
Chair for Network Architectures and Services
Department of Informatics
TU München – Prof. Carle

Peer-to-Peer Systems
and Security

IN2194

Chapter 1
Peer-to-Peer Systems

1.3 Structured Networks
Prof. Dr.-Ing. Georg Carle

Dipl.-Inform. Heiko Niedermayer

Network Security, WS 2008/09, Chapter 9 2Peer-to-Peer Systems and Security, SS 2009, Chapter 0 2Peer-to-Peer Systems and Security, Summer 2009, Chapter 1 2

Overview

Structured Networks
Consistent Hashing
Common API, KBR, DHT
Strategies in structured networks
Structured networks

Network Security, WS 2008/09, Chapter 9 3Peer-to-Peer Systems and Security, SS 2009, Chapter 0 3Peer-to-Peer Systems and Security, Summer 2009, Chapter 1 3

Motivation

In unstructured networks we have to search all over the network for a
node or item as we do not know where it is.
Wouldn’t it be better to be able to simply say ”Ah, to node A, go this
way!” Yes, it would.

Usually, this problem is separated into
Routing

The task to find a way on a network is called routing. The routing table is
created using the routing protocol which gathers information about the
network and then computes the best paths.
Routing protocol => routing table

Forwarding
For a packet that has to be sent or that arrives at an intermediate node
(router) the node directly knows the next hop where to send it to. Usually,
this is solved using a routing table that stores this information.

Network Security, WS 2008/09, Chapter 9 4Peer-to-Peer Systems and Security, SS 2009, Chapter 0 4Peer-to-Peer Systems and Security, Summer 2009, Chapter 1 4

Routing on the Internet

Scalability of the Internet Routing
The Internet itself is not structured (no predefined structure!).
The Internet is divided into Autonomous Systems (AS) that own a certain part
of the IP address space.

After applying for an adress space (at one of the registries, e.g. RIPE) the
addresses are manually set, but the routing is automized using routing protocols.
Distant computers only need to know the way to the AS.
Geographically close ASes often have close IP ranges.

Consequences
IP addresses are not purely random, but cluster in certain areas. Due to this, we
can group together many addresses in only one routing table entry.
Thus, routing tables still scale, even in the core network.

AS X

AS A

AS D AS Z

AS B

AS C

211.5.67/24 211.5.88/24

80.5.67/2481.42/16
81.41/16

81.52/16

…

Routing table:
Send all 80/4 => IF0 (all from 80.0.0.0 to 96.255.255.255)
Send all 211/8 => IF0
…..

IF0
IF1

IF2

Network Security, WS 2008/09, Chapter 9 5Peer-to-Peer Systems and Security, SS 2009, Chapter 0 5Peer-to-Peer Systems and Security, Summer 2009, Chapter 1 5

Routing on the Internet

Geographic diversity of IP ranges

Freedman et.al (2005)

Large networks (> 65000)

Small networks (<< 255 IP addresses)

More than 95 % of the
small networks span less
than 10 miles.

N.Y<->Paris

Network Security, WS 2008/09, Chapter 9 6Peer-to-Peer Systems and Security, SS 2009, Chapter 0 6Peer-to-Peer Systems and Security, Summer 2009, Chapter 1 6

Routing on the Internet and its relation to P2P

But here is the problem with unstructured overlay networks: If we
introduce a routing protocol like in the Internet, we have randomly
distributed addresses and cannot group them efficiently. The routing
tables would not scale.

We need to find a way to cluster nodes with similar IDs in the Peer-
to-Peer network.

Structured Peer-to-Peer
Structured Peer-to-Peer networks impose the constraint of a structure
onto the Peer-to-Peer network.
Each node is either not in the network or in a predefined position
based on its node ID and given by the form of the structure.

Network Security, WS 2008/09, Chapter 9 7Peer-to-Peer Systems and Security, SS 2009, Chapter 0 7Peer-to-Peer Systems and Security, Summer 2009, Chapter 1 7

Examples for structures

Ring
Each node knows successor and predecessor.
Sending a message

Unless the node is the target, forward the message
to the successor

Tree
Each node knows its parent and child nodes
Sending a message

Up the tree if you are in a wrong subtree
Down the tree if you have the correct
subtree as child

This is not the way the tree-based DHTs operate!

41

11
18

23

25
30

41

25

18

23 1130

Network Security, WS 2008/09, Chapter 9 8Peer-to-Peer Systems and Security, SS 2009, Chapter 0 8Peer-to-Peer Systems and Security, Summer 2009, Chapter 1 8

Making structures efficient

Local connectivity
Neighbors in the structure ensure basic connectivity
and clustering of similar IDs in one region.
Connecting to more neighbors increases stability as
nodes may leave at any time and the structure has to
be maintained.

How long does a packet travel?
In the ring O(n).
In the tree O(n) unbalanced and O(logn) balanced.

Long-distance links / Shortcuts
To reduce the diameter, introduce a set of long-
distance links at each node.
If we use the picture of clusters of nodes that have
similar IDs, these links efficiently interconnect these
clusters.

41

11
18

23

25
30

41

25

18

23 1130

Network Security, WS 2008/09, Chapter 9 9Peer-to-Peer Systems and Security, SS 2009, Chapter 0 9Peer-to-Peer Systems and Security, Summer 2009, Chapter 1 9

Consistent Hashing

Hash Table
n slots (nodes) that are used to store k elements
The n slots contain an equal share of the index space.
Features

Store elements, efficient amortized lookup in O(1)
h(element) determines slot

Hash function h
uniform: all slots are equally likely
universal: propability of two hashes to be equal is 1/n

What about adding or removing a slot?
Need to completely repartition the hash table.

Can we avoid repartitioning?
Yes Consistent Hashing.

1-5

6-10

11-15

16-20

1 5

7 9

13

17 19

1-4

5-8

9-12

13-16

1

5 7

9

13

17 1917-20

Let 17-20 be
the new slot

item moved

Network Security, WS 2008/09, Chapter 9 10Peer-to-Peer Systems and Security, SS 2009, Chapter 0 10Peer-to-Peer Systems and Security, Summer 2009, Chapter 1 10

Consistent Hashing

Consistent Hashing
Approach to manage nodes and items.
Originally developped for organizing distributed webcaches.
Circular ID space [0,1)
Map all nodes to unit interval [0,1)
Map all items to unit interval [0,1)
Assign items to nodes from their ID to the ID of their successor

nodes responsible for [node_ID,successor_ID)
Allows to add / remove nodes without repositioning of all nodes.

Nodes and data share same ID space.

h(Example_Node) = 0.325

0 1

h(Example_Item) = 0.365

Network Security, WS 2008/09, Chapter 9 11Peer-to-Peer Systems and Security, SS 2009, Chapter 0 11Peer-to-Peer Systems and Security, Summer 2009, Chapter 1 11

Consistent Hashing – Theory – Load Balancing

Theorem „Consistent Hashing“
For any set of N nodes and K items, with high probability:

Each nodes is responsible for at most items
(ε = logn for consistent hashing in the
way we described it).
When an (N+1)st node joins or leaves the network, responsibility for
only O(K/N) items changes.

()
N
Kε+1

Network Security, WS 2008/09, Chapter 9 12Peer-to-Peer Systems and Security, SS 2009, Chapter 0 12Peer-to-Peer Systems and Security, Summer 2009, Chapter 1 12

Distributed Hash Tables

Distributed Hash Table (DHT)
A Distributed Hash Table is a structured Peer-to-Peer system that
provides hash table functionality.

Nodes and items share a common flat address space.
Nodes are responsible for certain parts of the address space.
Association of items and nodes may change due to the dynamics of the
network.
Lookup of an item = routing to responsible node
Storage of an item = lookup responsible node and then use a store
command to store the item

• Usually, the DHT stores only reference pointers to sources of an item and not
the item itself, e.g. „File XYZ.mpg can be found on 132.3.4.5:12345 and
55.65.3.4:12345.“

The terms „Structured Peer-to-Peer“ and „DHT“ are often used as
synonyms.

Network Security, WS 2008/09, Chapter 9 13Peer-to-Peer Systems and Security, SS 2009, Chapter 0 13Peer-to-Peer Systems and Security, Summer 2009, Chapter 1 13

Key-Based Routing

DHT and Routing
A hash table is an application where one can store and retreive data.
DHTs need Key-Based Routing for their operations.

Key-Based Routing (KBR)
Route and deliver messages to a key.
The key is represented by the node that is responsible for the key.
KBRs are usually structured networks.
Most DHT proposals describe a Key-Based Routing system.

Identifier-Based Routing
Like KBR, but to node with given ID.

Delivery fails if node does not exist.

Network Security, WS 2008/09, Chapter 9 14Peer-to-Peer Systems and Security, SS 2009, Chapter 0 14Peer-to-Peer Systems and Security, Summer 2009, Chapter 1 14

Common API – Abstractions and APIs

Common API
Idea to represent a standard set of functions with well-defined
semantics to ease the development of Peer-to-Peer applications.

No widespread use, except for Freepastry.
Differentiate between different layers, e.g. DHT and KBR.
Example APIs

Key-based Routing API
• Functionality to route and deliver messages to keys.

DHT API
• Hash table functionality

Tier 2

Tier 1

Tier 0 Key-based Routing API

DHT CAST

i3CFS OceanstorePAST

Network Security, WS 2008/09, Chapter 9 15Peer-to-Peer Systems and Security, SS 2009, Chapter 0 15Peer-to-Peer Systems and Security, Summer 2009, Chapter 1 15

Key-based Routing API – Data Types

Data Types
key

160 bit string
nodehandle

Encapsulates the transport address and nodeID of a node
NodeID is of type key.

msg
Messages contain data of arbitrary length.

Conventions
For read-only parameters: p
For read-write parameters: p
Ordered set p of type T: T[] p
Root of a key = responsible node of key

Network Security, WS 2008/09, Chapter 9 16Peer-to-Peer Systems and Security, SS 2009, Chapter 0 16Peer-to-Peer Systems and Security, Summer 2009, Chapter 1 16

Key-based Routing API – Routing Messages

Routing messages
void route(key K, msg M, nodehandle hint)

Send msg to root of key K.
hint is an optional proposal for the next hop
Either K of hint may be null

void forward(key K, msg M, nodehandle nextHopNode)
Upcall to the application
Initiated before forwarding M
Application may modify the message and parameters.

void deliver(key K, msg M)
Upcall to the application.
Invoked on the node that is root for K when M arrives.

Network Security, WS 2008/09, Chapter 9 17Peer-to-Peer Systems and Security, SS 2009, Chapter 0 17Peer-to-Peer Systems and Security, Summer 2009, Chapter 1 17

Key-based Routing API – Routing State Access

Routing State Access
nodehandle[] local_lookup(key K, int num, boolean safe)

Returns upto num nodes that can be used as next hops to K.
safe == true means that the fraction of faulty nodes in the list should not be
higher than the fraction in the overlay

nodehandle[] neighborSet(int num)
Returns upto num nodes of the neighbors in the ID space.

nodehandle[] replicaSet(key k, int max_rank)
Returns ordered set of nodes for replicas of key k.
max_rank limits the size of the replica set.

void update(nodehandle n, boolean joined)
Upcall to application to inform about join or leave of node n.

boolean range(nodehandle N, rank r, key lkey, key rkey)
Determines key range of node N

• The rank r determines keys ranges for which N.
• In case of multiple ranges, the clockwise-closest to lkey is determined.

The return value is true if a range could be determined.

Network Security, WS 2008/09, Chapter 9 18Peer-to-Peer Systems and Security, SS 2009, Chapter 0 18Peer-to-Peer Systems and Security, Summer 2009, Chapter 1 18

DHT API

DHT API
put(key,data)
remove(key)
value = get(key)

DHT API with KBR API functions
PUT

Send a message with the put information to the root of the key.
No need for a hint (== next hop)
route(key,[PUT,value,S],null)

GET
The requesting node uses route to find the root, the root returns the value
directly using the hint option.
route(key,[GET,S],null)
route(null,[value,R],S)

Key-based Routing API

DHT

Application

Network Security, WS 2008/09, Chapter 9 19Peer-to-Peer Systems and Security, SS 2009, Chapter 0 19Peer-to-Peer Systems and Security, Summer 2009, Chapter 1 19

Structured Key-based Routing

Designing a structured KBR
1. Cluster nodes with similar IDs

IDs
Metric for IDs
Connect neighbors and neighboring clusters

2. Speed-up
Connect distant clusters
Know more nodes or ask more nodes

3. Robustness
Know more nodes
Maintenance

KBRs differ in
Topology
Maintenance
Lookup strategy / Message Forwarding

Network Security, WS 2008/09, Chapter 9 20Peer-to-Peer Systems and Security, SS 2009, Chapter 0 20Peer-to-Peer Systems and Security, Summer 2009, Chapter 1 20

Topology and Maintenance

Topology
Structure of the graph and embedding of IDs

Major issues in the next slides.

Maintenance
Check if other nodes still exist.

Heartbeat messages, etc.
If not, repair the network.

Check if structure is still correct.
If not, repair the network.

Multiple nodes per direction / buckets
Know multiple nodes, so that failures can be
circumvented once a packet needs to travel in
this direction.

…

Network Security, WS 2008/09, Chapter 9 21Peer-to-Peer Systems and Security, SS 2009, Chapter 0 21Peer-to-Peer Systems and Security, Summer 2009, Chapter 1 21

recursive, lookup back to source

Lookup / Message Forwarding

Lookup strategy
Recursive

Lookup is forwarded though the network.
Answer may be sent back directly to source (standard)
or through a path in the network.
Pro: uses existing connections
Con: message loss / failures harder to detect

Iterative
Nodes are either the target or reply with next hop list.
The source does the lookup itself.
Pro: source has to work, source detects failures
Con: more messages, always connection setups

Lookup robustness and speed-up
Concurrent lookup

Ask k neighbors to forward or answer the query.
If less than k-1 nodes/paths fail or are slow, still one will
answer in time.

Caching of short-cuts and content
Cache target or intermediate nodes for future lookups.

…
…
…

…

recursive, direct answer

recursive, same path back

iterative

Network Security, WS 2008/09, Chapter 9 22Peer-to-Peer Systems and Security, SS 2009, Chapter 0 22Peer-to-Peer Systems and Security, Summer 2009, Chapter 1 22

The Content-Adressable Network (CAN)

The Content-Adressable Network (CAN)
Identifyer space: d-dimensional torus
Management of identifyers

A node owns a zone of which its
identifyer is a member.

Graph Embedding
For each 2d directions, link to the owner
of a neighbor zone in that direction.

Routing Strategy
Select as next hop the neighbor closest to the target
(Euklidean distance).

Maintenance
Join

• A nodes selects a random point and routes to that point.
• The zone is then split into two equal parts.

Network Security, WS 2008/09, Chapter 9 23Peer-to-Peer Systems and Security, SS 2009, Chapter 0 23Peer-to-Peer Systems and Security, Summer 2009, Chapter 1 23

The Content-Adressable Network (CAN)

The Content-Adressable Network (CAN) – Results
State per node: O(d)
Average path length:
Dimensions d

Increase in d decreases path length and
increases fault taulerance.

Realities r
Idea: Run r CANs (with different hash
functions for the mapping of nodes and items)
in parallel with same nodes and data.
Results: With respect to path lengths,
increase in dimension is better.

Idea: Allow p peers per zone
Avg. path length reduced by factor O(p).
Per-hop latency can be reduced as links with
lowest latency can be selected in each direction.
Increase in p, increase in fault tolerance.

)(
1
ddnO

Ratnasamy et al (2001)

Network Security, WS 2008/09, Chapter 9 24Peer-to-Peer Systems and Security, SS 2009, Chapter 0 24Peer-to-Peer Systems and Security, Summer 2009, Chapter 1 24

Ring-based Topology

Ring-based Topology
Nodes organize in a Ring.
Links

To neighbors in the ring for stability and basic connectivity.
Long-distance links to achieve efficent routing.

Examples
Chord
Symphony (embeds a symmetric small-world topology)

Neighborhood
Keep the ring

connected

Long-distance links
bridge long distances

and reduce diameter and
characteristic path length.

Network Security, WS 2008/09, Chapter 9 25Peer-to-Peer Systems and Security, SS 2009, Chapter 0 25Peer-to-Peer Systems and Security, Summer 2009, Chapter 1 25

Chord

Chord
Identifier space , usually m=160.
Mapping

proposed to use hash function sha1(.), e.g. node_ID = sha1(node_IP).
Management of identifyers

A node is responsible for the interval (predecessor_ID,node_ID]
• Thus, the successor of an ID is responsible for the ID.

Graph Embedding
Neighbor set

• Successor and predecessor (required, but
predecessor only used for maintenance)

• K successors (optional)
Finger table (Long distance links)

• Link to node responsible for
node_ID+2i with i=1..160

• These links are thus in exponential
distance over the link index i.

]12,0[−m

0000 = 0
0001 = 1

0010 = 2

0011 = 3

0100 = 4

0101 = 5

0110 = 6

0111 = 7
1000 = 8

1001 = 9
1010 = 10

1011 = 11

1100 = 12

1101 = 13

1110 = 14

1111 = 15+0001 = +1

+0100 = +4

+1000 = +8

+0010 = +2

Network Security, WS 2008/09, Chapter 9 26Peer-to-Peer Systems and Security, SS 2009, Chapter 0 26Peer-to-Peer Systems and Security, Summer 2009, Chapter 1 26

Chord – Structure

Routing strategy
Greedy, goal is to find the successor of an ID.

Maintenance
Join & Stabilization will be discussed on the next slides.

0000 = 0
0001 = 1

0010 = 2

0011 = 3

0100 = 4

0101 = 5

0110 = 6

0111 = 7
1000 = 8

1001 = 9
1010 = 10

1011 = 11

1100 = 12

1101 = 13

1110 = 14

1111 = 15+0001 = +1

+0100 = +4

+1000 = +8

+0010 = +2

Network Security, WS 2008/09, Chapter 9 27Peer-to-Peer Systems and Security, SS 2009, Chapter 0 27Peer-to-Peer Systems and Security, Summer 2009, Chapter 1 27

Chord – Lookup

Lookup
Goal: Find successor(ID)
Method

Node n either initiates or
receives the query. If n is
successor(ID), then we
reached the target.
IF successor(n) ==
successor(ID) THEN

• Forward to successor(n).
ELSE

• The next hop is the closest
preceeding finger n‘ of ID in
the finger table of node n.

• Call n‘.find_successor(ID)

0000
0001

0010

0011

0100

0101

0110

0111
1000

1001
1010

1011

1100

1101

1110

1111

0011

01011001

1011

1110
0001

0000

0011

1001.find_successor(0100)

0010.find_successor(0100)

0011.find_successor(0100)

We reached
the target,
item 0100
does not
exist.

Network Security, WS 2008/09, Chapter 9 28Peer-to-Peer Systems and Security, SS 2009, Chapter 0 28Peer-to-Peer Systems and Security, Summer 2009, Chapter 1 28

Chord – Join

Join
Node n wants to join the network

n_ID is hash of its IP address (or
randomly selected)

n contacts n‘ with n‘ already in the
network

n‘ has been found via some
bootstrapping mechanism
If no node exists, n starts a new empty
network.
n uses n‘ to build its finger table

• n‘ does the lookups for successor(finger)

n contacts its successor s, they divide
the interval and n copies the data it is
responsible for from s.
n then contacts its predecessor and the
predecessors of IDs that are likely to be
required to link to n (ID – 2^i).

0000
0001

0010

0011

0100

0101

0110

0111
1000

1001
1010

1011

1100

1101

1110

1111

0011

01011001

1011

1110
0001

0000

0011

1011

ID is 1100
successor(1100+1) -> 1111
successor(1100+2) -> 1111
successor(1100+4) -> 0010
successor(1100+8) -> 0110

n‘ is 0110,
join via n‘

predecessor(1100) -> 1001

Network Security, WS 2008/09, Chapter 9 29Peer-to-Peer Systems and Security, SS 2009, Chapter 0 29Peer-to-Peer Systems and Security, Summer 2009, Chapter 1 29

Chord – Stabilization

Stabilization
The stabilization is used to correct and
maintain the finger tables. The goal is to
converge to the correct fingers despite
changes in the network.
Pseudocode

0000
0001

0010

0011

0100

0101

0110

0111
1000

1001
1010

1011

1100

1101

1110

1111

0011

01011001

1011

1110
0001

0000

0011

Network Security, WS 2008/09, Chapter 9 30Peer-to-Peer Systems and Security, SS 2009, Chapter 0 30Peer-to-Peer Systems and Security, Summer 2009, Chapter 1 30

Chord – Failure and Replication

Failure of a node
Maintain a successor list with r successors
Use successor list to handle the failure / leave of successor
In the time from failure till stabilization finished, proposed to introduce
timeout and use a less-optimal node or other successor as next hop.

Replication
Store items also on the r successors
Has to be done by higher layer software though as Chord only does
the Key-Based Routing part.

Network Security, WS 2008/09, Chapter 9 31Peer-to-Peer Systems and Security, SS 2009, Chapter 0 31Peer-to-Peer Systems and Security, Summer 2009, Chapter 1 31

Chord – Theory – Lookup

Theorem (Chord Lookup)
With high probability, the number of nodes that has to be contacted to find a

successor of an ID k in an N node Chord network is O(logN).

Proof
Suppose, node n wishes to resolve query for successor of k. Let p be the node
that immediately precedes k.
If n != p then

n forwards the query to the closest predecessor of k
Suppose that p is in the i-th finger interval of n and that this finger is f.
d(n,f) > 2^i and that 2^i>d(f,p) d(n,p) = d(n,f)+d(f,p) > 2 d(f,p)
Thus, the distance is at least halved in each step.
As the distance is at most 2^m, the number of steps to p is limited by m. k can then
be found in m+1 steps.

continues
n

succ(k)
k

p=pred(k) < n + 2^(i+1) otherwise n would have used finger i+1
fn+2^i

n+2^(i+1) (worst case assumption that k is larger)d(n,f) > 2^i
d(f,p) < 2^i

Network Security, WS 2008/09, Chapter 9 32Peer-to-Peer Systems and Security, SS 2009, Chapter 0 32Peer-to-Peer Systems and Security, Summer 2009, Chapter 1 32

Chord – Theory – Lookup

Now, we consider node n and item k to be random. We show that
w.h.p. the number of forwardings will be O(logN).

After logN forwardings distance was at least halved logN times. Thus, the
distance will be reduced to at most

The exptected number of nodes in that area is 1 and it is O(logN) w.h.p.
• The latter follows from using the Chernoff bound on N Bernoulli experiments if

node is in or not in the interval (hit with probability 1/N).
• With high probability means that the probability that the assumption is wrong

converges to 0 with 1 / (a polynomial) or alternatively that there is a constant c

so that the error probability is bounded by .

Thus, w.h.p. we need at most O(logN) more steps.
Thus, w.h.p. we the end up with O(logN) nodes contacted.

N

mN
m 2

2
12

log

=⎟
⎠
⎞

⎜
⎝
⎛

CN
1

Network Security, WS 2008/09, Chapter 9 33Peer-to-Peer Systems and Security, SS 2009, Chapter 0 33Peer-to-Peer Systems and Security, Summer 2009, Chapter 1 33

Chord – Theory – Join

Theorem (Chord Join)
With high probabilty, each node joining or leaving an N node Chord

network will use messages to re-establish the Chord routing
invariants and finger tables.

Proof sketch
The basic idea is to show the following.
Once the new node has contact to its rendenzvous-peer its finger table

has to be created. This consists w.h.p. of O(logN) entries that need
O(logN) lookup each, thus ending up at O(log2N).

Similar assumptions hold for the links to the new node that have to be
modified.

The data transfer of items is not part of the theorem. Only one node (the
predecessor) has to be contacted for the transfer.

)(log2 NO

Network Security, WS 2008/09, Chapter 9 34Peer-to-Peer Systems and Security, SS 2009, Chapter 0 34Peer-to-Peer Systems and Security, Summer 2009, Chapter 1 34

Tree-based Topology

Also called Prefix-based routing or Plaxton‘s Mesh
Idea

Maintain at least one link to each area with a prefix that is a shortest string
not prefix to the node_ID
Example

• Node_ID = 011010
• Links to 1*, 00*, 010*,0111*,01100*,011011

Examples
Pastry
Tapestry

1*

00* 010*

0110*

0 1

Network Security, WS 2008/09, Chapter 9 35Peer-to-Peer Systems and Security, SS 2009, Chapter 0 35Peer-to-Peer Systems and Security, Summer 2009, Chapter 1 35

Pastry

Pastry
Identifyer space , usually m=128.
Management of identifyers

The numerically closest node is responsible for a key.
Graph Embedding

Routing Table R
• Let b bits be a character. The ID is then represented as a string of b-bit

characters.
• Idea: for each shared prefix length, have a link to one node in each interval with

a common prefix of that length and a different next character.
• Example: Node ID = 1023

]12,0[−m

Shared Prefix
length

Next character
after common prefix

0
1

bm /

2
…

0 1 2 … 12 −= bf
-0-231 ------------ -2-333 -f-023
----------- 1-1-23 1-2-30 1-f-01

10-0-1 10-1-1 ------------- 10-f-3
… … … …

This is the table of the
IDs that we use to
select the next hop ID,
for each ID there is also
the information IP:Port

Network Security, WS 2008/09, Chapter 9 36Peer-to-Peer Systems and Security, SS 2009, Chapter 0 36Peer-to-Peer Systems and Security, Summer 2009, Chapter 1 36

Pastry

Leaf set L
• Link to L/2 closest numerically smaller nodeIDs and to L/2 closest numerically

larger nodeIDs
• L usually 2^b or 2^(b+1)

Neighbor set M
• Maintain a set of nodes that are the closest known nodes according to some

numeric proximity measure (IP hops or RTT)
• [M| usually 2^b or 2^(b+1)

Routing strategy
Let ID be the target and the current node n is not responsible
IF ID is within the leaf set THEN

• Forward to closest node in leaf set
ELSE

• Use routing table and forward message to a node that shares a longer common
prefix with ID than n

• If that is not possible use a node from L, R or M that does not share a longer
prefix with ID, but is numerically closer to ID than n

Network Security, WS 2008/09, Chapter 9 37Peer-to-Peer Systems and Security, SS 2009, Chapter 0 37Peer-to-Peer Systems and Security, Summer 2009, Chapter 1 37

Pastry - Routing

Let b=2 (2-bit char.) and m=8 (4 characters), |L| = 2,|M|=2, node n=1323

0 1 2 3

0032 0120 0312 1100 1123 1301 2000 2021 2233 3021 3111 3120 3231 3331

M L

0 1 2 3

0
1
2
3

0032 - 2021 3120

n/a 1100 n/a -
1301 n/a - n/a

-n/a n/a n/a

with
n/a no node in interval
- prefix of node n, so no link

1323

R

<= row 0 = first character in ID

<= row 1 = second char.

<= row 2

to other subtrees of root
to other subtrees of own subtree
etc.

For a link to an interval
any node in the interval
can be selected. So,
simply select one you
know. Instead of 0032,
we could also have
chosen 0120 or 0312.

nodes

tree

Network Security, WS 2008/09, Chapter 9 38Peer-to-Peer Systems and Security, SS 2009, Chapter 0 38Peer-to-Peer Systems and Security, Summer 2009, Chapter 1 38

Pastry – Join

Join
Say, node X wants to join.
X knows a near Pastry node A according to the proximity metric

X uses some external information (say WWW) to find such a node
X first selects a node ID, we call it X_ID.
X sends a join message to A containing X_ID.
A forwards the join message towards X_ID.

All nodes on the path including A reply to X with their state tables (R,M,L)
Z is the node responsible for X_ID
X may ask additional nodes

X informs all nodes that need to know of X‘s arrival.

continues

Network Security, WS 2008/09, Chapter 9 39Peer-to-Peer Systems and Security, SS 2009, Chapter 0 39Peer-to-Peer Systems and Security, Summer 2009, Chapter 1 39

Pastry – Join

X uses the aquired information to
build its state tables

Neighbor List M_X = M_A
• as X and A are close in the underlay

Leaf set L_X = L_Z
• as X and Z are direct neighbors

Routing table
• Row 0: 0_X = 0_A
• Row i: i_X = i_Intermediate-Hop_i

X sends a copy of its state tables to
all nodes in R,M, and L.

These nodes will then update their
table according to this information.

• E.g. A should add X to it neighbor list
M_A.

X
A

MA

MA

MA

X neighbor of A in underlay (real world)

A

B

C

Z X Leaf set

use A and row 0
of A to till row 0
use B and row 1
of B to till row 1

use C and row 2
of C to till row 2

Network Security, WS 2008/09, Chapter 9 40Peer-to-Peer Systems and Security, SS 2009, Chapter 0 40Peer-to-Peer Systems and Security, Summer 2009, Chapter 1 40

Pastry – Locality

Locality
Unlike most DHTs Pastry directly addresses the problem of locality, i.e.
to prefer to have local links than links that cross the planet.
Locality is measured by proximity metrics, e.g. IP hops.
The neighbor set of a node holds a knowledge of close nodes
according to such a proximity metric.
Locality through the join process

Pastry assumes that a node n that joins the networks, joins via a
geographically nearby node A.
As this node A already prefers routing table entries with good proximity,
the state information of this node A and the other nodes is filled with nodes
that are likely to be good nodes according to the proximity measure.
Consequence, n is likely to fill its routing table with nodes that are close.

Network Security, WS 2008/09, Chapter 9 41Peer-to-Peer Systems and Security, SS 2009, Chapter 0 41Peer-to-Peer Systems and Security, Summer 2009, Chapter 1 41

Pastry – Results

Experimental evaluation

Rowstron & Druschel (2001)

Rowstron & Druschel (2001)

Network Security, WS 2008/09, Chapter 9 42Peer-to-Peer Systems and Security, SS 2009, Chapter 0 42Peer-to-Peer Systems and Security, Summer 2009, Chapter 1 42

Pastry

Discussion
Routing hops

Node state

Low overhead for join and leave.
Join

Leave

)(log2 nO b

)log)12((
2

nO b
b −

)(log
2

nO b

)(log
2

nO b

Network Security, WS 2008/09, Chapter 9 43Peer-to-Peer Systems and Security, SS 2009, Chapter 0 43Peer-to-Peer Systems and Security, Summer 2009, Chapter 1 43

XOR topology

XOR topology
Closely related to the tree topology
XOR as distance metric

Advantage of XOR metric
Unidirectional, that means that for a given x and D there is only one point
y that satisfies d(x,y) = D. Lookups for same key converge to the same
path, and thus caching item along this path is good to avoid hotspots.

Example
Kademlia

yxyxd ⊕=),(

ID space

Item is in left subtree.
Closest node is in right subtree.
Responsible node is in wrong
subtree (Leaf set across
subtrees).

With the XOR metric, however,
the item is closer to any node in its
subtree than to nodes in other
subtrees.

Network Security, WS 2008/09, Chapter 9 44Peer-to-Peer Systems and Security, SS 2009, Chapter 0 44Peer-to-Peer Systems and Security, Summer 2009, Chapter 1 44

Kademlia

Kademlia
Identifyer space , usually m=160.
Mapping

proposed to use hash function sha1(.), e.g. node_ID = sha1(node_IP).
Management of identifyers

The resposible node is the closest node to the ID according to XOR metric.
Graph Embedding

k-Buckets
• For any 0 ≤ i < 160, there is a k-bucket with

up to k nodes with

• A k-bucket contains up to k nodes with their (IP, UDP port, ID).
• If a k-bucket is full and new node found, the least-recently seen node r is

pinged
– It responds node r is moved to tail and new node is discarded
– It does not respond add the new node to bucket, remove old node r.

• The strategy motivated by the fact that in many networks nodes that have been
in the network for a long time are more likely to stay than young nodes.

]12,0[−m

…

bucket
bucket

bucket

Exponential
increase
in ID range
of buckets

)2,2[)_,(1+∈ ii
XOR IDnodeIDd

bucket

…

Network Security, WS 2008/09, Chapter 9 45Peer-to-Peer Systems and Security, SS 2009, Chapter 0 45Peer-to-Peer Systems and Security, Summer 2009, Chapter 1 45

Kademlia

Routing
Greedy according to XOR metric

Lookup
Node

• The initiator of a lookup asks the alpha closest
entries from the bucket for the ID.

• They return the k-bucket or alternatively the k
closest nodes for the query in their buckets.

• This is repeated, from the nodes received the alpha
closest yet unknown nodes are also queried.

• The lookup terminates when the initiator has replys
from the k closest nodes it has seen.

Value
• Analog, but anyone who knows the value does not

reply with k nodes, but with the value.

find(ID)

k close nodes

etc.

replies from k closest nodes
We reached the target nodes.

Network Security, WS 2008/09, Chapter 9 46Peer-to-Peer Systems and Security, SS 2009, Chapter 0 46Peer-to-Peer Systems and Security, Summer 2009, Chapter 1 46

Kademlia

Storage & Caching
To store a value, locate the k closest nodes to the ID via Lookup and then
store the value at these nodes.
Values are considered softstate and need refreshing.
Values are cached at the first node on a path that did not know it.

Join
Node u joins via an existing node w and they add each other to their k-
buckets.
u performs lookup to its ID
u refreshs all k-buckets further away than its closest neighbor.

Maintenance
Refresh k-buckets for which there no contact within a certain time, e.g. an
hour
Refresh means lookup of random ID in bucket.

Network Security, WS 2008/09, Chapter 9 47Peer-to-Peer Systems and Security, SS 2009, Chapter 0 47Peer-to-Peer Systems and Security, Summer 2009, Chapter 1 47

Kademlia

Management of k-buckets
Kademlia does not use all 160 buckets if they are not full.
A node starts with one bucket from 00000… to 11111….
A bucket is split if it contains node and the node knows
more than k nodes in the bucket.

Tolerance Zone in KAD (a Kademlia derivative used in
filesharing)
KAD does not route to one exact ID.
The tolerance zone is a zone around the ID.

e.g. first 16 bits in common with ID
Items are stored on r nodes in its tolerance zone.

With r as the number of replicas (with one of them as
responsible host).

Lookup needs to find one node in the tolerance zone that
knows the item.

Problem that this may not be the node closest to the item ID.
Searching necessary in tolerance zone.

0*: 5 11*:5

100*:2 101*:4

0 1
10

0 1

Example: buckets and size
k = 5, node 101* interval

ID

ID
item
node with item

Network Security, WS 2008/09, Chapter 9 48Peer-to-Peer Systems and Security, SS 2009, Chapter 0 48Peer-to-Peer Systems and Security, Summer 2009, Chapter 1 48

Example: Kad network in Ed2k / aMule

The Kad network
Based on Kademlia and used in clients like aMule, etc.
„Buddy“ function

Firewalled or NATed clients can ask other peers to support them as „buddy“, only
one buddy allowed and client waits 5min after firewall check before requesting a
buddy.

2-layer publishing
Meta data (file name, file size, file type, file format, etc.)

• Keywords are extracted from file name, reference to sourceID stored at keywords (e.g.
„P2P Vorlesung“ keywords „P2P“ and „Vorlesung“)

Sources
• Source published at sourceID = MD4_hash(compete file)

Replication
• Root for an item are nodes in a zone with a given prefix, e.g of 8 bit. For each write, there is

a replication to 11 nodes in the zone.
Keyword search

Lookup for first keyword in search string, rest of the key words are used to filter
results
No fuzzy queries, range queries, …

Network Security, WS 2008/09, Chapter 9 49Peer-to-Peer Systems and Security, SS 2009, Chapter 0 49Peer-to-Peer Systems and Security, Summer 2009, Chapter 1 49

Kademlia

Discussion
The approach can be extended to work on a base of 2b.
Routing hops
Node state
Low overhead for join and leave.

Join
Leave

Kademlia is used in modern Peer-to-Peer systems like BitTorrent and
in the Edonkey/Overnet/Kad Network family.
Resistance against Denial-of-Service attacks

Buckets can not be filled with new bogus nodes as long as old nodes in a
bucket are still alive.
Iterative and parallel lookup makes it hard for an attacker to block queries.

)(log nO b

)log(nbO b

)(log nO b

)(log nO b

Network Security, WS 2008/09, Chapter 9 50Peer-to-Peer Systems and Security, SS 2009, Chapter 0 50Peer-to-Peer Systems and Security, Summer 2009, Chapter 1 50

Constant-Degree DHTs

With m=O(log(n)) state and L=O(log(n)) DHTs do not achieve the
performance of random graphs. Lets recap the

Random graphs achieve L=O(log(n)) with constant degree. This is an
average and the O(logn) we give for the DHTs is a maximum with high
probability.
Can we build structured networks with constant degree and O(logn)
hops?

We can, even with degree 2, e.g. binary trees, Viceroy (DHT based on
butterfly graph), de Bruijn graphs, Kautz graphs, Distance-Halving.
However, short distances are not for free, constant-degree graphs
have longer average paths because they have significantly less links!

() n
nm

nL
const

n
m

random log
/log

log~ ~
=

Network Security, WS 2008/09, Chapter 9 51Peer-to-Peer Systems and Security, SS 2009, Chapter 0 51Peer-to-Peer Systems and Security, Summer 2009, Chapter 1 51

Structured vs Unstructured vs Server

Comparing DHTs with unstructured networks and central servers

Node
State

Communication
Overhead

O(n)O(1) O(logn)

O(n)

O(1)

O(logn)

Central
Server

Unstructured
w. Flooding

Structured
KBR / DHT

Gnutella-like, information can be anywhere.

Napster case, server knows everything.

Network Security, WS 2008/09, Chapter 9 52Peer-to-Peer Systems and Security, SS 2009, Chapter 0 52Peer-to-Peer Systems and Security, Summer 2009, Chapter 1 52

Conclusion

Conclusion
Structured networks

Structured Peer-to-Peer networks / DHTs solve the problem to directly find
an item or node in a Peer-to-Peer network.

Key-Based Routing
Distributed Hash-Table
The basic idea of the routing of most DHTs is to know more about
nodes close in the ID space and to know less about other nodes the
further the ID distance is. Still, there is at least some knowledge of
nodes in a distant ID space.

