
Chair for Network Architectures and Services

Department of Informatics

TU München – Prof. Carle

Peer-to-Peer Systems

and Security

IN2194

Chapter 1

Peer-to-Peer Systems

1.3 Structured Networks

Prof. Dr.-Ing. Georg Carle

Dr. Heiko Niedermayer

Network Security, WS 2008/09, Chapter 9 2Peer-to-Peer Systems and Security, SS 2009, Chapter 0 2Peer-to-Peer Systems and Security, Summer 2011, Chapter 1 2

Overview

 Routing

 Using a Structure for P2P Routing

 Hash Tables / Distributed Hash Tables

 Chord

 A structured KBR system and DHT

 Layers in Structured P2P Systems / Common API

 Other Structured DHTs / KBRs

 Pastry, Kademlia, …

 Ordered Indexing

Network Security, WS 2008/09, Chapter 9 3Peer-to-Peer Systems and Security, SS 2009, Chapter 0 3Peer-to-Peer Systems and Security, Summer 2011, Chapter 1 3

Routing

Routing

Network Security, WS 2008/09, Chapter 9 4Peer-to-Peer Systems and Security, SS 2009, Chapter 0 4Peer-to-Peer Systems and Security, Summer 2011, Chapter 1 4

Motivation

 In unstructured networks we have to search all over the network for a

node or item as we do not know where it is.

 Wouldn‟t it be better to be able to simply say ”Ah, to node A, go this

way!” Yes, it would.

Usually, this problem is separated into

 Routing

 The task to find a way on a network is called routing. The routing table is

created using the routing protocol which gathers information about the

network and then computes the best paths.

 Routing protocol => routing table

 Forwarding

 For a packet that has to be sent or that arrives at an intermediate node

(router) the node directly knows the next hop where to send it to. Usually,

this is solved using a routing table that stores this information.

Network Security, WS 2008/09, Chapter 9 5Peer-to-Peer Systems and Security, SS 2009, Chapter 0 5Peer-to-Peer Systems and Security, Summer 2011, Chapter 1 5

Routing on the Internet

Scalability of the Internet Routing

 The Internet itself is not structured (no predefined structure!).

 The Internet is divided into Autonomous Systems (AS) that own a certain part
of the IP address space.
 After applying for an adress space (at one of the registries, e.g. RIPE) the

addresses are manually set, but the routing is automized using routing protocols.

 Distant computers only need to know the way to the AS.

 Geographically close ASes often have close IP ranges.

 Consequences
 IP addresses are not purely random, but cluster in certain areas. Due to this, we

can group together many addresses in only one routing table entry.

 Thus, routing tables still scale, even in the core network.

AS X

AS A

AS D AS Z

AS B

AS C

211.5.67/24 211.5.88/24

80.5.67/2481.42/16
81.41/16

81.52/16

…

Routing table:
Send all 80/4 => IF0 (all from 80.0.0.0 to 96.255.255.255)

Send all 211/8 => IF0

…..

IF0

IF1

IF2

Network Security, WS 2008/09, Chapter 9 6Peer-to-Peer Systems and Security, SS 2009, Chapter 0 6Peer-to-Peer Systems and Security, Summer 2011, Chapter 1 6

Routing on the Internet

 Geographic diversity of IP ranges

Freedman et.al (2005)

Large networks (> 65000)

Small networks (<< 255 IP addresses)

More than 95 % of the

small networks span less

than 10 miles.

N.Y<->Paris

Network Security, WS 2008/09, Chapter 9 7Peer-to-Peer Systems and Security, SS 2009, Chapter 0 7Peer-to-Peer Systems and Security, Summer 2011, Chapter 1 7

Routing on the Internet and its relation to P2P

But here is the problem with unstructured overlay networks: If we

introduce a routing protocol like in the Internet, we have randomly

distributed addresses and cannot group them efficiently. The routing

tables would not scale.

 We need to find a way to cluster nodes with similar IDs in the Peer-

to-Peer network.

Structured Peer-to-Peer

 Structured Peer-to-Peer networks impose the constraint of a structure

onto the Peer-to-Peer network.

 Each node is either not in the network or in a predefined position

based on its node ID and given by the form of the structure.

Network Security, WS 2008/09, Chapter 9 8Peer-to-Peer Systems and Security, SS 2009, Chapter 0 8Peer-to-Peer Systems and Security, Summer 2011, Chapter 1 8

Using Structures for P2P Routing

Using a Structure for P2P

Routing

Network Security, WS 2008/09, Chapter 9 9Peer-to-Peer Systems and Security, SS 2009, Chapter 0 9Peer-to-Peer Systems and Security, Summer 2011, Chapter 1 9

Examples for structures

Ring

 Each node knows successor and predecessor.

 Sending a message

 Unless the node is the target, forward the message

to the successor

Tree

 Each node knows its parent and child nodes

 Sending a message

 Up the tree if you are in a wrong subtree

 Down the tree if you have the correct

subtree as child

 This is not the way the tree-based DHTs operate!

41

11

18

23

25
30

41

25

18

23 1130

Network Security, WS 2008/09, Chapter 9 10Peer-to-Peer Systems and Security, SS 2009, Chapter 0 10Peer-to-Peer Systems and Security, Summer 2011, Chapter 1 10

Making structures efficient

Local connectivity

 Neighbors in the structure ensure basic connectivity
and clustering of similar IDs in one region.

 Connecting to more neighbors increases stability as
nodes may leave at any time and the structure has to
be maintained.

How long does a packet travel?

 In the ring O(n).

 In the tree O(n) unbalanced and O(logn) balanced.

Long-distance links / Shortcuts

 To reduce the diameter, introduce a set of long-
distance links at each node.

 If we use the picture of clusters of nodes that have
similar IDs, these links efficiently interconnect these
clusters.

41

11

18

23

25
30

41

25

18

23 1130

Network Security, WS 2008/09, Chapter 9 11Peer-to-Peer Systems and Security, SS 2009, Chapter 0 11Peer-to-Peer Systems and Security, Summer 2011, Chapter 1 11

Distributed Hash Tables

Distributed Hash Tables

Network Security, WS 2008/09, Chapter 9 12Peer-to-Peer Systems and Security, SS 2009, Chapter 0 12Peer-to-Peer Systems and Security, Summer 2011, Chapter 1 12

Hash Table

Hash Table

 n slots (nodes) that are used to store k elements

 The n slots contain an equal share of the index space.

 Features

 Store elements, efficient amortized lookup in O(1)

 h(element) determines slot

 Hash function h

 uniform: all slots are equally likely

 universal: propability of two hashes to be equal is 1/n

 What about adding or removing a slot?

 Need to completely repartition the hash table.

 Can we avoid repartitioning?

 Yes Consistent Hashing.

1-5

6-10

11-15

16-20

1 5

7 9

13

17 19

1-4

5-8

9-12

13-16

1

5 7

9

13

17 1917-20

Let 17-20 be

the new slot

 item moved

Network Security, WS 2008/09, Chapter 9 13Peer-to-Peer Systems and Security, SS 2009, Chapter 0 13Peer-to-Peer Systems and Security, Summer 2011, Chapter 1 13

Consistent Hashing

Consistent Hashing

 Approach to manage nodes and items.

 Originally developped for organizing distributed webcaches.

 Circular ID space [0,1)

 Map all nodes to unit interval [0,1)

 Map all items to unit interval [0,1)

 Assign items to nodes from their ID to the ID of their successor
 nodes responsible for [node_ID,successor_ID)

 Allows to add / remove nodes without repositioning of all nodes.

 Nodes and data share same ID space.

h(Example_Node) = 0.325

0 1

h(Example_Item) = 0.365

Network Security, WS 2008/09, Chapter 9 14Peer-to-Peer Systems and Security, SS 2009, Chapter 0 14Peer-to-Peer Systems and Security, Summer 2011, Chapter 1 14

Consistent Hashing – Theory – Load Balancing

Theorem „Consistent Hashing“

For any set of N nodes and K items, with high probability:

 Each nodes is responsible for at most items

(ε = logN for consistent hashing in the

way we described it).

 When an (N+1)st node joins or leaves the network, responsibility for

only O(K/N) items changes.

N

K
1

Network Security, WS 2008/09, Chapter 9 15Peer-to-Peer Systems and Security, SS 2009, Chapter 0 15Peer-to-Peer Systems and Security, Summer 2011, Chapter 1 15

Distributed Hash Tables

Distributed Hash Table (DHT)

 A Distributed Hash Table is a structured Peer-to-Peer system that

provides hash table functionality.

 Nodes and items share a common flat address space.

 Nodes are responsible for certain parts of the address space.

 Association of items and nodes may change due to the dynamics of the

network.

 Lookup of an item = routing to responsible node

 Storage of an item = lookup responsible node and then use a store

command to store the item

• Usually, the DHT stores only reference pointers to sources of an item and not

the item itself, e.g. „File XYZ.mpg can be found on 132.3.4.5:12345 and

55.65.3.4:12345.“

 The terms „Structured Peer-to-Peer“ and „DHT“ are often used as

synonyms.

Network Security, WS 2008/09, Chapter 9 16Peer-to-Peer Systems and Security, SS 2009, Chapter 0 16Peer-to-Peer Systems and Security, Summer 2011, Chapter 1 16

Chord

Chord

Network Security, WS 2008/09, Chapter 9 17Peer-to-Peer Systems and Security, SS 2009, Chapter 0 17Peer-to-Peer Systems and Security, Summer 2011, Chapter 1 17

P2P Structure: Ring-based

Ring-based Topology

 Nodes organize in a Ring.

 Links

 To neighbors in the ring for stability and basic connectivity.

 Long-distance links to achieve efficent routing.

 Examples

 Chord

 Symphony (embeds a symmetric small-world topology)

Neighborhood

 Keep the ring

connected

Long-distance links

 bridge long distances

and reduce diameter and

characteristic path length.

Network Security, WS 2008/09, Chapter 9 18Peer-to-Peer Systems and Security, SS 2009, Chapter 0 18Peer-to-Peer Systems and Security, Summer 2011, Chapter 1 18

Chord

Chord

 Identifier space , usually m=160.

 Mapping

 proposed to use hash function sha1(.), e.g. node_ID = sha1(node_IP).

 Management of identifyers

 A node is responsible for the interval (predecessor_ID,node_ID]

• Thus, the successor of an ID is responsible for the ID.

 Graph Embedding

 Neighbor set

• Successor and predecessor (required, but
predecessor only used for maintenance)

• K successors (optional)

 Finger table (Long distance links)

• Link to node responsible for
node_ID+2i with i=1..160

• These links are thus in exponential
distance over the link index i.

]12,0[m

0000 = 0
0001 = 1

0010 = 2

0011 = 3

0100 = 4

0101 = 5

0110 = 6

0111 = 7

1000 = 8
1001 = 9

1010 = 10

1011 = 11

1100 = 12

1101 = 13

1110 = 14

1111 = 15+0001 = +1

+0100 = +4

+1000 = +8

+0010 = +2

Network Security, WS 2008/09, Chapter 9 19Peer-to-Peer Systems and Security, SS 2009, Chapter 0 19Peer-to-Peer Systems and Security, Summer 2011, Chapter 1 19

Chord – Structure

 Routing strategy

 Greedy, goal is to find the successor of an ID.

 Maintenance

 Join & Stabilization will be discussed on the next slides.

0000 = 0
0001 = 1

0010 = 2

0011 = 3

0100 = 4

0101 = 5

0110 = 6

0111 = 7

1000 = 8
1001 = 9

1010 = 10

1011 = 11

1100 = 12

1101 = 13

1110 = 14

1111 = 15+0001 = +1

+0100 = +4

+1000 = +8

+0010 = +2

Network Security, WS 2008/09, Chapter 9 20Peer-to-Peer Systems and Security, SS 2009, Chapter 0 20Peer-to-Peer Systems and Security, Summer 2011, Chapter 1 20

Chord – Lookup

Lookup

 Goal: Find successor(ID)

 Method

 Node n either initiates or

receives the query. If n is

successor(ID), then we

reached the target.

 IF successor(n) ==

successor(ID) THEN

• Forward to successor(n).

 ELSE

• The next hop is the closest

preceeding finger n‘ of ID in

the finger table of node n.

• Call n„.find_successor(ID)

0000
0001

0010

0011

0100

0101

0110

0111

1000
1001

1010

1011

1100

1101

1110

1111

0011

01011001

1011

1110
0001

0000

0011

1001.find_successor(0100)

0010.find_successor(0100)

0011.find_successor(0100)

We reached

the target,

item 0100

does not

exist.

Network Security, WS 2008/09, Chapter 9 21Peer-to-Peer Systems and Security, SS 2009, Chapter 0 21Peer-to-Peer Systems and Security, Summer 2011, Chapter 1 21

Chord – Join

Join

 Node n wants to join the network

 n_ID is hash of its IP address (or

randomly selected)

 n contacts n„ with n„ already in the

network

 n„ has been found via some

bootstrapping mechanism

 If no node exists, n starts a new empty

network.

 n uses n„ to build its finger table

• n„ does the lookups for successor(finger)

 n contacts its successor s, they divide

the interval and n copies the data it is

responsible for from s.

 n then contacts its predecessor and the

predecessors of IDs that are likely to be

required to link to n (ID – 2^i).

0000
0001

0010

0011

0100

0101

0110

0111

1000
1001

1010

1011

1100

1101

1110

1111

0011

01011001

1011

1110
0001

0000

0011

1011

ID is 1100

successor(1100+1) -> 1111

successor(1100+2) -> 1111

successor(1100+4) -> 0010
successor(1100+8) -> 0110

n„ is 0110,

join via n„

predecessor(1100) -> 1001

Network Security, WS 2008/09, Chapter 9 22Peer-to-Peer Systems and Security, SS 2009, Chapter 0 22Peer-to-Peer Systems and Security, Summer 2011, Chapter 1 22

Chord – Stabilization

Stabilization

 The stabilization is used to correct and

maintain the finger tables. The goal is to

converge to the correct fingers despite

changes in the network.

 Pseudocode

0000
0001

0010

0011

0100

0101

0110

0111

1000
1001

1010

1011

1100

1101

1110

1111

0011

01011001

1011

1110
0001

0000

0011

Some definitions for the pseudocode:

finger[i].start = n+2 î

finger[i].node = ID of node in finger table, >= n+2 î

Network Security, WS 2008/09, Chapter 9 23Peer-to-Peer Systems and Security, SS 2009, Chapter 0 23Peer-to-Peer Systems and Security, Summer 2011, Chapter 1 23

Chord – Failure and Replication

Failure of a node

 Maintain a successor list with r successors

 Use successor list to handle the failure / leave of successor

 For the time from failure until stabilization repaired the network
structure, the authors proposed to introduce timeout for messages and
use a less-optimal node or other successor as next hop.

Replication

 Store items also on the r successors

 Has to be done by higher layer software though as Chord only does
the Key-Based Routing part.

Network Security, WS 2008/09, Chapter 9 24Peer-to-Peer Systems and Security, SS 2009, Chapter 0 24Peer-to-Peer Systems and Security, Summer 2011, Chapter 1 24

Chord – Theory – Lookup

Theorem (Chord Lookup)

With high probability, the number of nodes that has to be contacted to find
a successor of an ID k in an N node Chord network is O(logN).

Proof

 Suppose, node n wishes to resolve query for successor of k. Let p be
the node that immediately precedes k.

 If n != p then

 n forwards the query to the closest predecessor of k

 Suppose that p is in the i-th finger interval of n and that this finger is f.

 d(n,f) > 2^i and that 2^i>d(f,p) d(n,p) = d(n,f)+d(f,p) > 2 d(f,p)

 Thus, the distance is at least halved in each step.

continues

n

succ(k)

k

p=pred(k) < n + 2^(i+1) otherwise n would have used finger i+1
fn+2^i

n+2^(i+1) (worst case assumption that k is larger)d(n,f) > 2 î

d(f,p) < 2 î

Network Security, WS 2008/09, Chapter 9 25Peer-to-Peer Systems and Security, SS 2009, Chapter 0 25Peer-to-Peer Systems and Security, Summer 2011, Chapter 1 25

Chord – Theory – Lookup

 Now, we consider node n and item k to be random. We show that

w.h.p. the number of forwardings will be O(logN).

 After logN forwardings distance was at least halved logN times. Thus, the

distance will be reduced to at most

 The exptected number of nodes in that area is 1 and the number of nodes

is O(logN) w.h.p.

• The latter follows from using the Chernoff bound on N Bernoulli experiments if

node is in or not in the interval (hit with probability 1/N).

• With high probability means that the probability that the assumption is wrong

converges to 0 with 1 / (a polynomial) or alternatively that there is a constant c

so that the error probability is bounded by .

 Thus, w.h.p. we need at most O(logN) more steps.

 Thus, w.h.p. we the end up with O(logN) nodes contacted.

N

mN

m 2

2

1
2

log

CN

1

Network Security, WS 2008/09, Chapter 9 26Peer-to-Peer Systems and Security, SS 2009, Chapter 0 26Peer-to-Peer Systems and Security, Summer 2011, Chapter 1 26

Chord / All structured P2P – Theory – Lookup

 Chord is assumed to half the distance per step

Generalization

 Any structured Peer-to-Peer system that halves the distance per O(1)

steps achieves O(logn) lookup.

 The basis of the logarithm depends on the fraction of search space that is

left after one step.

 Please note: To achieve this „tree-like“ search performance , the graph of

P2P system should not be degenerated (e.g. all peers cluster in one area)

and thus the virtual search tree with your node as root should be balanced,

atleast with high probabilty.

unbalanced

balanced

Network Security, WS 2008/09, Chapter 9 27Peer-to-Peer Systems and Security, SS 2009, Chapter 0 27Peer-to-Peer Systems and Security, Summer 2011, Chapter 1 27

Chord – Theory – Join

Theorem (Chord Join)

With high probabilty, each node joining or leaving an N node Chord

network will use messages to re-establish the Chord routing

invariants and finger tables.

Proof sketch

The basic idea is to show the following.

Once the new node has contact to its rendenzvous-peer its finger table

has to be created. This consists w.h.p. of O(logN) entries that need

O(logN) lookup each, thus ending up at O(log2N).

Similar assumptions hold for the links to the new node that have to be

modified.

The data transfer of items is not part of the theorem. Only one node (the

predecessor) has to be contacted for the transfer.

)(log2 NO

Network Security, WS 2008/09, Chapter 9 28Peer-to-Peer Systems and Security, SS 2009, Chapter 0 28Peer-to-Peer Systems and Security, Summer 2011, Chapter 1 28

Layers in Structured P2P Systems / Common API

Layers in Structured P2P

Systems / Common API

Network Security, WS 2008/09, Chapter 9 29Peer-to-Peer Systems and Security, SS 2009, Chapter 0 29Peer-to-Peer Systems and Security, Summer 2011, Chapter 1 29

Key-Based Routing

DHT and Routing

 A hash table is an application where one can store and retreive data.

 DHTs need Key-Based Routing for their operations.

Key-Based Routing (KBR)

 Route and deliver messages to a key.

 The key is represented by the node that is responsible for the key.

 KBRs are usually structured networks.

 Most DHT proposals describe a Key-Based Routing system.

Identifier-Based Routing

 Like KBR, but to node with given ID.

 Delivery fails if node does not exist.

Network Security, WS 2008/09, Chapter 9 30Peer-to-Peer Systems and Security, SS 2009, Chapter 0 30Peer-to-Peer Systems and Security, Summer 2011, Chapter 1 30

Common API – Abstractions and APIs

Common API

 Idea to represent a standard set of functions with well-defined
semantics to ease the development of Peer-to-Peer applications.

 No widespread use though, except for Freepastry.

 Differentiate between different layers, e.g. DHT and KBR.

 Example APIs

 Key-based Routing API

• Functionality to route and deliver messages to keys.

 DHT API

• Hash table functionality

Tier 2

Tier 1

Tier 0 Key-based Routing API

DHT CAST

i3CFS OceanstorePAST

Network Security, WS 2008/09, Chapter 9 31Peer-to-Peer Systems and Security, SS 2009, Chapter 0 31Peer-to-Peer Systems and Security, Summer 2011, Chapter 1 31

Key-based Routing API – Data Types

Data Types

 key

 160 bit string

 nodehandle

 Encapsulates the transport address and nodeID of a node

 NodeID is of type key.

 msg

 Messages contain data of arbitrary length.

Conventions

 For read-only parameters: p

 For read-write parameters: p

 Ordered set p of type T: T[] p

 Root of a key = responsible node of key

Network Security, WS 2008/09, Chapter 9 32Peer-to-Peer Systems and Security, SS 2009, Chapter 0 32Peer-to-Peer Systems and Security, Summer 2011, Chapter 1 32

Key-based Routing API – Routing Messages

Routing messages

 void route(key K, msg M, nodehandle hint)

 Send msg to root of key K.

 hint is an optional proposal for the next hop

 Either K of hint may be null

 void forward(key K, msg M, nodehandle nextHopNode)

 Upcall to the application

 Initiated before forwarding M

 Application may modify the message and parameters.

 void deliver(key K, msg M)

 Upcall to the application.

 Invoked on the node that is root for K when M arrives.

Other definitions in KBR API

 Not in the lecture: API for route table maintenance (route state
access), etc.

Network Security, WS 2008/09, Chapter 9 33Peer-to-Peer Systems and Security, SS 2009, Chapter 0 33Peer-to-Peer Systems and Security, Summer 2011, Chapter 1 33

DHT API

DHT API

 put(key,data)

 remove(key)

 value = get(key)

DHT API with KBR API functions

 PUT

 Send a message with the put information to the root of the key.

 No need for a hint (== next hop)

 route(key,[PUT,value,S],null)

 GET

 The requesting node uses route to find the root, the root returns the value

directly using the hint option.

 route(key,[GET,S],null)

 route(null,[value,R],S)

Key-based Routing API

DHT

Application

Network Security, WS 2008/09, Chapter 9 34Peer-to-Peer Systems and Security, SS 2009, Chapter 0 34Peer-to-Peer Systems and Security, Summer 2011, Chapter 1 34

Typical usage and interaction of DHT and KBR

1. Put(key=1243, „Video.avi download at
134.2.3.4:29044“)

Application

DHT

KBR

2. route(1243, „PUT 1243?
reply to 134.2.3.4:29044“)

4. deliver(1243, „PUT 1243? reply to
134.2.3.4:29044“)

DHT

3a.

3b.

3c.

5. My ID is 1199, my locator is 23.43.56.5:30409

6. PUT 1243, „Video.avi download at 134.2.3.4:29044 “

1203
120

597
806

Network Security, WS 2008/09, Chapter 9 35Peer-to-Peer Systems and Security, SS 2009, Chapter 0 35Peer-to-Peer Systems and Security, Summer 2011, Chapter 1 35

Designing a Key-Based Routing System (KBR)

Designing a Key-Based Routing

System (KBR)

Network Security, WS 2008/09, Chapter 9 36Peer-to-Peer Systems and Security, SS 2009, Chapter 0 36Peer-to-Peer Systems and Security, Summer 2011, Chapter 1 36

Structured Key-based Routing

Designing a structured KBR

1. Cluster nodes with similar IDs

 IDs

 Metric for IDs

 Connect neighbors and neighboring clusters

2. Speed-up

 Connect distant clusters

 Know more nodes or ask more nodes

3. Robustness

 Know more nodes

 Maintenance

KBRs differ in

 Topology

 Maintenance

 Lookup strategy / Message Forwarding

Network Security, WS 2008/09, Chapter 9 37Peer-to-Peer Systems and Security, SS 2009, Chapter 0 37Peer-to-Peer Systems and Security, Summer 2011, Chapter 1 37

Topology and Maintenance

Topology

 Structure of the graph and embedding of IDs

 Major issues in the next slides.

Maintenance

 Check if other nodes still exist.

 Heartbeat messages, etc.

 If not, repair the network.

 Check if structure is still correct.

 If not, repair the network.

 Multiple nodes per direction / buckets

 Know multiple nodes, so that failures can be

circumvented once a packet needs to travel in

this direction.

 …

Network Security, WS 2008/09, Chapter 9 38Peer-to-Peer Systems and Security, SS 2009, Chapter 0 38Peer-to-Peer Systems and Security, Summer 2011, Chapter 1 38

recursive, lookup back to source

Lookup / Message Forwarding

Lookup strategy

 Recursive

 Lookup is forwarded though the network.

 Answer may be sent back directly to source (standard)
or through a path in the network.

 Pro: uses existing connections

 Con: message loss / failures harder to detect

 Iterative

 Nodes are either the target or reply with next hop list.

 The source does the lookup itself.

 Pro: source has to work, source detects failures

 Con: more messages, always connection setups

Lookup robustness and speed-up

 Concurrent lookup

 Ask k neighbors to forward or answer the query.

 If less than k-1 nodes/paths fail or are slow, still one will
answer in time.

 Caching of short-cuts and content

 Cache target or intermediate nodes for future lookups.

…
…

…

…

recursive, direct answer

recursive, same path back

iterative

Network Security, WS 2008/09, Chapter 9 39Peer-to-Peer Systems and Security, SS 2009, Chapter 0 39Peer-to-Peer Systems and Security, Summer 2011, Chapter 1 39

Other Structured DHTs / KBRs

Other structured DHTs /

KBRs

Network Security, WS 2008/09, Chapter 9 40Peer-to-Peer Systems and Security, SS 2009, Chapter 0 40Peer-to-Peer Systems and Security, Summer 2011, Chapter 1 40

The Content-Adressable Network (CAN)

The Content-Adressable Network (CAN)

 Proposed by Ratnasamy et al in 2001

 Identifyer space: d-dimensional torus

 Management of identifyers

 A node owns a zone of which its

identifyer is a member.

 Graph Embedding

 For each 2d directions, link to the owner

of a neighbor zone in that direction.

 Routing Strategy

 Select as next hop the neighbor closest to the target

(Euklidean distance).

 Maintenance

 Join

• A nodes selects a random point and routes to that point.

• The zone is then split into two equal parts.

Network Security, WS 2008/09, Chapter 9 41Peer-to-Peer Systems and Security, SS 2009, Chapter 0 41Peer-to-Peer Systems and Security, Summer 2011, Chapter 1 41

The Content-Adressable Network (CAN)

The Content-Adressable Network (CAN) – Results

 State per node: O(d)

 Average path length:

 Dimensions d

 Increase in d decreases path length and
increases fault taulerance.

 Realities r

 Idea: Run r CANs (with different hash
functions for the mapping of nodes and items)
in parallel with same nodes and data.

 Results: With respect to path lengths,
increase in dimension is better.

 Idea: Allow p peers per zone

 Avg. path length reduced by factor O(p).

 Per-hop latency can be reduced as links with
lowest latency can be selected in each direction.

 Increase in p, increase in fault tolerance.

)(

1

ddnO

Ratnasamy et al (2001)

Network Security, WS 2008/09, Chapter 9 42Peer-to-Peer Systems and Security, SS 2009, Chapter 0 42Peer-to-Peer Systems and Security, Summer 2011, Chapter 1 42

Tree-based Topology

 Also called Prefix-based routing or Plaxton„s Mesh

 Idea

 Maintain at least one link to each area with a prefix that is a shortest string

not prefix to the node_ID

 Example

• Node_ID = 011010

• Links to 1*, 00*, 010*,0111*,01100*,011011

 Examples

 Pastry

 Tapestry

1*

00* 010*

0110*

0 1

Network Security, WS 2008/09, Chapter 9 43Peer-to-Peer Systems and Security, SS 2009, Chapter 0 43Peer-to-Peer Systems and Security, Summer 2011, Chapter 1 43

Pastry

Pastry

 Identifyer space , usually m=128.

 Management of identifyers

 The numerically closest node is responsible for a key.

 Graph Embedding

 Routing Table R

• Let b bits be a character. The ID is then represented as a string of b-bit

characters.

• Idea: for each shared prefix length, have a link to one node in each interval with

a common prefix of that length and a different next character.

• Example: Node ID = 1023

]12,0[m

Shared Prefix

length

Next character

after common prefix
0

1

bm /

2
…

0 1 2 … 12 bf

-0-231 ------------ -2-333 -f-023

----------- 1-1-23 1-2-30 1-f-01

10-0-1 10-1-1 ------------- 10-f-3

… … … …

This is the table of the

IDs that we use to

select the next hop ID,

for each ID there is also

the information IP:Port

Network Security, WS 2008/09, Chapter 9 44Peer-to-Peer Systems and Security, SS 2009, Chapter 0 44Peer-to-Peer Systems and Security, Summer 2011, Chapter 1 44

Pastry

 Leaf set L

• Link to L/2 closest numerically smaller nodeIDs and to L/2 closest numerically
larger nodeIDs

• L usually 2^b or 2^(b+1)

 Neighbor set M

• Maintain a set of nodes that are the closest known nodes according to some
numeric proximity measure (IP hops or RTT)

• [M| usually 2^b or 2^(b+1)

 Routing strategy

 Let ID be the target and the current node n is not responsible

 IF ID is within the leaf set THEN

• Forward to closest node in leaf set

 ELSE

• Use routing table and forward message to a node that shares a longer common
prefix with ID than n

• If that is not possible use a node from L, R or M that does not share a longer
prefix with ID, but is numerically closer to ID than n

Network Security, WS 2008/09, Chapter 9 45Peer-to-Peer Systems and Security, SS 2009, Chapter 0 45Peer-to-Peer Systems and Security, Summer 2011, Chapter 1 45

Pastry - Routing

 Let b=2 (2-bit char.) and m=8 (4 characters), |L| = 2,|M|=2, node n=1323

0 1 2
3

0032 0120 0312 1100 1123 1301 2000 2021 2233 3021 3111 3120 3231 3331

M L

0 1 2 3

0

1

2

3

0032 - 2021 3120

n/a 1100 n/a -

1301 n/a - n/a

-n/a n/a n/a

with

n/a no node in interval

- prefix of node n, so no link

1323

R

<= row 0 = first character in ID

<= row 1 = second char.

<= row 2

 to other subtrees of root

 to other subtrees of own subtree

 etc.

For a link to an interval

any node in the interval

can be selected. So,

simply select one you

know. Instead of 0032,

we could also have

chosen 0120 or 0312.

nodes

tree

Network Security, WS 2008/09, Chapter 9 46Peer-to-Peer Systems and Security, SS 2009, Chapter 0 46Peer-to-Peer Systems and Security, Summer 2011, Chapter 1 46

Pastry – Join

Join

 Say, node X wants to join.

 X knows a near Pastry node A according to the proximity metric

 X uses some external information (say WWW) to find such a node

 X first selects a node ID, we call it X_ID.

 X sends a join message to A containing X_ID.

 A forwards the join message towards X_ID.

 All nodes on the path including A reply to X with their state tables (R,M,L)

 Z is the node responsible for X_ID

 X may ask additional nodes

 X informs all nodes that need to know of X„s arrival.

continues

Network Security, WS 2008/09, Chapter 9 47Peer-to-Peer Systems and Security, SS 2009, Chapter 0 47Peer-to-Peer Systems and Security, Summer 2011, Chapter 1 47

Pastry – Join

 X uses the aquired information to

build its state tables

 Neighbor List M_X = M_A

• as X and A are close in the underlay

 Leaf set L_X = L_Z

• as X and Z are direct neighbors

 Routing table

• Row 0: 0_X = 0_A

• Row i: i_X = i_Intermediate-Hop_i

 X sends a copy of its state tables to

all nodes in R,M, and L.

 These nodes will then update their

table according to this information.

• E.g. A should add X to it neighbor list

M_A.

X
A

MA

MA

MA

X neighbor of A in underlay (real world)

A

B

C

Z X Leaf set

use A and row 0

of A to fill row 0

use B and row 1

of B to fill row 1

use C and row 2

of C to fill row 2

Network Security, WS 2008/09, Chapter 9 48Peer-to-Peer Systems and Security, SS 2009, Chapter 0 48Peer-to-Peer Systems and Security, Summer 2011, Chapter 1 48

Pastry – Locality

Locality

 Unlike most DHTs Pastry directly addresses the problem of locality, i.e.

to prefer to have local links than links that cross the planet.

 Locality is measured by proximity metrics, e.g. IP hops.

 The neighbor set of a node holds a knowledge of close nodes

according to such a proximity metric.

 Locality through the join process

 Pastry assumes that a node n that joins the networks, joins via a

geographically nearby node A.

 As this node A already prefers routing table entries with good proximity,

the state information of this node A and the other nodes is filled with nodes

that are likely to be good nodes according to the proximity measure.

 Consequence, n is likely to fill its routing table with nodes that are close.

Network Security, WS 2008/09, Chapter 9 49Peer-to-Peer Systems and Security, SS 2009, Chapter 0 49Peer-to-Peer Systems and Security, Summer 2011, Chapter 1 49

Pastry – Results

 Experimental evaluation

Rowstron & Druschel (2001)

Rowstron & Druschel (2001)

Network Security, WS 2008/09, Chapter 9 50Peer-to-Peer Systems and Security, SS 2009, Chapter 0 50Peer-to-Peer Systems and Security, Summer 2011, Chapter 1 50

Pastry

Discussion

 Routing hops

 Node state

 Low overhead for join and leave.

 Join

 Leave

)(log
2

nO b

)log)12((
2

nO b

b

)(log
2

nO b

)(log
2

nO b

Network Security, WS 2008/09, Chapter 9 51Peer-to-Peer Systems and Security, SS 2009, Chapter 0 51Peer-to-Peer Systems and Security, Summer 2011, Chapter 1 51

XOR topology

XOR topology

 Closely related to the tree topology

 XOR as distance metric

 Advantage of XOR metric

 Unidirectional, that means that for a given x and D there is only one point
y that satisfies d(x,y) = D. Lookups for same key converge to the same
path, and thus caching items along this path is good to avoid hotspots.

 Example

 Kademlia

yxyxd),(

ID space

Item is in left subtree.

Closest node is in right subtree.

Responsible node is in wrong

subtree (Leaf set across

subtrees).

With the XOR metric, however,

the item is closer to any node in its

subtree than to nodes in other

subtrees.

Network Security, WS 2008/09, Chapter 9 52Peer-to-Peer Systems and Security, SS 2009, Chapter 0 52Peer-to-Peer Systems and Security, Summer 2011, Chapter 1 52

Kademlia

Kademlia

 Identifyer space , usually m=160.

 Mapping

 proposed to use hash function sha1(.), e.g. node_ID = sha1(node_IP).

 Management of identifyers

 The resposible node is the closest node to the ID according to XOR metric.

 Graph Embedding

 k-Buckets

• For any 0 ≤ i < 160, there is a k-bucket with

up to k nodes with

• A k-bucket contains up to k nodes with their (IP, UDP port, ID).

• If a k-bucket is full and new node found, the least-recently seen node r is
pinged

– It responds node r is moved to tail and new node is discarded

– It does not respond add the new node to bucket, remove old node r.

• The strategy motivated by the fact that in many networks nodes that have been
in the network for a long time are more likely to stay than young nodes.

]12,0[m

…

Exponential

increase

in ID range

of buckets

)2,2[)_,(1 ii

XOR IDnodeIDd

…

Network Security, WS 2008/09, Chapter 9 53Peer-to-Peer Systems and Security, SS 2009, Chapter 0 53Peer-to-Peer Systems and Security, Summer 2011, Chapter 1 53

Kademlia

 Routing

 Greedy according to XOR metric

 Lookup

 Node

• The initiator of a lookup asks the alpha closest

entries from the bucket for the ID.

• They return the k-bucket or alternatively the k

closest nodes for the query in their buckets.

• This is repeated, from the nodes received the alpha

closest yet unknown nodes are also queried.

• The lookup terminates when the initiator has replys

from the k closest nodes it has seen.

 Value

• Analog, but anyone who knows the value does not

reply with k nodes, but with the value.

find(ID)

k close nodes

etc.

replies from k closest nodes

We reached the target nodes.

Network Security, WS 2008/09, Chapter 9 54Peer-to-Peer Systems and Security, SS 2009, Chapter 0 54Peer-to-Peer Systems and Security, Summer 2011, Chapter 1 54

Kademlia

 Storage & Caching

 To store a value, locate the k closest nodes to the ID via Lookup and then

store the value at these nodes.

 Values are considered softstate and need refreshing.

 Values are cached at the first node on a path that did not know it.

 Join

 Node u joins via an existing node w and they add each other to their k-

buckets.

 u performs lookup to its ID

 u refreshs all k-buckets further away than its closest neighbor.

 Maintenance

 Refresh k-buckets for which there was no contact within a certain time,

e.g. an hour

 Refresh means lookup of random ID in bucket.

Network Security, WS 2008/09, Chapter 9 55Peer-to-Peer Systems and Security, SS 2009, Chapter 0 55Peer-to-Peer Systems and Security, Summer 2011, Chapter 1 55

Kademlia

Management of k-buckets

 Kademlia does not use all 160 buckets if they are not full.

 A node starts with one bucket from 00000… to 11111….

 A bucket is split if it contains the node and the node knows
more than k nodes in the bucket.

Tolerance Zone in KAD (a Kademlia derivative used in
filesharing)

 KAD does not route to one exact ID.

 The tolerance zone is a zone around the ID.

 e.g. first 16 bits in common with ID

 Items are stored on r nodes in its tolerance zone.

 With r as the number of replicas (with one of them as
responsible host).

 Lookup needs to find one node in the tolerance zone that
knows the item.

 Problem that this may not be the node closest to the item ID.

 Searching necessary in tolerance zone.

0*: 5
11*:5

100*:2 101*:4

0 1

10

0 1

Example: buckets and size

k = 5, node 101* interval

ID

ID
item

node with item

Network Security, WS 2008/09, Chapter 9 56Peer-to-Peer Systems and Security, SS 2009, Chapter 0 56Peer-to-Peer Systems and Security, Summer 2011, Chapter 1 56

Example: Kad network in Ed2k / aMule

The Kad network

 Based on Kademlia and used in clients like aMule, etc.

 „Buddy“ function

 Firewalled or NATed clients can ask other peers to support them as „buddy“, only
one buddy allowed and client waits 5min after firewall check before requesting a
buddy.

 2-layer publishing

 Meta data (file name, file size, file type, file format, etc.)

• Keywords are extracted from file name, reference to sourceID stored at keywords (e.g.
„P2P Vorlesung“ keywords „P2P“ and „Vorlesung“)

 Sources

• Source published at sourceID = MD4_hash(compete file)

 Replication

• Root for an item are nodes in a zone with a given prefix, e.g of 8 bit. For each write, there is
a replication to 11 nodes in the zone.

 Keyword search

 Lookup for first keyword in search string, rest of the key words are used to filter
results

 No fuzzy queries, range queries, …

Network Security, WS 2008/09, Chapter 9 57Peer-to-Peer Systems and Security, SS 2009, Chapter 0 57Peer-to-Peer Systems and Security, Summer 2011, Chapter 1 57

Kademlia

Discussion

 The approach can be extended to work on a base of 2b.

 Routing hops

 Node state

 Low overhead for join and leave.

 Join

 Leave

 Kademlia is used in modern Peer-to-Peer systems like BitTorrent and

in the Edonkey/Overnet/Kad Network family.

 Resistance against Denial-of-Service attacks

 Buckets can not be filled with new bogus nodes as long as old nodes in a

bucket are still alive.

 Iterative and parallel lookup makes it hard for an attacker to block queries.

)(log nO b

)log(nbO b

)(log nO b

)(log nO b

Network Security, WS 2008/09, Chapter 9 58Peer-to-Peer Systems and Security, SS 2009, Chapter 0 58Peer-to-Peer Systems and Security, Summer 2011, Chapter 1 58

Constant-Degree KBRs

With m=O(log(n)) state and L=O(log(n)) DHTs do not achieve the

performance of random graphs/small-world graphs. Lets recap the

 Random graphs achieve L=O(log(n)) with constant degree. This is an

average and the O(logn) we give for the KBRs is a maximum with high

probability.

 Can we build structured networks with constant degree and O(logn)

hops?

We can, even with degree 2, e.g. binary trees, Viceroy (KBR based on

butterfly graph), de Bruijn graphs, Kautz graphs, Distance-Halving.

 However, short distances are not for free, constant-degree graphs

have longer average paths because they have significantly less links!

n

nm

n
L

const
n

m
random log

/log

log
~ ~

Network Security, WS 2008/09, Chapter 9 59Peer-to-Peer Systems and Security, SS 2009, Chapter 0 59Peer-to-Peer Systems and Security, Summer 2011, Chapter 1 59

Example: De Bruijn graphs

Operations

 Let be a set of symbols, say .

 Shuffle S

 Shuffle-Exchange SE

De Buijn graphs

 A node identifyer is then a fixed-length string
of these symbols.

 Each node with node_ID has links to nodes
that are either S(node_ID) or SE(node_ID).

 Formally:

 Routing

 From s=(s1 s2 s3) to t=(t1 t2 t3) use the links
((s1 s2 s3), (s2 s3 t1)) then ((s2 s3 t1), (s3 t1 t2)) then ((s3 t1 t2), (t1 t2 t3))

 kkkk

ik

stststtttsssE

ssssV

132212121

21

,...,,|))...(),...((

|)...(

),,...,(),...,,,(12321 sssssss kk

)\,,...,(),...,,,(12321 sssssss kk

}1,0{

000

001

010

110

100

101

011

111

Network Security, WS 2008/09, Chapter 9 60Peer-to-Peer Systems and Security, SS 2009, Chapter 0 60Peer-to-Peer Systems and Security, Summer 2011, Chapter 1 60

Constant-Distance KBRs

One-Hop-DHT

 Structure: Full Mesh / Clique

 All nodes know each other.

 Limited scalability due to O(n) state per node and O(n) operations per

change

 Hard to maintain for large networks.

 Authors claim that routing tables with millions of nodes are no problem with

current RAM.

 Trade-off: If one allows more than one hop to all destinations, one can

reduce the size of the routing table.

Network Security, WS 2008/09, Chapter 9 61Peer-to-Peer Systems and Security, SS 2009, Chapter 0 61Peer-to-Peer Systems and Security, Summer 2011, Chapter 1 61

Structured vs Unstructured vs Server

 Comparing DHTs with unstructured networks and central servers

Node

State

Communication

Overhead

O(n)O(1) O(logn)

O(n)

O(1)

O(logn)

Central

Server

Unstructured

w. Flooding

Structured

KBR / DHT

Gnutella-like, information can be anywhere.

Napster case, server knows everything.

Network Security, WS 2008/09, Chapter 9 62Peer-to-Peer Systems and Security, SS 2009, Chapter 0 62Peer-to-Peer Systems and Security, Summer 2011, Chapter 1 62

Ordered Indexing

Ordered Indexing

Network Security, WS 2008/09, Chapter 9 63Peer-to-Peer Systems and Security, SS 2009, Chapter 0 63Peer-to-Peer Systems and Security, Summer 2011, Chapter 1 63

DHT vs Ordered Indexing

 Common DHT use case

 ID = hash item name

 Why the hash function?

• Fixed bitlength

• Balance the items over ID space

 Problem: Find all words that start with „Peer“ is not effient in DHTs

 Other options instead of hash function

• Use DHT without hashing, but with load balancing (next chapter)

• Ordered Indexing

 Ordered Indexing

 Build an efficient structure without hashing

 Trie

 reTRIEval tree

Network Security, WS 2008/09, Chapter 9 64Peer-to-Peer Systems and Security, SS 2009, Chapter 0 64Peer-to-Peer Systems and Security, Summer 2011, Chapter 1 64

Skip List

Skip List

 A linear list is inefficient add „long-distance“ links

 Idea

 Add layers as long as there are more than 2 nodes per layer.

 A n-layer consists of a randomly selected subset of the (n-1)-layer.

• The random string for a peer corresponds to this random selction process.

– 1 means „part of this layer“

– 0 means „not part of any further layer“

 Achieves O(log n) hops with O(log n) in- and out-degree.

a b c d e f g h

111 010 101 001 110 000 100 111Random

String

Item / Node

Name

layer 0

layer 1

layer 2

layer 3

Network Security, WS 2008/09, Chapter 9 65Peer-to-Peer Systems and Security, SS 2009, Chapter 0 65Peer-to-Peer Systems and Security, Summer 2011, Chapter 1 65

Skip Graph

Skip Graph

 Adapts the skip list idea to Peer-to-Peer networks.

 Idea

 Layer 0 is a circle with all nodes.

 Recursion: Split (n-1)-layer nodes into two random sets according to the bit

of random string at position n. Each set forms again a circle.

a b c d e f g h

1110 0101 1010 0010 1101 0001 1000 1111

a c e g hb d f

d f b

f d

c g

g c

a e h

a he

a h

0 1

0 1

0 1

10

10

10

10

Num-ID =

Random String

Node

Name

Network Security, WS 2008/09, Chapter 9 66Peer-to-Peer Systems and Security, SS 2009, Chapter 0 66Peer-to-Peer Systems and Security, Summer 2011, Chapter 1 66

Skip Graph

Node Identities

 Name: arbitrary name of node (item), e.g. tum.i8.heiko

 Num-ID: random number for each node

Search for Name

 Next hop selection

 Start with the highest layer.

 IF the next hop is closer to the name and still before the
name in the order of the names (e.g. alphabetical)

 ELSE Check lower layer for next hop. ENDIF

Search for Num-ID

 Start search on lowest layer for node with correct next bit,
then go to next higher layer.

Results

 Both search operations take O(log n).

 Skip Graphs support range queries (e.g. all names from c
to e).

Example (graph on

last slide):

A looks for F

 next hop: E

E looks for F

 next hop: F

Example:

A looks for 0000

 next hop: B (0101)

B looks for 0000

 next hop: D (0010)

D looks for 0000

 next hop: F (0001)

(closest match)

