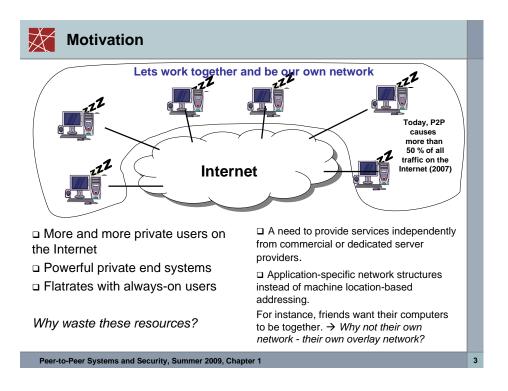


Chair for Network Architectures and Services Department of Informatics TU München - Prof. Carle

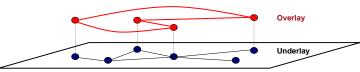
Peer-to-Peer Systems and Security IN2194

Chapter 1 Peer-to-Peer Systems 1.1 Introduction


Prof. Dr.-Ing. Georg Carle Dipl.-Inform. Heiko Niedermayer

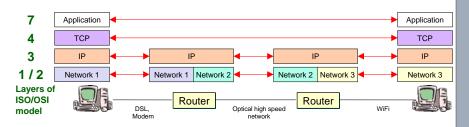
Motivation

- Overlay and Peer-to-Peer
- Graph Theory Basics
- Routing and Searching


Peer-to-Peer Systems and Security, Summer 2009, Chapter 1

Term: Overlay

"Overlay networks is a term for networks that run on top of an existing infrastructure but provide certain additional functionality." (Source: www.overlay-networks.info)



Overlay networks

- add another layer of abstraction in some place in the protocol stack.
- introduce a new structure of who is connected with whom.
- □ This new structure uses the connectivity of the lower layers for its links. The layer below the overlay is called underlay.
- Overlay networks are usually formed for some kind of reason, usually to provide a desired additional functionality.
 - e.g. send a message to all members of a group (multicast), the overlay represents the group and provides group membership functionality

IP – an overlay in the network stack

The most well-known overlay is the Internet Protocol (IP) itself.

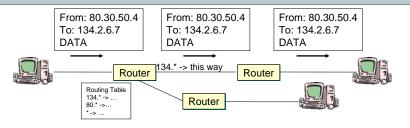
The Internet Protocol (IP)

- abstracts from the technology and physical location present in the lower layers (Medium access, Physical Layer).
- forms a structure that is optimized to provide connectivity between all connected networks and their entities, no matter where they are and what access technology they use.

Peer-to-Peer Systems and Security, Summer 2009, Chapter 1

Examples for Overlay Networks

Virtual Private Networks (VPNs)


used to connect local networks that are located in different places using other networks, e.g. the Internet or phone lines.

Domain Name System (DNS)

- used to map names of resources to IP adresses
- DNS servers internally form an overlay
 - Hierarchy with a group of root servers to more and more specialized servers for subdomains.

IP – an overlay in the network stack

The Internet Protocol (IP)

- For an packet (IP datagram) with any arbitrary target any system (router) on the way can efficiently decide where it has to go.
 - **Routing**: Operation to determine optimal paths and structure in a network, usually results in a routing table.
 - **Forwarding**: Operation of the router when it sends a packet to its next hop according to routing table.
- If the target does not exist, the system will recognize this at some point and return an error message (ICMP protocol).

Peer-to-Peer Systems and Security, Summer 2009, Chapter 1

Term: Peer-to-Peer

Peer-to-Peer systems

Distributed systems that consist of equals (peers) with no predefined distinction between client and server and no dedicated servers or central authority.

Characteristics

- Peer-to-Peer networks are decentralized and take advantage of resources at the edge of the Internet, in particular the computers of users.
- End systems do not primarily serve the purpose of the Peer-to-Peer system.
 - \rightarrow Their resources must not be exhausted by the Peer-to-Peer network
- Computers are not always-on.
 - \rightarrow Environment is less stable and more dynamic than in the traditional client-server case.

Peer-to-Peer or not Peer-to-Peer

Auctions / Ebay

- □ Peer-to-Peer
 - Money and goods exchange (nothing to do with the network)
- Not Peer-to-Peer
 - The platform itself (Auctions, Accounts, Information transfer) and its Information Management

Skype

- □ Peer-to-Peer
 - Lookup, User Interaction, Data Exchange
- Not Peer-to-Peer
 - Login, Account Management

Many Peer-to-Peer systems are not purely Peer-to-Peer.

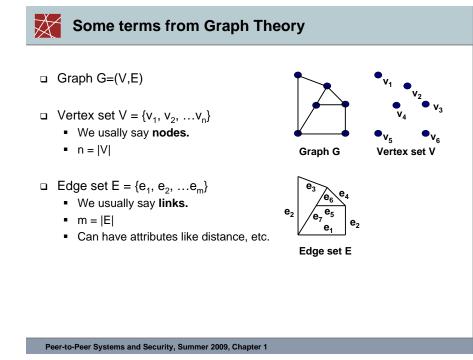
Peer-to-Peer Systems and Security, Summer 2009, Chapter 1

Overlay vs. Peer-to-Peer

- Overlay and not Peer-to-Peer ?
 - Virtual Private Networks with VPN servers.

- Peer-to-Peer system and no Overlay ?
 - Usually Peer-to-Peer systems create a new structure (overlay) on top of an underlying network.
 - No perfect examples without overlay.
 - Possible examples
 - Peers in an ad-hoc or sensor network may not add a new structure with new identities.
 - Peers in a LAN playing a P2P game use IP.
 - Students in a lecture organize where they sit, etc. However, again no new adressing or communication structure.

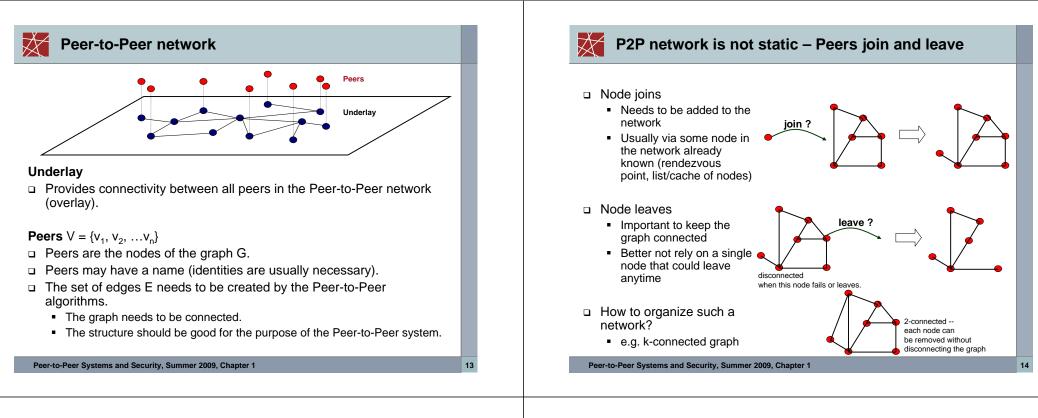
distance d(v1,v6)=5

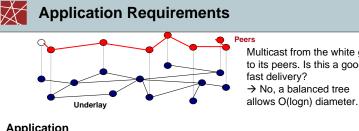

Spontaneous meeting, no central coordination

diameter(G)=5

degree $(v_5) = 3$

• ...


Peer-to-Peer Systems and Security, Summer 2009, Chapter 1



Some terms from Graph Theory

Distance d(i,j)

- Shortest path between nodes v_i and v_i
- Diameter D of G
 - Longest distance in graph G
- Degree
 - Node degree = number of edges adjacent to node
 - Degree of a graph = max. node degree
- A graph is <u>connected</u> if there is a path from any node in the graph to any other node in the graph.
- A graph is <u>k-connected</u> if any k-1 nodes can be removed without causing the resulting subgraph to become disconnected.

Multicast from the white game server to its peers. Is this a good graph for → No, a balanced tree

Application

- Peer-to-Peer networks are usually created for an application or application scenario.
 - Filesharing
 - File Distribution
 - Instant Messaging and Voice-over-IP
 - Multicast •
 - Peer-to-Peer Video Streaming
 - Anonymous communication and services
 - ...
- □ The application is the purpose of the Peer-to-Peer network.
- The application and its requirements determine if a given graph is a good or a bad choice.

Operational aspects

Find someone to

- get something
- use a service
- interact
- interact for a cooperative service or goal
- maintain network
- □ Find something (item, data, information, etc.) to
 - get it
 - set it
- Interact with other nodes to cooperatively
 - provide a service
 - share resources
 - run an algorithm

15

"How can we find something or someone?"

Routing

- \Box Routing = algorithm / protocol to find a path.
- Given a destination send a message to the target on a direct way.
- Needs
 - Names for peers or items
 - Means to determine and know the way

Searching

- Look for someone or something.
 - Location of destination or set of destinations is unknown.
 - Breadth-First / Depth-First Searching, Flooding, etc.
- Usually used when no criteria exists that allows to determine a best direct way.
 - The requested information can be anywhere.

Peer-to-Peer Systems and Security, Summer 2009, Chapter 1

Conclusion and Outlook

Conclusion

- □ What is a Peer-to-Peer system?
 - Not necessarily pure P2P.
- Overlay and Underlay
- Graph Theory Basics
- Routing and Searching

	Routing	
Types of Queries	Searching	
□ Exact	"Marienplatz, Munich"	
 Fuzzy Queries Find somthing similar according to a metric 	"somewhere in Munich"	
 Find somthing similar according to a metric. Range Queries (Bereichsabfrage) Find everything in given Interval, e.g. [c,pfau] or (2,4] 	"everything on the way from Garching to Munich Marienplatz"	
 String Queries substring, startsWith, endsWith, 	1	
 Complex queries Find peers / items where for a node-specific and query-specific function f_{this-query} holds f_{this-query}(candidate)>threshold_{this-query} 	"All restaurants near Marienplatz with good food according to <u>my</u> taste."	
 SQL / Database queries 		
Peer-to-Peer Systems and Security, Summer 2009, Chapter 1		18

D. E. F

Opera Expert?

Opera Expert?

No. Maybe

••••

17

D,E,H.

...

No.

to C

to C