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Overview

 Routing

 Using a Structure for P2P Routing

 Hash Tables / Distributed Hash Tables

 Chord

 A structured KBR system and DHT

 Layers in Structured P2P Systems / Common API

 Other Structured DHTs / KBRs

 Pastry, Kademlia, …

 Ordered Indexing
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Routing

Routing
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Motivation

 In unstructured networks we have to search all over the network for a 

node or item as we do not know where it is. 

 Wouldn‟t it be better to be able to simply say ”Ah, to node A, go this 

way!” Yes, it would.

Usually, this problem is separated into

 Routing 

 The task to find a way on a network is called routing. The routing table is 

created using the routing protocol which gathers information about the 

network and then computes the best paths.

 Routing protocol => routing table

 Forwarding

 For a packet that has to be sent or that arrives at an intermediate node 

(router) the node directly knows the next hop where to send it to. Usually, 

this is solved using a routing table that stores this information. 
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Routing on the Internet

Scalability of the Internet Routing

 The Internet itself is not structured (no predefined structure!).

 The Internet is divided into Autonomous Systems (AS) that own a certain part 
of the IP address space.
 After applying for an adress space (at one of the registries, e.g. RIPE) the 

addresses are manually set, but the routing is automized using routing protocols.

 Distant computers only need to know the way to the AS.

 Geographically close ASes often have close IP ranges.

 Consequences
 IP addresses are not purely random, but cluster in certain areas. Due to this, we 

can group together many addresses in only one routing table entry.

 Thus, routing tables still scale, even in the core network.

AS X

AS A

AS D AS Z

AS B

AS C

211.5.67/24 211.5.88/24

80.5.67/2481.42/16
81.41/16

81.52/16

…

Routing table:
Send all 80/4 => IF0 (all from 80.0.0.0 to 96.255.255.255)

Send all 211/8 => IF0 

…..

IF0

IF1

IF2
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Routing on the Internet

 Geographic diversity of IP ranges

Freedman et.al (2005)

Large networks (> 65000)

Small networks (<< 255 IP addresses)

More than 95 % of the

small networks span less 

than 10 miles.

N.Y<->Paris
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Routing on the Internet and its relation to P2P

But here is the problem with unstructured overlay networks: If we 

introduce a routing protocol like in the Internet, we have randomly 

distributed addresses and cannot group them efficiently. The routing 

tables would not scale. 

 We need to find a way to cluster nodes with similar IDs in the Peer-

to-Peer network. 

Structured Peer-to-Peer

 Structured Peer-to-Peer networks impose the constraint of a structure 

onto the Peer-to-Peer network.

 Each node is either not in the network or in a predefined position 

based on its node ID and given by the form of the structure.
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Using Structures for P2P Routing

Using a Structure for P2P 

Routing
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Examples for structures

Ring

 Each node knows successor and predecessor.

 Sending a message

 Unless the node is the target, forward the message 

to the successor 

Tree

 Each node knows its parent and child nodes

 Sending a message

 Up the tree if you are in a wrong subtree

 Down the tree if you have the correct 

subtree as child

 This is not the way the tree-based DHTs operate!
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Making structures efficient

Local connectivity

 Neighbors in the structure ensure basic connectivity 
and clustering of similar IDs in one region.

 Connecting to more neighbors increases stability as 
nodes may leave at any time and the structure has to 
be maintained.

How long does a packet travel?

 In the ring O(n).

 In the tree O(n) unbalanced and O(logn) balanced.

Long-distance links / Shortcuts

 To reduce the diameter, introduce a set of long-
distance links at each node.

 If we use the picture of clusters of nodes that have 
similar IDs, these links efficiently interconnect these 
clusters.
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Distributed Hash Tables

Distributed Hash Tables
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Hash Table

Hash Table

 n slots (nodes) that are used to store k elements

 The n slots contain an equal share of the index space.

 Features

 Store elements, efficient amortized lookup in O(1)

 h(element) determines slot 

 Hash function h

 uniform: all slots are equally likely

 universal: propability of two hashes to be equal is 1/n

 What about adding or removing a slot?

 Need to completely repartition the hash table.

 Can we avoid repartitioning?

 Yes  Consistent Hashing.

1-5

6-10

11-15

16-20

1 5

7 9

13

17 19

1-4

5-8

9-12

13-16

1

5 7

9

13

17 1917-20

Let 17-20 be 

the new slot 

 item moved
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Consistent Hashing

Consistent Hashing

 Approach to manage nodes and items.

 Originally developped for organizing distributed webcaches.

 Circular ID space [0,1)

 Map all nodes to unit interval  [0,1)

 Map all items to unit interval [0,1)

 Assign items to nodes from their ID to the ID of their successor
 nodes responsible for [node_ID,successor_ID)

 Allows to add / remove nodes without repositioning of all nodes.

 Nodes and data share same ID space.

h(Example_Node) = 0.325

0 1

h(Example_Item) = 0.365
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Consistent Hashing – Theory – Load Balancing

Theorem „Consistent Hashing“

For any set of N nodes and K items, with high probability:

 Each nodes is responsible for at most              items 

(ε = logN for consistent hashing in the 

way we described it).

 When an (N+1)st node joins or leaves the network, responsibility for 

only O(K/N) items changes.

 
N

K
1
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Distributed Hash Tables

Distributed Hash Table (DHT)

 A Distributed Hash Table is a structured Peer-to-Peer system that 

provides hash table functionality. 

 Nodes and items share a common flat address space.

 Nodes are responsible for certain parts of the address space.

 Association of items and nodes may change due to the dynamics of the 

network.

 Lookup of an item =  routing to responsible node

 Storage of an item = lookup responsible node and then use a store 

command to store the item

• Usually, the DHT stores only reference pointers to sources of an item and not 

the item itself, e.g. „File XYZ.mpg can be found on 132.3.4.5:12345 and 

55.65.3.4:12345.“

 The terms „Structured Peer-to-Peer“ and „DHT“ are often used as 

synonyms.
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Chord

Chord
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P2P Structure: Ring-based

Ring-based Topology

 Nodes organize in a Ring.

 Links

 To neighbors in the ring for stability and basic connectivity.

 Long-distance links to achieve efficent routing.

 Examples

 Chord

 Symphony (embeds a symmetric small-world topology)

Neighborhood

 Keep the ring 

connected

Long-distance links

 bridge long distances

and reduce diameter and 

characteristic path length.
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Chord

Chord

 Identifier space               , usually m=160.

 Mapping 

 proposed to use hash function sha1(.), e.g. node_ID = sha1(node_IP). 

 Management of identifyers 

 A node is responsible for the interval (predecessor_ID,node_ID]

• Thus, the successor of an ID is responsible for the ID.

 Graph Embedding

 Neighbor set

• Successor and predecessor (required, but
predecessor only used for maintenance)

• K successors (optional)

 Finger table (Long distance links)

• Link to node responsible for 
node_ID+2i with i=1..160

• These links are thus in exponential 
distance over the link index i.

]12,0[ m

0000 = 0
0001 = 1

0010 = 2

0011 = 3

0100 = 4

0101 = 5

0110 = 6

0111 = 7

1000 = 8
1001 = 9

1010 = 10

1011 = 11

1100 = 12

1101 = 13

1110 = 14

1111 = 15+0001 = +1

+0100 = +4

+1000 = +8

+0010 = +2
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Chord – Structure 

 Routing strategy

 Greedy, goal is to find the successor of an ID.

 Maintenance

 Join & Stabilization will be discussed on the next slides.

0000 = 0
0001 = 1

0010 = 2

0011 = 3

0100 = 4

0101 = 5

0110 = 6

0111 = 7

1000 = 8
1001 = 9

1010 = 10

1011 = 11

1100 = 12

1101 = 13

1110 = 14

1111 = 15+0001 = +1

+0100 = +4

+1000 = +8

+0010 = +2
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Chord – Lookup

Lookup

 Goal: Find successor(ID)

 Method

 Node n either initiates or 

receives the query. If n is  

successor(ID), then we 

reached the target. 

 IF successor(n) == 

successor(ID) THEN

• Forward to successor(n).

 ELSE

• The next hop is the closest 

preceeding finger n‘ of ID in 

the finger table of node n.

• Call n„.find_successor(ID)

0000
0001

0010

0011

0100

0101

0110

0111

1000
1001

1010

1011

1100

1101

1110

1111

0011

01011001

1011

1110
0001

0000

0011

1001.find_successor(0100)

0010.find_successor(0100)

0011.find_successor(0100)

We reached 

the target,

item 0100 

does not 

exist.
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Chord – Join 

Join

 Node n wants to join the network

 n_ID is hash of its IP address (or 

randomly selected) 

 n contacts n„ with n„ already in the 

network

 n„ has been found via some 

bootstrapping mechanism

 If no node exists, n starts a new empty 

network.

 n uses n„ to build its finger table

• n„ does the lookups for successor(finger)

 n contacts its successor s, they divide 

the interval and n copies the data it is 

responsible for from s. 

 n then contacts its predecessor and the 

predecessors of IDs that are likely to be 

required to link to n ( ID – 2^i).

0000
0001

0010

0011

0100

0101

0110

0111

1000
1001

1010

1011

1100

1101

1110

1111

0011

01011001

1011

1110
0001

0000

0011

1011

ID is 1100

successor(1100+1) -> 1111

successor(1100+2) -> 1111

successor(1100+4) -> 0010
successor(1100+8) -> 0110

n„ is 0110, 

join via n„

predecessor(1100) -> 1001
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Chord – Stabilization 

Stabilization

 The stabilization is used to correct and 

maintain the finger tables. The goal is to 

converge to the correct fingers despite 

changes in the network.

 Pseudocode

0000
0001

0010

0011

0100

0101

0110

0111

1000
1001

1010

1011

1100

1101

1110

1111

0011

01011001

1011

1110
0001

0000

0011

Some definitions for the pseudocode:

finger[i].start = n+2 î

finger[i].node = ID of node in finger table, >= n+2 î
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Chord – Failure and Replication

Failure of a node

 Maintain a successor list with r successors

 Use successor list to handle the failure / leave of successor

 For the time from failure until stabilization repaired the network 
structure, the authors proposed to introduce timeout for messages and 
use a less-optimal node or other successor as next hop.

Replication

 Store items also on the r successors

 Has to be done by higher layer software though as Chord only does 
the Key-Based Routing part.
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Chord – Theory – Lookup  

Theorem (Chord Lookup)

With high probability, the number of nodes that has to be contacted to find 
a successor of an ID k in an N node Chord network is O(logN).

Proof

 Suppose, node n wishes to resolve query for successor of k. Let p be 
the node that immediately precedes k.

 If n != p then 

 n forwards the query to the closest predecessor of k

 Suppose that p is in the i-th finger interval of n and that this finger is f.

 d(n,f) > 2^i and that 2^i>d(f,p)  d(n,p) = d(n,f)+d(f,p) > 2 d(f,p)

 Thus, the distance is at least halved in each step. 

continues

n

succ(k)

k

p=pred(k) < n + 2^(i+1) otherwise n would have used finger i+1
fn+2^i

n+2^(i+1) (worst case assumption that k is larger)d(n,f) > 2 î

d(f,p) < 2 î
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Chord – Theory – Lookup

 Now, we consider node n and item k to be random. We show that 

w.h.p. the number of forwardings will be O(logN).

 After logN forwardings distance was at least halved logN times. Thus, the 

distance will be reduced to at most

 The exptected number of nodes in that area is 1 and the number of nodes 

is O(logN) w.h.p.

• The latter follows from using the Chernoff bound on N Bernoulli experiments if 

node is in or not in the interval (hit with probability 1/N).

• With high probability means that the probability that the assumption is wrong 

converges to 0 with 1 / (a polynomial) or alternatively that there is a constant c

so that the error probability is bounded by      .

 Thus, w.h.p. we need at most O(logN) more steps.

 Thus, w.h.p. we the end up with O(logN) nodes contacted.

N

mN

m 2

2

1
2

log










CN

1
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Chord / All structured P2P – Theory – Lookup

 Chord is assumed to half the distance per step

Generalization

 Any structured Peer-to-Peer system that halves the distance per O(1) 

steps achieves O(logn) lookup.

 The basis of the logarithm depends on the fraction of search space that is

left after one step.

 Please note: To achieve this „tree-like“ search performance , the graph of

P2P system should not be degenerated (e.g. all peers cluster in one area) 

and thus the virtual search tree with your node as root should be balanced, 

atleast with high probabilty.

unbalanced

balanced
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Chord – Theory – Join 

Theorem (Chord Join)

With high probabilty, each node joining or leaving an N node Chord 

network will use                 messages to re-establish the Chord routing 

invariants and finger tables.

Proof sketch

The basic idea is to show the following.

Once the new node has contact to its rendenzvous-peer its finger table 

has to be created. This consists w.h.p. of O(logN) entries that need 

O(logN) lookup each, thus ending up at O(log2N).

Similar assumptions hold for the links to the new node that have to be 

modified.

The data transfer of items is not part of the theorem. Only one node (the 

predecessor) has to be contacted for the transfer.

)(log2 NO
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Layers in Structured P2P Systems / Common API

Layers in Structured P2P 

Systems / Common API
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Key-Based Routing

DHT and Routing

 A hash table is an application where one can store and retreive data.

 DHTs need Key-Based Routing for their operations.

Key-Based Routing (KBR)

 Route and deliver messages to a key.

 The key is represented by the node that is responsible for the key.

 KBRs are usually structured networks.

 Most DHT proposals describe a Key-Based Routing system.

Identifier-Based Routing

 Like KBR, but to node with given ID.

 Delivery fails if node does not exist.
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Common API – Abstractions and APIs

Common API

 Idea to represent a standard set of functions with well-defined 
semantics to ease the development of Peer-to-Peer applications.

 No widespread use though, except for Freepastry.

 Differentiate between different layers, e.g. DHT and KBR.

 Example APIs

 Key-based Routing API

• Functionality to route and deliver messages to keys.

 DHT API

• Hash table functionality

Tier 2

Tier 1

Tier 0 Key-based Routing API

DHT CAST

i3CFS OceanstorePAST
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Key-based Routing API – Data Types

Data Types

 key

 160 bit string

 nodehandle

 Encapsulates the transport address and nodeID of a node

 NodeID is of type key.

 msg

 Messages contain data of arbitrary length.

Conventions

 For read-only parameters:  p

 For read-write parameters:  p

 Ordered set p of type T: T[ ] p

 Root of a key = responsible node of key
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Key-based Routing API – Routing Messages

Routing messages

 void route(key  K, msg  M, nodehandle  hint)

 Send msg to root of key K. 

 hint is an optional proposal for the next hop

 Either K of hint may be null

 void forward(key  K, msg  M, nodehandle  nextHopNode)

 Upcall to the application

 Initiated before forwarding M

 Application may modify the message and parameters.

 void deliver(key  K, msg  M)

 Upcall to the application.

 Invoked on the node that is root for K when M arrives.

Other definitions in KBR API

 Not in the lecture: API for route table maintenance (route state 
access), etc. 
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DHT API

DHT API

 put(key,data)

 remove(key)

 value = get(key)

DHT API with KBR API functions

 PUT

 Send a message with the put information to the root of the key.

 No need for a hint (== next hop)

 route(key,[PUT,value,S],null)

 GET

 The requesting node uses route to find the root, the root returns the value 

directly using the hint option.

 route(key,[GET,S],null)

 route(null,[value,R],S)

Key-based Routing API

DHT

Application
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Typical usage and interaction of DHT and KBR

1.  Put(key=1243, „Video.avi download at
134.2.3.4:29044“)

Application

DHT

KBR

2. route(1243, „PUT 1243?
reply to 134.2.3.4:29044“)

4. deliver(1243, „PUT 1243? reply to
134.2.3.4:29044“)

DHT

3a.

3b.

3c.

5.  My ID is 1199, my locator is 23.43.56.5:30409

6.  PUT 1243, „Video.avi download at 134.2.3.4:29044 “

1203
120

597
806
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Designing a Key-Based Routing System (KBR)

Designing a Key-Based Routing 

System (KBR)
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Structured Key-based Routing

Designing a structured KBR

1. Cluster nodes with similar IDs

 IDs

 Metric for IDs

 Connect neighbors and neighboring clusters

2. Speed-up

 Connect distant clusters

 Know more nodes or ask more nodes

3. Robustness

 Know more nodes

 Maintenance

KBRs differ in

 Topology

 Maintenance

 Lookup strategy / Message Forwarding
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Topology and Maintenance

Topology

 Structure of the graph and embedding of IDs

 Major issues in the next slides.

Maintenance

 Check if other nodes still exist.

 Heartbeat messages, etc.

 If not, repair the network.

 Check if structure is still correct.

 If not, repair the network.

 Multiple nodes per direction / buckets

 Know multiple nodes, so that failures can be 

circumvented once a packet needs to travel in 

this direction.

 …
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recursive, lookup back to source

Lookup / Message Forwarding

Lookup strategy

 Recursive

 Lookup is forwarded though the network.

 Answer may be sent back directly to source (standard) 
or through a path in the network.

 Pro: uses existing connections

 Con: message loss / failures harder to detect

 Iterative

 Nodes are either the target or reply with next hop list.

 The source does the lookup itself.

 Pro: source has to work, source detects failures

 Con: more messages, always connection setups

Lookup robustness and speed-up

 Concurrent lookup

 Ask k neighbors to forward or answer the query.

 If less than k-1 nodes/paths fail or are slow, still one will 
answer in time.

 Caching of short-cuts and content

 Cache target or intermediate nodes for future lookups.

…
…

…

…

recursive, direct answer

recursive, same path back

iterative
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Other Structured DHTs / KBRs

Other structured DHTs / 

KBRs
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The Content-Adressable Network (CAN)

The Content-Adressable Network (CAN)

 Proposed by Ratnasamy et al in 2001

 Identifyer space: d-dimensional torus

 Management of identifyers

 A node owns a zone of which its

identifyer is a member. 

 Graph Embedding

 For each 2d directions, link to the owner

of a neighbor zone in that direction.

 Routing Strategy

 Select as next hop the neighbor closest to the target

(Euklidean distance).

 Maintenance

 Join

• A nodes selects a random point and routes to that point.

• The zone is then split into two equal parts.
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The Content-Adressable Network (CAN)

The Content-Adressable Network (CAN) – Results

 State per node: O(d)

 Average path length: 

 Dimensions d

 Increase in d decreases path length and
increases fault taulerance.

 Realities r

 Idea: Run r CANs (with different hash
functions for the mapping of nodes and items) 
in parallel with same nodes and data.

 Results: With respect to path lengths, 
increase in dimension is better.

 Idea: Allow p peers per zone

 Avg. path length reduced by factor O(p).

 Per-hop latency can be reduced as links with
lowest latency can be selected in each direction.

 Increase in p, increase in fault tolerance.

)(

1

ddnO

Ratnasamy et al (2001)
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Tree-based Topology

 Also called Prefix-based routing or Plaxton„s Mesh

 Idea

 Maintain at least one link to each area with a prefix that is a shortest string 

not prefix to the node_ID

 Example

• Node_ID = 011010

• Links to 1*, 00*, 010*,0111*,01100*,011011

 Examples

 Pastry

 Tapestry

1*

00* 010*

0110*

0 1
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Pastry

Pastry

 Identifyer space               , usually m=128.

 Management of identifyers 

 The numerically closest node is responsible for a key.

 Graph Embedding

 Routing Table R

• Let b bits be a character. The ID is then represented as a string of b-bit 

characters.

• Idea: for each shared prefix length, have a link to one node in each interval with 

a common prefix of that length and a different next character.

• Example: Node ID = 1023

]12,0[ m

Shared Prefix 

length

Next character

after common prefix
0

1

bm /

2
…

0 1 2 … 12  bf

-0-231 ------------ -2-333 -f-023

----------- 1-1-23 1-2-30 1-f-01

10-0-1 10-1-1 ------------- 10-f-3

… … … …

This is the table of the 

IDs that we use to 

select the next hop ID, 

for each ID there is also 

the information IP:Port
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Pastry

 Leaf set L

• Link to L/2 closest numerically smaller nodeIDs and to L/2 closest numerically 
larger nodeIDs

• L usually 2^b or 2^(b+1)

 Neighbor set M

• Maintain a set of nodes that are the closest known nodes according to  some 
numeric proximity measure (IP hops or RTT)

• [M| usually 2^b or 2^(b+1)

 Routing strategy

 Let ID be the target and the current node n is not responsible

 IF ID is within the leaf set THEN

• Forward to closest node in leaf set

 ELSE

• Use routing table and forward message to a node that shares a longer common 
prefix with ID than n

• If that is not possible use a node from L, R or M that does not share a longer 
prefix with ID, but is numerically closer to ID than n
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Pastry - Routing

 Let b=2 (2-bit char.) and m=8 (4 characters), |L| = 2,|M|=2, node n=1323

0 1 2
3

0032 0120 0312 1100 1123 1301 2000 2021 2233 3021 3111 3120 3231 3331

M L

0 1 2 3

0

1

2

3

0032 - 2021 3120

n/a 1100 n/a -

1301 n/a - n/a

-n/a n/a n/a

with

n/a   no node in interval

- prefix of node n, so no link

1323

R

<= row 0 = first character in ID

<= row 1 = second char.

<= row 2

 to other subtrees of root

 to other subtrees of own subtree

 etc.

For a link to an interval

any node in the interval

can be selected. So, 

simply select one you 

know. Instead of 0032,

we could also have 

chosen 0120 or 0312.

nodes

tree
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Pastry – Join 

Join

 Say, node X wants to join.

 X knows a near Pastry node A according to the proximity metric

 X uses some external information (say WWW)  to find such a node

 X first selects a node ID, we call it X_ID.

 X sends a join message to A containing X_ID.

 A forwards the join message towards X_ID.

 All nodes on the path including A reply to X with their state tables (R,M,L)

 Z is the node responsible for X_ID

 X may ask additional nodes 

 X informs all nodes that need to know of X„s arrival. 

continues



Network Security, WS 2008/09, Chapter 9 47Peer-to-Peer Systems and Security, SS 2009, Chapter 0 47Peer-to-Peer Systems and Security, Summer 2011, Chapter 1 47

Pastry – Join

 X uses the aquired information to 

build its state tables

 Neighbor List M_X = M_A

• as X and A are close in the underlay

 Leaf set L_X = L_Z

• as X and Z are direct neighbors

 Routing table

• Row 0:  0_X = 0_A  

• Row i:    i_X = i_Intermediate-Hop_i

 X sends a copy of its state tables to 

all nodes in R,M, and L. 

 These nodes will then update their 

table according to this information.

• E.g. A should add X to it neighbor list 

M_A.

X
A

MA

MA

MA

X neighbor of A in underlay (real world)

A

B

C

Z X Leaf set

use A and row 0 

of A to fill row 0

use B and row 1 

of B to fill row 1

use C and row 2 

of C to fill row 2
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Pastry – Locality

Locality

 Unlike most DHTs Pastry directly addresses the problem of locality, i.e. 

to prefer to have local links than links that cross the planet.

 Locality is measured by proximity metrics, e.g. IP hops.

 The neighbor set of a node holds a knowledge of  close nodes 

according to such a proximity metric.

 Locality through the join process

 Pastry assumes that a node n that joins the networks, joins via a 

geographically nearby node A.

 As this node A already prefers routing table entries with good proximity, 

the state information of this node A and the other nodes is filled with nodes 

that are likely to be good nodes according to the proximity measure.

 Consequence, n is likely to fill its routing table with nodes that are close.
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Pastry – Results

 Experimental evaluation

Rowstron & Druschel (2001)

Rowstron & Druschel (2001)



Network Security, WS 2008/09, Chapter 9 50Peer-to-Peer Systems and Security, SS 2009, Chapter 0 50Peer-to-Peer Systems and Security, Summer 2011, Chapter 1 50

Pastry 

Discussion

 Routing hops

 Node state 

 Low overhead for join and leave.

 Join 

 Leave

)(log
2

nO b

)log)12((
2

nO b

b 

)(log
2

nO b

)(log
2

nO b
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XOR topology

XOR topology

 Closely related to the tree topology

 XOR as distance metric

 Advantage of XOR metric

 Unidirectional, that means that for a given x and D there is only one point 
y that satisfies d(x,y) = D.  Lookups for same key converge to the same 
path, and thus caching items along this path is good to avoid hotspots.

 Example

 Kademlia

yxyxd ),(

ID space

Item     is in left subtree.

Closest node is in right subtree. 

Responsible node is in wrong 

subtree ( Leaf set across 

subtrees).

With the XOR metric, however, 

the item is closer to any node in its 

subtree than to nodes in other 

subtrees.
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Kademlia

Kademlia

 Identifyer space               , usually m=160.

 Mapping 

 proposed to use hash function sha1(.), e.g. node_ID = sha1(node_IP). 

 Management of identifyers 

 The resposible node is the closest node to the ID according to XOR metric.

 Graph Embedding

 k-Buckets

• For any 0 ≤ i < 160, there is a k-bucket with 

up to k nodes with

• A k-bucket contains up to k nodes with their (IP, UDP port, ID).

• If a k-bucket is full and new node found, the least-recently seen node r is 
pinged

– It responds  node r is moved to tail and new node is discarded

– It does not respond  add the new node to bucket, remove old node r.

• The strategy motivated by the fact that in many networks nodes that have been 
in the network for a long time are more likely to stay than young nodes.

]12,0[ m

…

Exponential

increase 

in ID range 

of buckets

)2,2[)_,( 1 ii

XOR IDnodeIDd

…
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Kademlia

 Routing

 Greedy according to XOR metric

 Lookup

 Node

• The initiator of a lookup asks the alpha closest 

entries from the bucket for the ID. 

• They return the k-bucket or alternatively the k 

closest nodes for the query in their buckets.

• This is repeated, from the nodes received the alpha 

closest yet unknown nodes are also queried.

• The lookup terminates when the initiator has replys 

from the k closest nodes it has seen.

 Value

• Analog, but anyone who knows the value does not 

reply with k nodes, but with the value.

find(ID)

k close nodes

etc.

replies from k closest nodes

We reached the target nodes.
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Kademlia

 Storage & Caching

 To store a value, locate the k closest nodes to the ID via Lookup and then 

store the value at these nodes. 

 Values are considered softstate and need refreshing.

 Values are cached at the first node on a path that did not know it.

 Join

 Node u joins via an existing node w and they add each other to their k-

buckets. 

 u performs lookup to its ID

 u refreshs all k-buckets further away than its closest neighbor.

 Maintenance

 Refresh k-buckets for which there was no contact within a certain time, 

e.g. an hour

 Refresh means lookup of random ID in bucket.
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Kademlia

Management of k-buckets

 Kademlia does not use all 160 buckets if they are not full.

 A node starts with one bucket from 00000… to 11111….

 A bucket is split if it contains the node and the node knows 
more than k nodes in the bucket. 

Tolerance Zone in KAD (a Kademlia derivative used in 
filesharing)

 KAD does not route to one exact ID.

 The tolerance zone is a zone around the ID.

 e.g. first 16 bits in common with ID

 Items are stored on r nodes in its tolerance zone.

 With r as the number of replicas (with one of them as 
responsible host).

 Lookup needs to find one node in the tolerance zone that 
knows the item.

 Problem that this may not be the node closest to the item ID.

 Searching necessary in tolerance zone.

0*: 5
11*:5

100*:2 101*:4

0 1

10

0 1

Example: buckets and size

k = 5, node 101* interval

ID

ID
item

node with item
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Example: Kad network in Ed2k / aMule

The Kad network

 Based on Kademlia and used in clients like aMule, etc.

 „Buddy“ function

 Firewalled or NATed clients can ask other peers to support them as „buddy“, only 
one buddy allowed and client waits 5min after firewall check before requesting a 
buddy.

 2-layer publishing

 Meta data (file name, file size, file type, file format, etc.)

• Keywords are extracted from file name, reference to sourceID stored at keywords (e.g. 
„P2P Vorlesung“  keywords „P2P“ and „Vorlesung“)

 Sources

• Source published at sourceID = MD4_hash(compete file) 

 Replication

• Root for an item are nodes in a zone with a given prefix, e.g of 8 bit. For each write, there is 
a replication to 11 nodes in the zone. 

 Keyword search

 Lookup for first keyword in search string, rest of the key words are used to filter 
results

 No fuzzy queries, range queries, … 
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Kademlia

Discussion

 The approach can be extended to work on a base of 2b.

 Routing hops

 Node state 

 Low overhead for join and leave.

 Join 

 Leave

 Kademlia is used in modern Peer-to-Peer systems like BitTorrent and 

in the Edonkey/Overnet/Kad Network family.

 Resistance against Denial-of-Service attacks

 Buckets can not be filled with new bogus nodes as long as old nodes in a 

bucket are still alive.

 Iterative and parallel lookup makes it hard for an attacker to block queries.

)(log nO b

)log( nbO b

)(log nO b

)(log nO b
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Constant-Degree KBRs

With m=O(log(n)) state and L=O(log(n)) DHTs do not achieve the 

performance of random graphs/small-world graphs. Lets recap the 

 Random graphs achieve L=O(log(n)) with constant degree. This is an 

average and the O(logn) we give for the KBRs is a maximum with high 

probability. 

 Can we build structured networks with constant degree and O(logn) 

hops? 

We can, even with degree 2, e.g. binary trees, Viceroy (KBR based on 

butterfly graph), de Bruijn graphs, Kautz graphs, Distance-Halving.

 However, short distances are not for free, constant-degree graphs 

have longer average paths because they have significantly less links!

 
n

nm

n
L

const
n

m
random log

/log

log
~ ~
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Example: De Bruijn graphs

Operations

 Let     be a set of symbols, say              . 

 Shuffle S

 Shuffle-Exchange SE

De Buijn graphs

 A node identifyer is then a fixed-length string 
of these symbols. 

 Each node with node_ID has links to nodes 
that are either S(node_ID) or SE(node_ID).

 Formally:

 Routing

 From s=(s1 s2 s3 ) to t=(t1 t2 t3 ) use the links 
((s1 s2 s3 ), (s2 s3 t1))  then ((s2 s3 t1), (s3 t1 t2)) then ((s3 t1 t2), (t1 t2 t3 ))

 

 kkkk

ik

stststtttsssE

ssssV





132212121

21

,...,,|))...(),...((

|)...(

),,...,(),...,,,( 12321 sssssss kk 

)\,,...,(),...,,,( 12321 sssssss kk 

}1,0{

000

001

010

110

100

101

011

111
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Constant-Distance KBRs

One-Hop-DHT

 Structure: Full Mesh / Clique

 All nodes know each other.

 Limited scalability due to O(n) state per node and O(n) operations per 

change

 Hard to maintain for large networks.

 Authors claim that routing tables with millions of nodes are no problem with 

current RAM.

 Trade-off: If one allows more than one hop to all destinations, one can 

reduce the size of the routing table.
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Structured vs Unstructured vs Server

 Comparing DHTs with unstructured networks and central servers

Node 

State

Communication

Overhead

O(n)O(1) O(logn)

O(n)

O(1)

O(logn)

Central

Server

Unstructured

w. Flooding

Structured

KBR / DHT

Gnutella-like, information can be anywhere.

Napster case, server knows everything.
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Ordered Indexing

Ordered Indexing
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DHT vs Ordered Indexing

 Common DHT use case

 ID = hash item name

 Why the hash function?

• Fixed bitlength

• Balance the items over ID space

 Problem: Find all words that start with „Peer“ is not effient in DHTs

 Other options instead of hash function

• Use DHT without hashing, but with load balancing ( next chapter)

• Ordered Indexing

 Ordered Indexing

 Build an efficient structure without hashing

 Trie

 reTRIEval tree
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Skip List

Skip List

 A linear list is inefficient  add „long-distance“ links

 Idea

 Add layers as long as there are more than 2 nodes per layer.

 A n-layer consists of a randomly selected subset of the (n-1)-layer.

• The random string for a peer corresponds to this random selction process.

– 1 means „part of this layer“

– 0 means „not part of any further layer“

 Achieves O(log n) hops with O(log n) in- and out-degree.

a b c d e f g h

111 010 101 001 110 000 100 111Random

String

Item / Node 

Name

layer 0

layer 1

layer 2

layer 3
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Skip Graph

Skip Graph

 Adapts the skip list idea to Peer-to-Peer networks.

 Idea

 Layer 0 is a circle with all nodes.

 Recursion: Split (n-1)-layer nodes into two random sets according to the bit 

of random string at position n. Each set forms again a circle.

a b c d e f g h

1110 0101 1010 0010 1101 0001 1000 1111

a c e g hb d f

d f b

f d

c g

g c

a e h

a he

a h

0 1

0 1

0 1

10

10

10

10

Num-ID = 

Random String

Node 

Name
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Skip Graph

Node Identities

 Name: arbitrary name of node (item), e.g. tum.i8.heiko

 Num-ID: random number for each node

Search for Name

 Next hop selection

 Start with the highest layer. 

 IF the next hop is closer to the name and still before the 
name in the order of the names  (e.g. alphabetical)

 ELSE Check lower layer for next hop. ENDIF

Search for Num-ID

 Start search on lowest layer for node with correct next bit, 
then go to next higher layer.

Results

 Both search operations take O(log n).

 Skip Graphs support range queries (e.g. all names from c 
to e).

Example (graph on 

last slide):

A looks for F

 next hop: E

E looks for F

 next hop: F

Example:

A looks for 0000

 next hop: B (0101) 

B looks for 0000

 next hop: D (0010)

D looks for 0000

 next hop: F (0001) 

(closest match)


