
 Lehrstuhl für Netzarchitekturen und Netzdienste
Institut für Informatik
Technische Universität München

Peer-to-Peer Systems
and Security

IN2194

Freenet

2

Freenet - Overview

 Freenet Design Goals
– General Freenet information (all versions)
– Freenet 0.5 specifics

 Freenet “Darknet” (0.7, 0.7.5)
– Rationale
– Routing Algorithm
– Security Improvements
– Structuring the Network

 Freenet Attack
– Idea
– Implementation
– Results

3

Freenet Design Goals

 Distributed data store

 Privacy
– Disseminators
– Consumers
– Holders

 Censorship resistance

 Availability and reliability

 Scalable, efficient

 Attack resistance

4

Freenet General Overview

 P2P Network
– System made up of volunteers
– Peers offer resources in return for services

 Cross platform
– Java based, runs on anything with a Java VM
– Peers communicate over UDP (> 0.7)

 Enables users to share data privately

 Over 10 years old

 Over 2 million downloads

5

Freenet Applications

 Freesites
– Internal Freenet websites
– Freenet equivalent of WWW
– FProxy – freesite browser
– jSite - Freesite creator

 Frost
– Message board/chat system
– Feature rich, used for file sharing

 Thaw
– Convenient access to Freenet FS API
– GUI filesharing upload/download/search

 Freemail
– Email between Freenet users
– Uses normal email client

→ All applications are usable ONLY on Freenet network

6

Freenet

 Key based storage and routing
– Peers and data identified by GUID keys
– DHT api: insert, retrieve, update

 Unstructured network (Freenet 0.5)
– No default organization among nodes
– Routing essentially random
– Nodes have static connections

 Storage
– LRU eviction policy
– Popular data stays around

7

Freenet Data Storage/Retrieval

 Data identified by GUID
 GUID's are hashes of

– CHK – Content-hash Key
• SHA-1 Hash of actual file to be stored
• Low level identifier for static block

– SSK – Signed-subspace Key

• H(H(K
pub

) + H(S)) signed by K
priv

• H = Hashing function

• K
pub

= public key

• K
priv

 = private key

 CHK
– Allows files/file parts to be located
– Cannot be updated

 SSK
– Typical used for indexing of CHK's
– Create arbitrary trees of data (for large files)

8

Freenet 0.7

 Totally rewritten version of Freenet

 Focus is on privacy AND efficiency

 Main version in use today

 Data (storage identification) and applications the same

 Topology and routing new

9

Freenet 0.7 - Basics

 Overlay based on cyclic address space of size 232

 Nodes have a constant set of connections (F2F)

 All data identified by key (modulo 232)

 Data assumed to be stored at closest node

 Routing uses depth first traversal in order of proximity to key

 Friend-to-friend (F2F) networks (``darknets'')
– Makes Freenet a “restricted route” network
– Applications in other domains

10

Freenet – Small World

 Small world network assumption
– F2F “darknet” should be similar to social networks
– Provided network “friends” are real world friends

 Sparsely connected graph
– There exists a short path (O(log N)) between any pair of nodes
– Common real world phenomenon (Milgram, Watts & Strogatz)
– PGP web of trust, actor/movie connections

 Freenet's routing algorithm attempts to find short paths
– Uses locations of nodes to determine proximity to target
– Uses swapping of locations to structure topology

11

Freenet – Location Swapping

 Location Swapping
– Nodes swap locations to improve routing performance
– Each connected pair of nodes (a,b) computes:



12

Freenet – Swap Example

13

Freenet – Swap Example

14

Freenet - Routing of GET Requests

 GET requests are routed based on peer locations and key:
– Client initiates GET request
– Request routed to neighbor with closest location to key
– If data not found, request is forwarded to neighbors in order of

proximity to the key

 Forwarding stops when data found, hops-to-live reaches zero or

identical request was recently forwarded (to avoid circular
routing)

→ Depth-first routing in order of proximity to key.

15

Freenet – GET Request (1/6)

Node .90 searches for data with key .2 stored at peer .25

16

Freenet – GET Request (2/6)

17

Freenet – GET Request (3/6)

18

Freenet – GET Request (4/6)

19

Freenet – GET Request (5/6)

20

Freenet – GET Request (6/6)

21

Freenet PUT Request

 PUT requests are routed the same as GET requests:

– Client initiates PUT requests
– Request routed to neighbor closest to the key
– If receiver has any peer whose location is closer to the key,

request is forwarded
– If not, the node resets the hops-to-live to the maximum and

sends the put request to all of its' neighbors
– Routing continues until hops-to-live reaches zero (or node has

seen request already)
– Once item is inserted at a node, it resends the request out to all

known peers (replication)

22

Freenet – PUT Request (1/4)

Node .25 inserting data identified by key .93

23

Freenet – PUT Request (2/4)

24

Freenet – PUT Request (3/4)

25

Freenet – PUT Request (4/4)

26

Freenet – Attack Idea

 Freenet relies on a balanced distribution of node locations for
data storage

 Reducing the spread of locations causes imbalance in storage
responsibilities

 Peers cannot verify locations in swap protocol, including
location(s) they may receive

 Use swap protocol to reduce spread of locations!

27

Freenet – Attack Details

 Initialize malicious nodes with a specific location
 If a node swaps with the malicious node, the malicious node

resets to the initial location (or one very close to it)
 This removes the ``good'' node location and replaces it with one

of the malicious nodes choosing
 Each time any node swaps with the malicious node, another

location is removed and replaced with a ``bad'' location
 Bad location(s) spread to other nodes through normal swapping

behavior
 Over time, the attacker creates large clusters of nodes around a

few locations

28

Freenet – Attack Example (1/11)

29

Freenet – Attack Example (2/11)

30

Freenet – Attack Example (3/11)

31

Freenet – Attack Example (4/11)

32

Freenet – Attack Example (5/11)

33

Freenet – Attack Example (6/11)

34

Freenet – Attack Example (7/11)

35

Freenet – Attack Example (8/11)

36

Freenet – Attack Example (9/11)

37

Freenet – Attack Example (10/11)

38

Freenet – Attack Example (11/11)

39

Freenet – Attack Implementation

 Malicious node uses Freenet 0.7 codebase with minor
modifications

 Attacker does not violate the protocol in a detectable manner

 Malicious nodes behave as if they had a large group of friends

 Given enough time, a single malicous node can spread bad
locations to most nodes

 Using multiple locations for clustering increases the speed of
penetration

40

Freenet Attack – Experimental Setup

 Created testbed with 800 real Freenet nodes

 Main topology corresponds to Watts & Strogatz small world
networks

 Instrumentation captures path lengths and node locations

 Content is always placed at node with closest location

 Nodes have bounded storage space

 Trials run in iterations of 90s and 45s, respectively

41

Freenet Attack – Dispersion Example (1/4)

42

Freenet Attack – Dispersion Example (2/4)

43

Freenet Attack – Dispersion Example (3/4)

44

Freenet Attack – Dispersion Example (4/4)

45

Freenet Attack - Effects

 Data Loss
– Diversity of locations reduced
– Peers on “edges” of clusters responsible for data in “gaps”
– Those peers run out of storage space
– Data is dropped

 Routing
– Similarly, nodes on “edges” are contacted for routing more often
– Increase in bandwidth on those peers
– Reduces load balancing of network

46

Freenet Attack – Data Loss Example (1/3)
800 Nodes – 200 iterations – 2 malicious nodes – attack begins at iteration 75

47

Freenet Attack – Data Loss Example (2/3)
800 Nodes – 200 iterations – 4 malicious nodes – attack begins at iteration 75

48

Freenet Attack – Data Loss Example (3/3)
800 Nodes – 200 iterations – 8 malicious nodes – attack begins at iteration 75

49

Freenet Attack - Fixes

 Check how frequently a node swaps similar locations?
– Requires state, how similar is similar?

 Limit number of swaps with a particular peer?
– Only swap with peer X times in Y milliseconds
– Reduces routing performance

 Determine a node is malicious because its' location is too close?
– Depends on network size
– Defeats security/privacy goals

 Periodically reset all node locations?
– Choose an interval, and have peers reset to random locations
– Reduces routing performance (no experiments done)

 Secure multiparty computation for swaps?
– Requires knowledge of topology
– Defeats “darknet”

 In F2F networks, you can never be sure about the friends of your

friends!

50

Freenet – Churn

 Leave join churn
– Nodes are not constantly in the network
– They leave for some period of time and then come back into the

network

 Join leave churn
– Nodes join the network for a time, then disconnect permanently
– Causes node clustering
– Results in load imbalances similar to the described attack (only

more slowly)

 Churn clustering
– P2P networks often have “stable core”
– Other peers come and go
– Stable core generally well connected
– Swapping causes stable core to cluser locations

51

Freenet Attack/Churn – Chosen Workaround

 Periodic location resets
– Freenet 0.7 peers reassign themselves locations
– Interval chosen impacts routing performance
– Resilience depends on network size
– This hurts the scalability of the network

 Developers estimate this “fix” works to combat churn based
location clustering, but not necessarily an active attack.

 No comprehensive studies have been done on effectiveness.

52

Freenet – Current State

 Project Development
– Currently still active
– One full time developer
– Many contributors
– Frequent Google SoC project

 Darknet Status
– Darknet great for security, difficult for users
– Current Freenet version can operate in “opennet” mode or

“darknet” mode
– Opennet allows random connections
– Darknet allows only known friend connections
– No solid data on users, but most new users forced to use

opennet

53

Freenet - Conclusion

 Unique P2P network
– Typical DHT's used exclusively for file sharing
– Long lived project
– Freenet has rich set of applications
– Large set of Freesites, indexes
– Split file downloads

 F2F “Darknet”
– Provides better security
– Difficult in practice

 Swap attack
– Reduces performance
– Never seen in the wild

 Try it out (Freenet, not the attack)!

54

Freenet – Churn Example (1/13)

55

Freenet – Churn Example (2/13)

56

Freenet – Churn Example (3/13)

57

Freenet – Churn Example (4/13)

58

Freenet – Churn Example (5/13)

59

Freenet – Churn Example (6/13)

60

Freenet – Churn Example (7/13)

61

Freenet – Churn Example (8/13)

62

Freenet – Churn Example (9/13)

63

Freenet – Churn Example (10/13)

64

Freenet – Churn Example (11/13)

65

Freenet – Churn Example (12/13)

66

Freenet – Churn Example (13/13)

67

Freenet 0.7 – Churn Simulations

 Created stable core of nodes

 Simulated join-leave churn, let network stabilize

 Ran exactly the native swap code

 Repeat n times

 Revealed drastic convergence to single location

 http://crisp.cs.du.edu/pitchblack/

http://crisp.cs.du.edu/pitchblack/

