
 Lehrstuhl für Netzarchitekturen und Netzdienste
Institut für Informatik
Technische Universität München

Peer-to-Peer Systems
and Security

IN2194

Freenet

2

Freenet - Overview

 Freenet Design Goals
– General Freenet information (all versions)
– Freenet 0.5 specifics

 Freenet “Darknet” (0.7, 0.7.5)
– Rationale
– Routing Algorithm
– Security Improvements
– Structuring the Network

 Freenet Attack
– Idea
– Implementation
– Results

3

Freenet Design Goals

 Distributed data store

 Privacy
– Disseminators
– Consumers
– Holders

 Censorship resistance

 Availability and reliability

 Scalable, efficient

 Attack resistance

4

Freenet General Overview

 P2P Network
– System made up of volunteers
– Peers offer resources in return for services

 Cross platform
– Java based, runs on anything with a Java VM
– Peers communicate over UDP (> 0.7)

 Enables users to share data privately

 Over 10 years old

 Over 2 million downloads

5

Freenet Applications

 Freesites
– Internal Freenet websites
– Freenet equivalent of WWW
– FProxy – freesite browser
– jSite - Freesite creator

 Frost
– Message board/chat system
– Feature rich, used for file sharing

 Thaw
– Convenient access to Freenet FS API
– GUI filesharing upload/download/search

 Freemail
– Email between Freenet users
– Uses normal email client

→ All applications are usable ONLY on Freenet network

6

Freenet

 Key based storage and routing
– Peers and data identified by GUID keys
– DHT api: insert, retrieve, update

 Unstructured network (Freenet 0.5)
– No default organization among nodes
– Routing essentially random
– Nodes have static connections

 Storage
– LRU eviction policy
– Popular data stays around

7

Freenet Data Storage/Retrieval

 Data identified by GUID
 GUID's are hashes of

– CHK – Content-hash Key
• SHA-1 Hash of actual file to be stored
• Low level identifier for static block

– SSK – Signed-subspace Key

• H(H(K
pub

) + H(S)) signed by K
priv

• H = Hashing function

• K
pub

= public key

• K
priv

 = private key

 CHK
– Allows files/file parts to be located
– Cannot be updated

 SSK
– Typical used for indexing of CHK's
– Create arbitrary trees of data (for large files)

8

Freenet 0.7

 Totally rewritten version of Freenet

 Focus is on privacy AND efficiency

 Main version in use today

 Data (storage identification) and applications the same

 Topology and routing new

9

Freenet 0.7 - Basics

 Overlay based on cyclic address space of size 232

 Nodes have a constant set of connections (F2F)

 All data identified by key (modulo 232)

 Data assumed to be stored at closest node

 Routing uses depth first traversal in order of proximity to key

 Friend-to-friend (F2F) networks (``darknets'')
– Makes Freenet a “restricted route” network
– Applications in other domains

10

Freenet – Small World

 Small world network assumption
– F2F “darknet” should be similar to social networks
– Provided network “friends” are real world friends

 Sparsely connected graph
– There exists a short path (O(log N)) between any pair of nodes
– Common real world phenomenon (Milgram, Watts & Strogatz)
– PGP web of trust, actor/movie connections

 Freenet's routing algorithm attempts to find short paths
– Uses locations of nodes to determine proximity to target
– Uses swapping of locations to structure topology

11

Freenet – Location Swapping

 Location Swapping
– Nodes swap locations to improve routing performance
– Each connected pair of nodes (a,b) computes:

12

Freenet – Swap Example

13

Freenet – Swap Example

14

Freenet - Routing of GET Requests

 GET requests are routed based on peer locations and key:
– Client initiates GET request
– Request routed to neighbor with closest location to key
– If data not found, request is forwarded to neighbors in order of

proximity to the key

 Forwarding stops when data found, hops-to-live reaches zero or

identical request was recently forwarded (to avoid circular
routing)

→ Depth-first routing in order of proximity to key.

15

Freenet – GET Request (1/6)

Node .90 searches for data with key .2 stored at peer .25

16

Freenet – GET Request (2/6)

17

Freenet – GET Request (3/6)

18

Freenet – GET Request (4/6)

19

Freenet – GET Request (5/6)

20

Freenet – GET Request (6/6)

21

Freenet PUT Request

 PUT requests are routed the same as GET requests:

– Client initiates PUT requests
– Request routed to neighbor closest to the key
– If receiver has any peer whose location is closer to the key,

request is forwarded
– If not, the node resets the hops-to-live to the maximum and

sends the put request to all of its' neighbors
– Routing continues until hops-to-live reaches zero (or node has

seen request already)
– Once item is inserted at a node, it resends the request out to all

known peers (replication)

22

Freenet – PUT Request (1/4)

Node .25 inserting data identified by key .93

23

Freenet – PUT Request (2/4)

24

Freenet – PUT Request (3/4)

25

Freenet – PUT Request (4/4)

26

Freenet – Attack Idea

 Freenet relies on a balanced distribution of node locations for
data storage

 Reducing the spread of locations causes imbalance in storage
responsibilities

 Peers cannot verify locations in swap protocol, including
location(s) they may receive

 Use swap protocol to reduce spread of locations!

27

Freenet – Attack Details

 Initialize malicious nodes with a specific location
 If a node swaps with the malicious node, the malicious node

resets to the initial location (or one very close to it)
 This removes the ``good'' node location and replaces it with one

of the malicious nodes choosing
 Each time any node swaps with the malicious node, another

location is removed and replaced with a ``bad'' location
 Bad location(s) spread to other nodes through normal swapping

behavior
 Over time, the attacker creates large clusters of nodes around a

few locations

28

Freenet – Attack Example (1/11)

29

Freenet – Attack Example (2/11)

30

Freenet – Attack Example (3/11)

31

Freenet – Attack Example (4/11)

32

Freenet – Attack Example (5/11)

33

Freenet – Attack Example (6/11)

34

Freenet – Attack Example (7/11)

35

Freenet – Attack Example (8/11)

36

Freenet – Attack Example (9/11)

37

Freenet – Attack Example (10/11)

38

Freenet – Attack Example (11/11)

39

Freenet – Attack Implementation

 Malicious node uses Freenet 0.7 codebase with minor
modifications

 Attacker does not violate the protocol in a detectable manner

 Malicious nodes behave as if they had a large group of friends

 Given enough time, a single malicous node can spread bad
locations to most nodes

 Using multiple locations for clustering increases the speed of
penetration

40

Freenet Attack – Experimental Setup

 Created testbed with 800 real Freenet nodes

 Main topology corresponds to Watts & Strogatz small world
networks

 Instrumentation captures path lengths and node locations

 Content is always placed at node with closest location

 Nodes have bounded storage space

 Trials run in iterations of 90s and 45s, respectively

41

Freenet Attack – Dispersion Example (1/4)

42

Freenet Attack – Dispersion Example (2/4)

43

Freenet Attack – Dispersion Example (3/4)

44

Freenet Attack – Dispersion Example (4/4)

45

Freenet Attack - Effects

 Data Loss
– Diversity of locations reduced
– Peers on “edges” of clusters responsible for data in “gaps”
– Those peers run out of storage space
– Data is dropped

 Routing
– Similarly, nodes on “edges” are contacted for routing more often
– Increase in bandwidth on those peers
– Reduces load balancing of network

46

Freenet Attack – Data Loss Example (1/3)
800 Nodes – 200 iterations – 2 malicious nodes – attack begins at iteration 75

47

Freenet Attack – Data Loss Example (2/3)
800 Nodes – 200 iterations – 4 malicious nodes – attack begins at iteration 75

48

Freenet Attack – Data Loss Example (3/3)
800 Nodes – 200 iterations – 8 malicious nodes – attack begins at iteration 75

49

Freenet Attack - Fixes

 Check how frequently a node swaps similar locations?
– Requires state, how similar is similar?

 Limit number of swaps with a particular peer?
– Only swap with peer X times in Y milliseconds
– Reduces routing performance

 Determine a node is malicious because its' location is too close?
– Depends on network size
– Defeats security/privacy goals

 Periodically reset all node locations?
– Choose an interval, and have peers reset to random locations
– Reduces routing performance (no experiments done)

 Secure multiparty computation for swaps?
– Requires knowledge of topology
– Defeats “darknet”

 In F2F networks, you can never be sure about the friends of your

friends!

50

Freenet – Churn

 Leave join churn
– Nodes are not constantly in the network
– They leave for some period of time and then come back into the

network

 Join leave churn
– Nodes join the network for a time, then disconnect permanently
– Causes node clustering
– Results in load imbalances similar to the described attack (only

more slowly)

 Churn clustering
– P2P networks often have “stable core”
– Other peers come and go
– Stable core generally well connected
– Swapping causes stable core to cluser locations

51

Freenet Attack/Churn – Chosen Workaround

 Periodic location resets
– Freenet 0.7 peers reassign themselves locations
– Interval chosen impacts routing performance
– Resilience depends on network size
– This hurts the scalability of the network

 Developers estimate this “fix” works to combat churn based
location clustering, but not necessarily an active attack.

 No comprehensive studies have been done on effectiveness.

52

Freenet – Current State

 Project Development
– Currently still active
– One full time developer
– Many contributors
– Frequent Google SoC project

 Darknet Status
– Darknet great for security, difficult for users
– Current Freenet version can operate in “opennet” mode or

“darknet” mode
– Opennet allows random connections
– Darknet allows only known friend connections
– No solid data on users, but most new users forced to use

opennet

53

Freenet - Conclusion

 Unique P2P network
– Typical DHT's used exclusively for file sharing
– Long lived project
– Freenet has rich set of applications
– Large set of Freesites, indexes
– Split file downloads

 F2F “Darknet”
– Provides better security
– Difficult in practice

 Swap attack
– Reduces performance
– Never seen in the wild

 Try it out (Freenet, not the attack)!

54

Freenet – Churn Example (1/13)

55

Freenet – Churn Example (2/13)

56

Freenet – Churn Example (3/13)

57

Freenet – Churn Example (4/13)

58

Freenet – Churn Example (5/13)

59

Freenet – Churn Example (6/13)

60

Freenet – Churn Example (7/13)

61

Freenet – Churn Example (8/13)

62

Freenet – Churn Example (9/13)

63

Freenet – Churn Example (10/13)

64

Freenet – Churn Example (11/13)

65

Freenet – Churn Example (12/13)

66

Freenet – Churn Example (13/13)

67

Freenet 0.7 – Churn Simulations

 Created stable core of nodes

 Simulated join-leave churn, let network stabilize

 Ran exactly the native swap code

 Repeat n times

 Revealed drastic convergence to single location

 http://crisp.cs.du.edu/pitchblack/

http://crisp.cs.du.edu/pitchblack/

