
Network Security, WS 2008/09, Chapter 9 56Peer-to-Peer Systems and Security, SS 2009, Chapter 0 56Peer-to-Peer Systems and Security, Summer 2010, Chapter 1 56

Constant-Degree KBRs

With m=O(log(n)) state and L=O(log(n)) DHTs do not achieve the
performance of random graphs/small-world graphs. Lets recap the

Random graphs achieve L=O(log(n)) with constant degree. This is an
average and the O(logn) we give for the KBRs is a maximum with high
probability.
Can we build structured networks with constant degree and O(logn)
hops?

We can, even with degree 2, e.g. binary trees, Viceroy (KBR based on
butterfly graph), de Bruijn graphs, Kautz graphs, Distance-Halving.
However, short distances are not for free, constant-degree graphs
have longer average paths because they have significantly less links!

() n
nm

nL
const

n
m

random log
/log

log~ ~
=

Network Security, WS 2008/09, Chapter 9 57Peer-to-Peer Systems and Security, SS 2009, Chapter 0 57Peer-to-Peer Systems and Security, Summer 2010, Chapter 1 57

De Bruijn graphs

Operations
Let be a set of symbols, say .
Shuffle S
Shuffle-Exchange SE

De Buijn graphs
A node identifyer is then a fixed-length string
of these symbols.
Each node with node_ID has links to nodes
that are either S(node_ID) or SE(node_ID).
Formally:

Routing
From s=(s1 s2 s3) to t=(t1 t2 t3) use the links
((s1 s2 s3), (s2 s3 t1)) then ((s2 s3 t1), (s3 t1 t2)) then ((s3 t1 t2), (t1 t2 t3))

{ }
{ }kkkk

ik

stststtttsssE
ssssV

====
Σ∈=

−132212121

21

,...,,|))...(),...((
|)...(

),,...,(),...,,,(12321 sssssss kk →
)\,,...,(),...,,,(12321 sssssss kk Σ→

}1,0{=ΣΣ

000

001

010

110

100

101

011

111

Network Security, WS 2008/09, Chapter 9 58Peer-to-Peer Systems and Security, SS 2009, Chapter 0 58Peer-to-Peer Systems and Security, Summer 2010, Chapter 1 58

Koorde

Koorde
Ring-based DHT with De Bruijn Graph as embedding.
Nodes virtually represent all de Bruijn nodes between themselves and
their successor.
Long distance links

Outgoing: Link to the nodes according to the de Bruijn neighbors of the
node_ID
Incoming: Accept incoming links for all your virtual nodes.

0000 0001
0010

0011

0100

0101

0110

0111
1000

1001
1010

1011

1100

1101

1110

1111

To 1000

To 1001

0000 0001
0010

0011

0100

0101

0110

0111
1000

1001
1010

1011

1100

1101

1110

1111

Network Security, WS 2008/09, Chapter 9 59Peer-to-Peer Systems and Security, SS 2009, Chapter 0 59Peer-to-Peer Systems and Security, Summer 2010, Chapter 1 59

Koorde / De Bruijn Graphs – Results

Results
The diameter of Koorde is with high probability O(logn).
The outdegree is per design constant O(2+2k).
The indegree is w.h.p. O(logn).
There is yet no stabilization for Koorde.
There are other embeddings of de Bruijn graphs, e.g. D2B (in CAN),
Broose (in Kademlia).

Extentions
De-Bruijn graphs are not necessarily binary, but can be defined for
arbitrary character size (like Pastry).

Network Security, WS 2008/09, Chapter 9 60Peer-to-Peer Systems and Security, SS 2009, Chapter 0 60Peer-to-Peer Systems and Security, Summer 2010, Chapter 1 60

Constant-Distance KBRs

One-Hop-DHT
Structure: Full Mesh / Clique

All nodes know each other.
Limited scalability due to O(n) state per node and O(n) operations per
change

Hard to maintain for large networks.
Authors claim that routing tables with millions of nodes are no problem with
current RAM.

Trade-off: If one allows more than one hop to all destinations, one can
reduce the size of the routing table.

Network Security, WS 2008/09, Chapter 9 61Peer-to-Peer Systems and Security, SS 2009, Chapter 0 61Peer-to-Peer Systems and Security, Summer 2010, Chapter 1 61

Structured vs Unstructured vs Server

Comparing DHTs with unstructured networks and central servers

Node
State

Communication
Overhead

O(n)O(1) O(logn)

O(n)

O(1)

O(logn)

Central
Server

Unstructured
w. Flooding

Structured
KBR / DHT

Gnutella-like, information can be anywhere.

Napster case, server knows everything.

Network Security, WS 2008/09, Chapter 9 62Peer-to-Peer Systems and Security, SS 2009, Chapter 0 62Peer-to-Peer Systems and Security, Summer 2010, Chapter 1 62

Ordered Indexing

Ordered Indexing

Network Security, WS 2008/09, Chapter 9 63Peer-to-Peer Systems and Security, SS 2009, Chapter 0 63Peer-to-Peer Systems and Security, Summer 2010, Chapter 1 63

DHT vs Ordered Indexing

Common DHT use case
ID = hash item name
Why the hash function?

• Fixed bitlength
• Balance the items over ID space

Problem: Find all words that start with „Peer“ is not effient in DHTs
Other options instead of hash function

• Use DHT without hashing, but with load balancing (next chapter)
• Ordered Indexing

Ordered Indexing
Build an efficient structure without hashing

Trie
reTRIEval tree

Network Security, WS 2008/09, Chapter 9 64Peer-to-Peer Systems and Security, SS 2009, Chapter 0 64Peer-to-Peer Systems and Security, Summer 2010, Chapter 1 64

Skip List

Skip List
A linear list is inefficient add „long-distance“ links
Idea

Add layers as long as there are more than 2 nodes per layer.
A n-layer consists of a randomly selected subset of the (n-1)-layer.

• The random string for a peer corresponds to this random selction process.
– 1 means „part of this layer“
– 0 means „not part of any further layer“

Achieves O(log n) hops with O(log n) in- and out-degree.

a b c d e f g h

111 010 101 001 110 000 100 111Random
String

Item / Node
Name

layer 0

layer 1

layer 2

layer 3

Network Security, WS 2008/09, Chapter 9 65Peer-to-Peer Systems and Security, SS 2009, Chapter 0 65Peer-to-Peer Systems and Security, Summer 2010, Chapter 1 65

Skip Graph

Skip Graph
Adapts the skip list idea to Peer-to-Peer networks.
Idea

Layer 0 is a circle with all nodes.
Recursion: Split (n-1)-layer nodes into two random sets according to the bit
of random string at position n. Each set forms again a circle.

a b c d e f g h

1110 0101 1010 0010 1101 0001 1000 1111

a c e g hb d f

d f b

f d

c g

g c

a e h

a he

a h

0 1

0 1

0 1

10

10

10

10

Num-ID =
Random String

Node
Name

Network Security, WS 2008/09, Chapter 9 66Peer-to-Peer Systems and Security, SS 2009, Chapter 0 66Peer-to-Peer Systems and Security, Summer 2010, Chapter 1 66

Skip Graph

Node Identities
Name: arbitrary name of node (item), e.g. tum.i8.heiko
Num-ID: random number for each node

Search for Name
Next hop selection

Start with the highest layer.
IF the next hop is closer to the name and still before the
name in the order of the names (e.g. alphabetical)
ELSE Check lower layer for next hop. ENDIF

Search for Num-ID
Start search on lowest layer for node with correct next bit,
then go to next higher layer.

Results
Both search operations take O(log n).
Skip Graphs support range queries (e.g. all names from c
to e).

Example (graph on
last slide):
A looks for F

next hop: E
E looks for F

next hop: F

Example:
A looks for 0000

next hop: B (0101)
B looks for 0000

next hop: D (0010)
D looks for 0000

next hop: F (0001)
(closest match)

