draft Standard müssen mindestens zwei interoperable, unabhängig voneinander entwickelte Implementierungen vorhanden sein.

Standardisierung: RFC - Beispiele

- □ RFC 768 User Datagram Protocol (UDP), August 1980
- □ RFC 791 Internet Protocol (IP), Sept. 1981
- □ RFC 792 Internet Control Message Protocol (ICMP) Sept. 1981
- □ RFC 793 Transmission Control Protocol (TCP), Sept. 1981
- □ RFC 959 File Transfer Protocol (FTP), Oktober 1985
- □ RFC 997 Internet Numbers, März 1987
- □ RFC 3261 SIP: Session Initiation Protocol, Juni 2002
- □ RFC 4509 Use of SHA-256 in DNSSEC Delegation Signer (DS)
 - Resource Records (RRs), Mai 2006
- Weiter Informationen unter www.ietf.org!

Standardisierung: RFC – Beispiele (2)

- □ RFC 1149—Standard for the transmission of IP datagrams on Avian Carriers. D. Waitzman. 1 April 1990. Updated by RFC 2549; see below. A deadpan skewering of standards-document legalese, describing protocols for transmitting Internet data packets by homing pigeon.
- □ RFC 2322—Management of IP numbers by peg-dhcp. K. van den Hout et al. 1 April 1998.
- RFC 2324—Hyper Text Coffee Pot Control Protocol (HTCPCP/1.0).
 L. Masinter. 1 April 1998.
- □ RFC 2549—IP over Avian Carriers with Quality of Service. D. Waitzman. 1 April 1999. Updates RFC 1149, listed above.
- □ RFC 3251—Electricity over IP. B. Rajagopalan. 1 April 2002.
- □ RFC 3514—The Security Flag in the IPv4 Header (Evil Bit). S. Bellovin. 1 April 2003.
- □ RFC 4824—The Transmission of IP Datagrams over the Semaphore Flag Signaling System (SFSS). Jogi Hofmueller, Aaron Bachmann, IOhannes zmoelnig. 1 April 2007.