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Constant-Degree KBRs

With m=O(log(n)) state and L=O(log(n)) DHTs do not achieve the 
performance of random graphs/small-world graphs. Lets recap the 

Random graphs achieve L=O(log(n)) with constant degree. This is an 
average and the O(logn) we give for the KBRs is a maximum with high 
probability. 
Can we build structured networks with constant degree and O(logn) 
hops? 

We can, even with degree 2, e.g. binary trees, Viceroy (KBR based on 
butterfly graph), de Bruijn graphs, Kautz graphs, Distance-Halving.
However, short distances are not for free, constant-degree graphs 
have longer average paths because they have significantly less links!
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De Bruijn graphs 

Operations
Let     be a set of symbols, say              . 
Shuffle S
Shuffle-Exchange SE

De Buijn graphs
A node identifyer is then a fixed-length string 
of these symbols. 
Each node with node_ID has links to nodes 
that are either S(node_ID) or SE(node_ID).
Formally:

Routing
From s=(s1 s2 s3 ) to t=(t1 t2 t3 ) use the links 
((s1 s2 s3 ), (s2 s3 t1))  then ((s2 s3 t1), (s3 t1 t2)) then ((s3 t1 t2), (t1 t2 t3 ))
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Koorde

Koorde
Ring-based DHT with De Bruijn Graph as embedding.
Nodes virtually represent all de Bruijn nodes between themselves and 
their successor.
Long distance links

Outgoing: Link to the nodes according to the de Bruijn neighbors of the 
node_ID
Incoming: Accept incoming links for all your virtual nodes.
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Koorde / De Bruijn Graphs – Results

Results
The diameter of Koorde is with high probability O(logn).
The outdegree is per design constant O(2+2k). 
The indegree is w.h.p. O(logn).
There is yet no stabilization for Koorde.
There are other embeddings of de Bruijn graphs, e.g. D2B (in CAN), 
Broose (in Kademlia).

Extentions
De-Bruijn graphs are not necessarily binary, but can be defined for
arbitrary character size (like Pastry).
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Constant-Distance KBRs

One-Hop-DHT
Structure: Full Mesh / Clique

All nodes know each other.
Limited scalability due to O(n) state per node and O(n) operations per 
change

Hard to maintain for large networks.
Authors claim that routing tables with millions of nodes are no problem with 
current RAM.

Trade-off: If one allows more than one hop to all destinations, one can 
reduce the size of the routing table.
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Structured vs Unstructured vs Server

Comparing DHTs with unstructured networks and central servers

Node 
State

Communication
Overhead

O(n)O(1) O(logn)

O(n)

O(1)

O(logn)

Central
Server

Unstructured
w. Flooding

Structured
KBR / DHT

Gnutella-like, information can be anywhere.

Napster case, server knows everything.
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Ordered Indexing

Ordered Indexing
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DHT vs Ordered Indexing

Common DHT use case
ID = hash item name
Why the hash function?

• Fixed bitlength
• Balance the items over ID space

Problem: Find all words that start with „Peer“ is not effient in DHTs
Other options instead of hash function

• Use DHT without hashing, but with load balancing ( next chapter)
• Ordered Indexing

Ordered Indexing
Build an efficient structure without hashing

Trie
reTRIEval tree
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Skip List

Skip List
A linear list is inefficient add „long-distance“ links
Idea

Add layers as long as there are more than 2 nodes per layer.
A n-layer consists of a randomly selected subset of the (n-1)-layer.

• The random string for a peer corresponds to this random selction process.
– 1 means „part of this layer“
– 0 means „not part of any further layer“

Achieves O(log n) hops with O(log n) in- and out-degree.
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Skip Graph

Skip Graph
Adapts the skip list idea to Peer-to-Peer networks.
Idea

Layer 0 is a circle with all nodes.
Recursion: Split (n-1)-layer nodes into two random sets according to the bit 
of random string at position n. Each set forms again a circle.
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Skip Graph

Node Identities
Name: arbitrary name of node (item), e.g. tum.i8.heiko
Num-ID: random number for each node

Search for Name
Next hop selection

Start with the highest layer. 
IF the next hop is closer to the name and still before the 
name in the order of the names  (e.g. alphabetical)
ELSE Check lower layer for next hop. ENDIF

Search for Num-ID
Start search on lowest layer for node with correct next bit, 
then go to next higher layer.

Results
Both search operations take O(log n).
Skip Graphs support range queries (e.g. all names from c 
to e).

Example (graph on 
last slide):
A looks for F

next hop: E
E looks for F

next hop: F

Example:
A looks for 0000

next hop: B (0101) 
B looks for 0000

next hop: D (0010)
D looks for 0000

next hop: F (0001) 
(closest match)


