

Network Architectures and Services Department of Computer Science TU München

Peer-to-Peer Systems and Security IN2194

Dipl.-Inform. Heiko Niedermayer Christian Grothoff, PhD Prof. Dr.-Ing Georg Carle

Course organization IN2194

- □ Lecture
 - Monday, 10:15-11.45, MI 00.13.009A weekly
 - Thursday, 14:15-15.45, MI 00.13.009A first weekly, then typically bi-weekly
- □ Exercises
 - Typically bi-weekly Thursday, 14:15-15.45, MI 00.13.009A
- □ Students are requested to subscribe to lecture and exercises at www.net.in.tum.de ⇔lehre ⇔ vorlesungen ⇔ Informationen des Lehrstuhls http://www.net.in.tum.de/de/lehre/ss10/vorlesungen/ vorlesung-peer-to-peer-systeme-und-sicherheit/
- □ Email list, svn access
 - for subscribers of course
- Questions and Answers / Office hours
 - Prof. Dr. Georg Carle, carle@net.in.tum.de
 - Upon appointment (typically Monday 16-17)
 - Heiko Niedermayer, niedermayer@net.in.tum.de
 - Christian Grothoff, Ph.D., grothoff@net.in.tum.de
- Course Material
 - Slides are available online. Slides may be updated during the course.

- □ Course is 5 ECTS
 - 3 SWS lectures
 - 1 SWS exercises

including practical assignment (programming project)

- □ Exercises
 - ~5 exercise sheets
 - Prepare for the oral examination
 - Successfully participating at exercises gives a bonus of 0,3 for overall grade
- Practical assignment
 - will be graded
- Our concept for grading
 - Final examinations will be oral and give an individual grade.
 You must pass the oral exam for being successful in the course.
 - For overall grade, grade of practical assignment gives 20% of final grade

- Who studies what?
 - Diploma degree?
 - Master in Informatics?
 - Master in Information Systems [Wirtschaftsinformatik]?
 - Other Master courses?
 - Bachelor in Informatics?
- □ Which previous relevant courses?

□ Lectures

SS:

- Introduction to Computer Networking and Distributed Systems (IN0010)
- Discrete Event Simulation (IN2045)

WS:

- Master Course Computer Networks (IN2097)
- Network Security (IN2101)
- □ Seminars
 - Seminar Network Architectures and Services: Network Hacking (IN0013)
 - Advanced Seminar Innovative Internet Technologies and Mobile Communications (IN8901)
 - Advanced Seminar Future Internet (IN8901)
 - Advanced Seminar Sensor Networks(IN0014), with Prof. Baumgarten
- □ Lab Courses
 - Bachelor Practical Course Internet Lab (IN0012)
 - Master Practical Course Computer Networks (IN2106)

Motivation

The power of P2P

IN2194: Peer-to-Peer Systems and Security, SS 2010

Very popular due to file-sharing Responsible for majority of the traffic of the Internet!

□ Network of equals (peers)

⇒Users can offer new services

Users and their computers at the edges of the Internet share their resources (bandwidth, CPU, storage).

⇒Inherent scalability with growing

- Self-organization of the system
 - ⇒No traffic management
- □ Autonomy from central entities like central servers
 ⇒Robustness

Some GSM Components

- AUC D Authentication center
- BSC Dase station controller
- BSS Das station system
- BTS Describer Base transceiver station
- IMSI International mobile subscriber identity
- HLR D Home location register
 - LAI D Location area identifier
 - MS Dobile station (e.g. a mobile phone)
- MSC D Mobile switching center
- MSISDN Dobile subscriber international ISDN number
 - TMSI D Temporary mobile subscriber identity
 - VLR D Visitor location register

Challenge: Availability / Resilience

□ <u>Goal:</u>

- Improve the resilience/security of network services
- using the Peer-to-Peer networking paradigm
- taking Voice over IP (VoIP) as an example

- □ CoSIP adapter/ proxy in DSL routers
- □ CoSIP adapters organize themselves into a P2P network

 "Resilience and Survivability for future networking: framework, mechanisms, and experimental evaluation" SEVENTH FRAMEWORK PROGRAMME

□ Consortium:

□ Strategy: D²R²DR

Robust Service Provisioning (Service Resilience)

Robust Service Provisioning (2)

- □ Approach:
 - Hybrid p2p overlay network
 - Peers with different roles, verifyable identity, virtualisation
- □ Goal:
 - Cooperation of end nodes and infrastructure for high reliability, service quality, scalability

Further selected research at I8– Network Architectures and Services

Projektschwerpunkte

	Autonomic / Self-Org. Man.	Mobile comm.	Measure- ments	P2P and Overlays	Netzwork Security
EU ResumeNet				V	Ø
EU AutHoNe		V	V	V	V
DFG LUPUS			V		V
BMBF ScaleNet	$\mathbf{\overline{A}}$	V	V		
NSN SelfMan	V		V		
NSN TC-NAC		V			\checkmark
France-Telecom SASCO	\checkmark	V		V	V
BWFIT SpoVNet			V		
BWFIT AmbiSense					
IN2194: Peer-to-Peer Systems and Security, SS 2010					

AutHoNe - Autonomic Home Networking

- EUREKA-Celtic/BMBF-Project
- □ Partner in Germany
 - TU München
 - Fraunhofer FOKUS
 - Siemens Corporate Technology
 - Hirschmann Automation and Control
- EU/Celtic Partner
 - France Telecom, Frankreich
 - Sony-Ericsson, Schweden
 - Ginkgo Networks, Frankreich
 - Univ. Pierre et Marie Curie, Paris (UPMC-LIP6), Frankreich
 - Universität Lund, Schweden

AUTHONE

Bundesministerium für Bildung und Forschung

adaption to users and environment

IN2194: Peer-to-Peer Systems and Security, SS 2010

□ Knowledge Platform

Л

Autonomous Configuration and Management

- User Control
 - User-friendly
 - Modes for normal users and experts

□ Interaction with Environment

- Sensors
- Actuators

Home Networks with Cloud and P2P services

- □ AutHoNe provides Self-Management
 - Knowledge plane
 - Zero Configuration
- Cloud Computing
 - Computation and Storage in the network
 - Reliable resources
 - Pay and get more resources
 - Security Anchor → Provider and its accounting
- □ In combination with Peer-to-Peer
 - Use existing resources at edge
 - Scalability
 - Non-critical tasks and replication
- Bootstrapping and lookup of services
 - CloudCast to a near-by service cloud for lookup or processing

- Project SASCO
 - Cooperation wit France Télécom and Fraunhofer FOKUS

- □ SpoVNet: <u>Spo</u>ntanous <u>V</u>irtual <u>Net</u>works
- □ Flexible, adaptive and spontaneous service provisioning
- □ Approach: overlays
 - Let-1000-networks-bloom instea of One-size-fits-all
 - Tailored architekture for applications and networks
 - Cross-Layer-Information supports QoS decisions and optimisation
 - No dedicated infrastructure needed

SpoVNet - Spontaneous Virtual Networks

- Partners: KIT (Zitterbart),
 Uni Stuttgart (Kühn, Rothermel),
 Uni Mannheim (Effelsberg)
- □ Future Internet Approach
 - Locator/Identifier-Split
 - On demand overlay creation
 - Service overlays
 - UNISONO (@TUM) Cross-layer Information Service

The lecture...

IN2194: Peer-to-Peer Systems and Security, SS 2010

- □ Network of equals
- No distinction between client and server
- Users and their computers at the edges of the Internet share their resources (bandwidth, CPU, storage).
- □ Self-organization of the system
- □ Autonomy from central entities like central servers
- \Box Peers come and go \rightarrow continuously changing environment
 - Very popular due to file-sharing and content distribution networks that today are responsible for majority of the traffic of the Internet

- ... but ...
- □ Highly decentralized systems are not very secure.
- □ What about peers that do not cooperate?
- □ What about attacks or misuse?

... still....

- Peer-to-Peer systems are useful for censor-resistance, DoS resilience, etc.
 - Security is an important issue especially for serious applications. Decentralized systems have their drawbacks, but also a high potential for improvements!

- In our daily life we are often an anonymous entity among a mass of other entities.
- Pseudonymity: An entity hides behind a pseudonym, so that anyone (but an authority) only knows the pseudonym, but not the true identity. The pseudonym can be tracked.
- Anonymity: Hide the identity, the usage/traffic patterns, and relationships from other entities or observers. No tracking.
 - Traffic Analysis can reveal information that is leaked even if encryption is used. Technologies like Onion Routing can make these attacks harder.

... on the network stack...

... on application layer with some exceptions.

Who is contributing / doing the work?

