

Peer-to-Peer Systems and Security IN2194

Chapter 1
Peer-to-Peer Systems
1.2a Unstructured Systems

Dipl.-Inform. Heiko Niedermayer Christian Grothoff, PhD Prof. Dr.-Ing. Georg Carle

1.2a) Basics

- "Unstructured" / "Structured"
- □ Early unstructured Peer-to-Peer networks
 - Napster
 - Gnutella
- Theory
 - Random Graphs
 - Small World Theory
 - Scale-Free Graphs

Peer-to-Peer Systems and Security, Summer 2010, Chapter 1

.

Unstructured / Structured

Unstructured / Structured

Unstructured / Structured

Unstructured Network

- Does not self-organize into a predefined structure.
- Graph is created by random node interactions.

Examples for structures

- □ Full Mesh / Clique
 - All nodes are connected with each other.
 - $n \text{ nodes } \rightarrow \text{degree} = n-1$
 - Diameter = 1
- □ Ring
 - Nodes organized in a ring
 - Degree = 2
 - $n \text{ nodes} \rightarrow \text{diameter} = n/2$

Peer-to-Peer Systems and Security, Summer 2010, Chapter 1

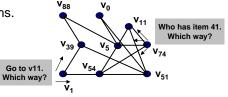
3

Peer-to-Peer Systems and Security, Summer 2010, Chapter 1

Unstructured networks

Properties

- No structure has to be created and maintained whenever something changes in the network.
 - Join
 - Completed once the node is registered at one other node (except for the need of this node to get to know more nodes....)
 - Leave
 - · No need to rework, but to locally remove the link
- Unless destination is known, there is no way to know where it is but to search all over the network.
- Nodes store their own items.



Peer-to-Peer Systems and Security, Summer 2010, Chapter 1

5

Early Unstructured P2P Systems

Early Unstructured P2P Systems

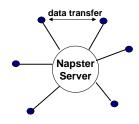
Peer-to-Peer Systems and Security, Summer 2010, Chapter 1

_

Napster

Napster

- □ A centralized Peer-to-Peer system
 - Centralized P2P = management and indexing done by central servers
- □ 1999 by Shawn Flemming (student at Northwestern University)
- □ Finally shut down in 2001 as result of law suits.
- Approach
 - Central Server
 - · Manages index of files
 - Peers
 - · Register to server with their shared files
 - Query server for files →list of Peers with their hits for the query
 - · Download from Peer
 - Peer-to-Peer
 - · Only the data exchange between the Peers



\nearrow

Filesharing

Filesharing

- Share and announce content
- Search for content
- Download content

Problems

- □ Legal issues (see Napster) → Decentralization
- How to find content?
 - String queries
 - Substring
 - Fuzzy queries
 - Usually no exact queries
 - → Thus, the task for the unstructured decentralized network is to search the network for hits.

Peer-to-Peer Systems and Security, Summer 2010, Chapter 1

.

Gnutella 0.4

- Pure Peer-to-Peer approach
 - No central entities like in Napster.
 - Avoid single points of failure, any peer can be removed without loss of functionality.

data transfer

Join

- Via any node in the network
 - Taken from downloaded host list, peer cache, ...
 - Receives a list of recently active peers from this node.
- Explore neighborhood with ping/pong messages.
- Establish connections until a quota is reached.
- Limited flooding as routing principle
 - Flood message to neighbors unless TTL of message exceeded.
 - Store the source of these messages to be able to return the hit to the source (= previous node, not the original source of the request).

Peer-to-Peer Systems and Security, Summer 2010, Chapter 1

9

Gnutella

Basic primitives of Gnutella 0.4

- Ping / pong: discover neighborhood
- Query / query hit: discover content
- Push: download request sent to firewalled nodes
 - Firewalls may only allow connections to be established from inside to the Internet and not the other way around.
 - The firewall and NAT aspects of Peer-to-Peer are discussed in a later section.

Properties

- Immense bandwidth consumption due to flooding for the signalling and unsuccessful search traffic!
 - Gnutella 0.4 does not scale (~ overhead dominates the network).
- □ Provides a weak form of anonymity as query is without source address and hits are returned hop-by-hop on the path.

Peer-to-Peer Systems and Security, Summer 2010, Chapter 1

4.0

X

Gnutella2

Gnutella2

- □ Hybrid Peer-to-Peer approach
 - Distinction between client peers and super peers
 - · Super peers form unstructured network
 - · Client peers connect to some super peers
- Hubs (super peers)
 - Accept hundreds of leaves (client peers)
 - Many connections to other hubs
 - Query Hit Table
 - · List of files provided by its leaves.
- □ Leaves (client peers)
 - Each leaf connects to one or two hubs.
- Search
 - Gather a list of hubs and iteratively ask them.
- Properties
 - Less traffic overhead, scales better

Theory

Theory

Observation

- Graphs of unstructured networks are created by random and social interactions.
 - Randomness
 - Social aspects (social network, entry points, uptime, ...)
 - Content (interesting files, ...)

Questions

- □ What is their form?
- □ Are they good?

In the following we present some theoretic graph models that are used to approximate these graphs and their properties.

Peer-to-Peer Systems and Security, Summer 2010, Chapter 1

13

Degree distribution for n=50, p=0.4

20

X

Theory: Random Graphs

Randomly-created Graphs

- Way to model the structure of these networks
- Necessary to understand the behaviour of these networks

Random Graphs / Uniform Random Graphs

- \Box Graph G = (V,E)
 - E is created randomly
 - n = |V|, m = |E|
- Assumption
 - Nodes randomly connect to each other.
- We will also call them uniform random graphs to distinguish them from other graphs that are also randomly-created, but where nodes are not all equal and strategies bias the link selection.
- Average distance in random graphs is most likely to be close to optimal for given n and m.

Peer-to-Peer Systems and Security, Summer 2010, Chapter 1

.

Erdös-Rényi model

Uniform random graphs according to Erdös-Rényi model (1960)

- Given:
 - n nodes und probability p
- Construction:
 - For any two nodes v1, v2 do with probability p: connect(v1,v2)
- Resulting graph:
 - $E[|E|] = p * n^2/2$
 - The node degree follows the binomial distribution (approx. by Poisson distribution for large n).
- Discussion:
 - Too simple and uniform for a model of real networks.

The Small-World Phenomenon

□ We meet someone we know at a place where we do not expect something like that to happen. → What a small world ?!?

An experiment by Stanley Milgram (1960s)

- Milgram sent mail to people in Nebraska.
- □ The mail should only be sent to people they personally know who might know better how to reach to the targeted receiver.
- □ The targeted receivers of the mails were people from Boston.
- The result was that on average six hops were required and that the median was below six.
- □ Subsequently, this lead to the term "Six degrees of separation" and the conclusion that we live in "small world".

Discussion of the Milgram experiment

- ☐ First of all, "six degrees of separation" sounds more like a maximum. but it is an average and the maximum, say the diameter of the graph, may be significantly larger.
- □ Judith Kleinfeld [Klei02] looked into the experiments of Milgram in more detail.
 - Most of Milgram's messages did not find their receiver. In fact, the success rate (chain completion rate) was below 20 %.
 - The people that were selected were also biased in such a way that well-off higher-ranked people were preferred. Moreover, even six degrees may be a strong barrier in reality, say a big world, that cannot be bridged in particular among different races and classes.
 - A big world afterall....?

Peer-to-Peer Systems and Security, Summer 2010, Chapter 1

Graph measure: Characteristic path length (L)

In the following, we introduce two scalar properties that can be used to characterize graphs.

Characteristic path length (L)

□ L corresponds to the average length of a shortest path in an undirected

$$L = \underset{i, j \in V, i \neq j}{avg} d(i, j) = \frac{1}{\binom{n}{2}} \sum_{i=1}^{n} \sum_{j=i+1}^{n} d(i, j)$$

Recap of the definition of the diameter

$$D = \max_{i,j \in V, i \neq j} d(i,j)$$

L and random graphs (e.g. constructed by Erdös-Rényi model)

$$L_{random} \sim \frac{\log n}{\log (m/n)}$$

Peer-to-Peer Systems and Security, Summer 2010, Chapter 1

Graph measure: Clustering coefficient (C)

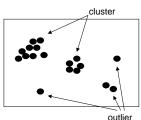
Cluster

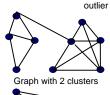
a engl. Traube, Bündel, Schwarm, Haufen □ In data analysis points with similar properties.

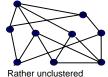
Clustering in networking

- □ Here, a group of nodes that are all closely connected.
- □ An informal notion of a cluster is that nodes in a cluster are close to each other. So, most neighbors of a node in a cluster are also close or even neighbors of each other.
- → "When my friends are also friends, we are a cluster."

We will use this idea to define a measure called clustering coefficient.







Graph measure: Clustering coefficient

Clustering coefficient C

- □ Given graph G = (V,E)
- We define the neighborhood of a vertex v

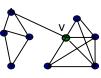
$$\Gamma_{v} = \{ u \in V \mid u \quad adjacent \quad to \quad v \}$$

- □ Given U as subset of V, we define E(U) the edges of the subgraph of V spanned with the nodes U.
- Local clustering coefficient of node v

$$C_{v} = \frac{\#edges_of_subgraph_G(\Gamma_{v}, E(\Gamma_{v}))}{\#all_possible_edges_between_nodes_\Gamma_{v}} = \frac{\left|E(\Gamma_{v})\right|}{\left(\frac{\deg ree(v)}{2}\right)}$$

□ Clustering coefficient C of G

$$C = \frac{1}{n} \sum_{v \in V} C_v = \frac{1}{n} \sum_{v \in V} \frac{\left| E(\Gamma_v) \right|}{\left(\frac{\deg ree(v)}{2} \right)}$$



G(U,E(U))

Examples – Clustering coefficient

Calculation

1/3

2/3

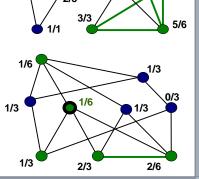
The clustering
$$C = \frac{1}{n} \sum_{v \in V} \frac{\left| E(\Gamma_v) \right|}{\left(\frac{\deg ree(v)}{2} \right)}$$

The graph with 2 clusters

- ☐ As example we compute the local ☐ clustering coefficient of a rather central node
 - It has 5 neighbors .
 - Their graph has 5 edges / of 10 possible edges.
 - Thus, its coefficient is 5/10 = 0,5.
- □ The coefficent of the graph C = 0,759

The rather unclustered graph

- \Box The example node has 4 neighbors that share only one edge. Its local clustering coefficient is 1/6 = 0.167.
- □ The coefficient of the graph C = 0,296



Peer-to-Peer Systems and Security, Summer 2010, Chapter 1

21

X

The Small-World Phenomenon in P2P Networking

Small-World Graph

 \Box A Small-World graph is a graph with a characteristic path length close to that of an equivalent uniform random graph ($L \approx L_{random}$), but with a cluster coefficient much greater ($C >> C_{random}$).

Small-World on the Internet and elsewhere

	Size	Avg. degree	L	L_random	С	C_random
Internet graph (2002) Skitter topology (***)	260.000	3.39	11.4	10.1	0.023	0.000014
Gnutella (2000) Snapshot (**)	n/a	n/a	3.86	3.19	0.045	0.0068
Film collaboration (*)	225000	61	3.65	2.99	0.79	0.00027
Power Grid (*)	4900	2.67	18.7	12.4	0.080	0.005
Neural network of worm C.elegans (*)	282	14	2.65	2.25	0.28	0.05

(*) Watts & Strogatz 1999 (**) Li et. al 2004, (***) Jin & Bestavros 2006

Peer-to-Peer Systems and Security, Summer 2010, Chapter 1

٠,

X

Small-World-Theory and real networks

Real networks and Small-World networks

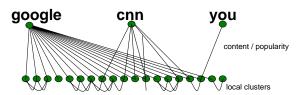
- □ Real networks (WWW, Gnutella, etc.) often show Small-World properties
 - · Characteristic path length is small
 - Clustering coefficient is high

....but.... unlike Small-World networks, they are

- □ not symmetric
- □ the peers are way from being equally used.
- □ In fact, the popularity and the degree of nodes differs extremely .
 - E.g. compare google.com, cnn.com and your webpage.

X

Zipf's Law and Scale-Free networks



Zipf's law: "The popularity of ith-most popular object is proportional to \dot{r}^{α} , α : Zipf coefficient."

 Zipf-like popularity can be found for websites, words in natural languages, movies, ...

Node degrees in the example

- □ Google 18, CNN 6, you 1, other nodes 1-5
- □ In Filesharing replace the websites with popular content.
- Small-World theory does not explain and contain this variation.
- → Next model: Scale-Free networks

Scale-Free Networks

Scale-Free networks / Power-Law networks

- □ The term scale-free relates to the fact that the degree distribution is independent of any scale (e.g. no size of the network in it).
- Power Law distribution of the node degree

- Other definitions for Scale-Free graphs can be found.
- Scale-Free graphs are a likely outcome of random graph construction processes that contain some element with high variability.

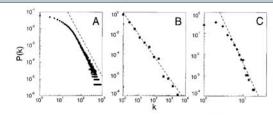
(More on the topic: Li, Alerderson, Tanaka, Doyle, Willinger: "Towards a Theory of Scale-Free Graphs", 2005)

Peer-to-Peer Systems and Security, Summer 2010, Chapter 1

25

X

Scale-Free Networks



Degree distribution for the Actor, WWW, and Power Grid networks taken from

Albert-Laszlo Barabasi and Reka Albert "Emerging of Scaling in Random Network", Science 1999.

Properties

- The Power Law distribution has extremely high variability.
- □ A consequence of the extreme variation of node degree, is an existence of few high-degree nodes. Typically, they are called hubs.
 - The hubs are hotspots.
 - Failure or leave of hubs is a problem for these networks ("Archilles heel")
 - Failure of non-hubs is considered less problematic. Unless a hub is hit random failures hardly have an impact on the network, say on the average path length.

Peer-to-Peer Systems and Security, Summer 2010, Chapter 1

26

High variability / Power-Law distribution

In many fields of networking, there is an element of high variability.

- □ e.g. network traffic, degree distribution, peer lifetime distribution,...
- □ High variability ("heavy-tail") means variation coefficient >> 1
 - The values vary more than their mean. Example

Example
1 1 2 45 1 0 1 1023 3 1 2 4 0 1 0 11 ...

"Bus stop paradox" (time between buses with variation >> 1)

□ "Passenger is happy when she just misses a bus."

Passengers waiting

□ In most cases when a lot of people are waiting, the arrival of the next bus will still take a while.

X

Scale-Free networks (Barabasi-Albert model)

Scale-Free graphs according to Barabasi-Albert's "The rich get richer" model (1999)

- Also called cumulative advantage.
- Given: n nodes
- □ Start with m₀ unconnected nodes, add random link for each node
 - Minimum degree of each node is 1.
- \Box For i = 1 to t do
 - Add node, connect node to m nodes, select nodes according to the following distribution ("linear preferential attachment")

$$p(i) = \frac{k_i}{\sum_{A \text{ vailable _nodes } j}} k_j$$

- □ Result
 - Graph with t*m+m₀ edges

n=6

m=2, t=2

