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Outline (shortened slide set) 

 

Internet Topology modelling 
Random Graphs models and generators 

Power Law relationships 

Degree-based models and generators 

Internet topology metrics  
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where 
- d  d(u,v) is the distance from u to v    

- D is the maximum distance between any two nodes  

- 0 < , 0 <   1   

Increasing  increases the number of edges in the graph 

increasing  increases the ratio of long edges to short edges  

- r is the boundary  
 

Cf. "Statistical mechanisms of Networks" Lecture for Exponential 
Random Graph  

Random Graphs models 

Model Probability Year 
Pure random model (ER 
model) 

P(u,v) = p 1960 

Waxman model P(u,v) =  e-d/( D)   1988 

Exponential model P(u,v) =  e-d/(D-d) 

Locality model  if d < r 

 if d ≥ r 
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Basic random graph model: given n vertices, an edge 
between any two vertices exists with a probability 
p, independently of any other edge in the network  

Initially: number of vertices |V| = n and no edges  

To obtain a random element Gn,p, select the edges (u,v) 
independently with probability p (0 ≤ p ≤ 1)  

  element Gn,p of the set G(n,P(edge)=p)           

     appears with probability 

  

  where              is max. possible number of edges 

  

 Limit for large value of n: 

 - expected number of edges E[m] = 

 - expected average node degree E[l] =  

 

Note: another variant of the random graph model G(n,m) assigns 

uniform probability p to all graphs with n nodes and m edges   

Random Graph Model  
Erdös-Renyi (ER) Model 
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Random Graph Model  
Erdös-Renyi (ER) Model 

Probability p(k) that a node has degree k is Binomial 

 

 

 

For large n (n >> k l) and degree k fixed, where l is 
the average node degree (l = 2m/n = (n-1)p ≈ np), 

this is the Poisson distribution  
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probability that there are exactly k edges number of ways to attach the endpoint of k edges  from a particular node  

The expected value of a Poisson-
distributed random variable P(k) 
is equal to λ and its variance 
P(k,λ) is equal to λ 
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Random Graph Properties (1) 

Expected structure of the random graph varies with 
the value of p 

The edges join vertices together to form components, i.e., 
(maximal) subsets of vertices that are connected by paths 
through the network 

 

Phase transition property (most important property)  
 

 

From a low-density, low-p 
state in which there are few 
edges and all components are 
small (i.e., O(log(n))  

High-density, high-p state in 
which an extensive (i.e., O(n)) 
fraction of all vertices are 
joined together in a single giant 
component (remainder of the 
vertices occupying smaller 
components) 
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Random Graph Properties (2) 

k 

The mean component size (solid line), excluding the 
giant component if there is one, and the giant component 
size (dotted line) for the Poisson random graph 

source: [Newman03] 
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Random Graph Properties (3) 

Diameter   

The number of nodes at distance d from a given node 
is given by ld 

If a graph has l as average degree then 

Then  

– The number of first neighbours: l 

– The number of second neighbours: l2 

– ... 

– The number of neighbours at distance d: = ld 

 

When extended to include all nodes in the graph  

 N = lD -> log(N) = log(lD) = D log(l) 

  

 => Diameter  
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Random Graph Properties (4) 

Clustering coefficient  
If the graph is sparse enough, the probability that 
two neighbors of a node are connected is the 
independent probability, p: 

 

 

 

 

For a complete graph clustering coefficient = 1  
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The measurements on real networks are usually compared 
against those obtained from “random networks” 

 

Problem: find the probability distribution that best 
fits the observed data 

 

 

 

 

 

 

 

 

 

Highly concentrated around the mean l (average degree) 
-> the probability of very high degree nodes is 
exponentially small 

fk = fraction of nodes with degree 
k  probability that a randomly 
selected node has degree k  

 

With the random graph model the 
node degree distribution is 
Poisson of mean l = n p (average 
node degree) 

ll
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Random Graph Model  
Erdös-Renyi (ER) Model 
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Random Graph Model  
Erdös-Renyi (ER) Model 

Source: http://www.caida.org (ISMA 2006) 

Poisson random graph 
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Random Graph Model  
Erdös-Renyi (ER) Model 

Are E-R graphs realistic? 

 

They have small world properties (diameter is 
logarithmic in the size of the graph) but low 
clustering coefficient   

Example for Internet AS topology: compare 0.30 with 0.0004 
[Pastor-Satorras and Vespignani] 

 

Unrealistic degree distributions  
Degrees not concentrated around mean (characteristic of 
Poisson distribution) 

Exponential tails (instead of heavy tailed degree 
distribution) 

 

Result: departure from ER model and variants 
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Poisson vs. Power-law network 

Poisson network 
(Erdos-Renyi random graph) 

Power-law distribution of 
node degree: P(k) ~ k-g 

Degree distribution: Poisson 

Degree distribution: Power-law 
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Outline 

Internet Topology modelling 
Random Graphs models and generators 

Power Law relationships 

Degree-based models and generators 

Internet topology metrics  
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Initial Observation 

Faloutsos et al. (1999) identify power law in node 
degree distribution at both router- and AS-level graph 

A random variable X is said to follow a power law 
distribution with scaling index g > 0 if   

Few nodes have lots of connections 

Most nodes have few connections 

Rank plots: log-log plot of the out-degree of the nodes (# of edges incident) vs 
rank of the nodes (index in the order of decreasing out-degree) 

  xxcxXP as][ g
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Power Law and Scale Invariance 

A random variable X (or its corresponding distribution 
function F) is said to follow a power law or is scaling with 
(scale or tail) index g > 0 if  
 

                                                            (*) 
 

For 1 < g < 2: F has infinite variance but finite mean   

For 0 < g ≤ 1: F has infinite variance and infinite mean 
 

Since (*) implies log(P[X > x]) ≈ log(c) − g log(x) -> doubly 
logarithmic plots of x versus 1 − F(x) yield straight lines of 
slope −g (at least for large x) 
 

Power-law distributions are called scaling distributions 
because if the random variable X satisfies relationship (*) 
and x > w, then the conditional distribution of X given that  
X > w is given by 

 
where constant c1 is independent of x and given by c1 = w 

g 

Thus, at least for large values of x, P[X > x|X > w] is 
identical to the (unconditional) distribution P[X > x], except 
for a change in scale 
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Power Laws 

Power Law 1: Out-degree of nodes vs. rank   

Power Law 2: Frequency of out-degree 

Power Law 3: Pairs of nodes within h hops 

Power Law 4: Eigenvalues of adjacency matrix 

 

Power Laws Expression Value 

Rank exponent (R) R ~ -0,8 

Outdegree exponent (O) O ~ -2,2 

Hop-plot exponent (H) H ~ 4,7 

Eigenvalue exponent (e) e ~ -0,48 
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Power Laws - Summary 

Rank Exponent R: The out-degree dv of a node v is 
proportional to the rank of the node rv to the power a 
constant R (~ -0.8): dv  rv

R 

Out-degree Exponent O: The frequency fd of an out-degree 
d is proportional to the out-degree to the power of a 
constant O (~ -2.2): fd  dO  

Hop-plot Exponent H: The total number of pairs of nodes 
P(h) within h hops is proportional to the number of hops 
to the power of a constant H (~ 4.7): P(h)  hH 

Effective Diameter: given a graph with N nodes and E edges, 
define the effective diameter as: 

 

 

Eigen Exponent e: The eigenvalues λi of a graph are 
proportional to the order i to the power of a constant ε 
(~ -0.48): li  ie  
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Outline 

 

Internet Topology modelling 
Random Graphs models and generators 

Power Law relationships 

Degree-based models and generators 

Internet topology metrics  
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Degree-based Network Topology:  
Models and Generators 

Faloutsos et al. (1999) find power law in node 
degree distribution at router-level graph and 
Autonomous System (AS) graph 
 

Basic Idea: traditional random graphs [Erdös & 
Renyí, 1959] do not produce power laws, so 
develop new models that explicitly attempt to 
match the observed (power law) distribution in 
node degree 
 

=> Led to active research in degree-based network 
models: focus on generators that match degree 
distribution of observed graph (descriptive 
methods) 
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Degree-based Network Topology:  
Models and Generators 

Two methods for generating random networks having 
power law distributions in node degree 
 

Growth modelling (evolutionary) 
– Barabasi-Albert (BA) model: scale free networks 

characterized by Incremental growth and Preferential 
Attachment   

– Albert-Barabasi (AB) model: variant of BA model 

– Inet 3.0: enforced power law degree distribution and 
Preferential Attachment 

– BRITE: model based on Incremental growth and 
Preferential Attachment  

– Generalized Linear Preference (GLP) model 
 

Distribution modelling (non-evolutionary)   
– Exact degree sequence: Power Law Random Graph (PLRG)  

– Expected degree sequence: Generalized Random Graph 
(GRG) 
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Barabasi-Albert (BA) model [Barabasi 1999]  

Power-law degree distribution can arise from two 
mechanisms 

Incremental growth: continuous addition of new nodes and 
edges to the system 

Preferential attachment: new nodes are preferentially 
attached to nodes that are already well connected 

  

 Probability of attachment to node i:   

It is estimated that BA model 
generates networks with node 
degree distribution P(k) ~ k-3 
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Barabasi-Albert (BA) model [Barabasi 1999] 

Method 
Start with a small number (m0) of nodes 

At every step, add a new node with m  m0 edges that link 
the new node to m different nodes already present in the 
graph 

 Probability Pi(t) that a new node will be connected to an 
existing node i depends on the connectivity (degree) ki of 
that node at time t 

 -> at each step: Pi(t) = ki(t) / j=1,N kj(t) 
 

After t steps the model leads to a random network with 
N(t) = t + m0 nodes and E(t) = m . t links 
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Preferential attachment model: paradigm the "rich 
gets richer" 

 

Barabasi-Albert (BA) model [Barabasi 1999] 
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Preferential Attachment Model 

Preferential Attachment model: each new node connects 
to the existing nodes with a probability proportional 
to their degree  

 

T=2 

¾ 
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Deg = 4 
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T=1 Degree = in-degree + out-degree 
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BA Model -> Topology properties 

After t steps the model leads to a topology with  
Number of nodes: N(t) = m0 + t  

Number of edges: E(t) = e0 + m t  

The degree of node i increases in time as a power-law with 
exponent 1/2: ki(t) = m (t/ti)

1/2 

 

Average degree <k> = 2E/N -> 2m 

Degree distribution P(k) -> 2m2 k-3 for t-> 

 The probability that a node has k links follow a power-law 
with exponent g=3 (degree distribution becomes stationary)  
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PA Model Variations 

Variations of the Preferential Attachment model 
(scale index g depends on model details) 

 Model Constraint Reference 

Barabasi and Albert (1999) 

          

-m < a < ∞, m > 1  

Initial attractiveness a (-> 
shift of g): Dorogovtsev–
Mendes–Samukhin model (2000) 

-∞ <   ≤ 1  
Generalized linear model: Bu 
(2002) 

 < 1 (exp.distribution) 

 > 1 (fully connected) 
Non-linear model: Krapivsky and 
Redner (2000)  

Intrisic Fitness: Bianconi and 
Barabasi (2000) 
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Incremental growth: starting from graph G(t=t0): G0   
Add new nodes to graph G 

Add new links to graph G 

Rewire links: re-arrangement of already existing links 

 

 

 
 

 

 

Linear preferential attachment: new nodes prefer 
existing nodes with large-degree   

Pi(t) probability of selecting an existing node i of 
degree ki at time t 

 BA Model: Pi(t) = ki(t) / j=1,N kj(t) 

 AB Model: Pi(t) = [ki(t) + 1] / j=1,N  [kj(t) + 1] 
 

0.5 

0.5 0.25 

0.5 0.25 

new node 

existing node 

G(t-1) G(t) G(t+1) 

Barabasi-Albert (BA) model (Barabasi, 1999)  
Albert-Barabasi (AB) model (Albert, 2000) 
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Albert-Barabasi (AB) model [Albert 2000] 

Extended model   
Start with m0 isolated (unconnected) nodes 

At each step, perform one of following three operations 
Add m new links with probability p:  

 For each of link, one end of the link is selected at random, while 
the other is preferentially selected with probability  

      Pi(t) = [ki(t) + 1] / j=1,N [kj(t) + 1] 
Rewire m links with probability q:  

 For each link, randomly select a node i and a link (i,j) connected 
to it. This link is removed and replaced by a new link (i',j) 
connecting the node j to a new node i' selected with probability 
Pi(t) 

 

 

 

Add new node with m links with probability 1-p-q:  
 Preferentially select the m links (that are connected to nodes 

already present) with prob. Pi(t) 
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Albert-Barabasi (AB) model [Albert 2000] 

The preferential attachment probability  

 

 

 

leads to a power-law distributed connectivity, 
whose exponent depends on the parameters q and p.  
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Degree sequence follows a power law (by construction) 

High-degree nodes correspond to highly connected 
central hubs, which are crucial to the system 

Achilles’ heel: robust to random failure, fragile to 
specific attack (to hubs)  

Preferential Attachment Expected Degree Sequence (PLRG) 

Properties of Degree-based Models 
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Power Laws Relationships of the 
Internet Topology: Revisited 

Main Findings 
AS paths (BGP routing system) might not cover the 
complete AS topology 

Distribution of node degrees is not exactly a power 
law but definitely a heavy tailed distribution 

A vast majority of new ASes are born with vertex 
degree 1 or 2 

ASs can die also!! (deaths not included in the BA 
Model) 

ASs have much stronger preference to connect to 
high vertex degree ASs than predicted by the linear 
preferential model 

Rewiring not a significant factor in the evolution 
of the Internet 
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Scale Free networks 

Scale free networks (term introduced by Barabasi)   

Idea: universal model of network topologies that 
exhibit power law distributions in the network node 
connectivity 

Definition of scale free: any function f(x) that 
remains unchanged to within a multiplicative factor 
under a rescaling of the independent variable x  

-> Power law function since only solutions to  

   f(a x) = g(a) f(x) 

 New Node 
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Scale Free networks 

1. Continuous incremental growth 

Existing models of networks did not include the 
addition of nodes over time (graphs remained static)  

Scale free networks are in a state of continuous 
growth by incremental addition of new nodes and 
links to the system 

2. Preferential attachment  

New nodes tend to connect to nodes that are already 
well connected. New nodes have higher probability of 
connecting to the existing nodes with high 
connectivity, i.e., a “rich gets richer”  

“Rich club” phenomenon - power laws in asymptotic 
limit: new nodes attach preferentially to high-
degree nodes (well-connected nodes) in linear 
proportion to their degree 

 Note: role of rewiring process (re-arrangement of 
 the already existing links) 
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Rich Club Phenomenon 

Rich nodes 
Power-law technologies have small number of nodes 
having large number of links 

 

AS graph shows this phenomenon 
Rich nodes are well connected to each other 

Rich nodes are connected preferentially to the other 
rich nodes 

 

Measured in the 
Original-maps of the AS graph (BGP Routing tables by 
University of Oregon Route Views Project) 

Extended-maps of the AS graph (BGP Routing tables + 
Looking Glass (LG) data + Internet Routing Registry 
data) 
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Scale Free networks Controversy 
Scientists spot Achilles heel of the Internet  

Fact: scale-free networks have approximately power 
law degree distributions 

Claim 
If the Internet has power law degree distribution 

Then, the Internet must be scale-free   

=> The Internet has the properties of a scale-free 
network 
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Scale Free networks Controversy 
Scientists spot Achilles heel of the Internet  

Implications of “scale free” network structure:  
Few centrally located and highly connected hubs 
(high-degree nodes correspond to highly connected 
central “hubs”, critical to the system) 

=> Achilles’ heel: robust to random attack/node 
failures (probability of targeting hub very low) 
but vulnerable to targeted attacks 

  

  

 

 

-- “Achilles heel of the Internet” Albert, Jeong, 
Barabasi, Nature 2000 

 

"The reason this is so is because there are a couple of very 

big nodes and all messages are going through them. But if 

someone maliciously takes down the biggest nodes you can harm 

the system in incredible ways. You can very easily destroy the 

function of the Internet,..."  
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Preferential Attachment 
• High degree central “hubs” 
• From random construction 
• Poor performance and 
robustness 

Approx. Real network 
• Meshed, low-degree core 
• Result of design 
• High performance and 
robustness 

Networks with the same statistical features can be 
OPPOSITES in terms of engineering 

Scale-Free Networks Controversy 
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Scale-Free Networks Controversy 

Scale-free claims: based critically on the 
implied relationship between power laws and a 
network structure that has highly connected 
“central hubs” 

Not all networks with power law degree distributions 
have properties of scale free networks (The Internet 
is just one example!) 

Building a model to replicate power law data is no 
more than curve fitting (descriptive, not 
explicative) 

 

The scale-free models ignore all system-specific 
details in making their claims 

Ignore architecture e.g. hardware, protocol stack 

Ignore objectives e.g. performance 

Ignore constraints e.g. geography, economics 
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Scale-Free Networks Controversy 

Conclusion (from "opponents") 
The scale-free claims of the Internet are not merely 
wrong, they suggest properties that are opposite to 
the real thing 

Fundamental difference: random vs. designed 
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Outline 

Internet Topology modelling 
Random Graphs models and generators 

Power Law relationships 

Degree-based models and generators 

Internet topology metrics  
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Internet Topology Metrics 

A network topology is characterized by topology 
metrics including (non-exhaustive list) 

Average degree 

Degree Distribution (DD) 

Joint Degree Distribution (JDD) or Degree correlation  

Characteristic path length 

Distance 

Clustering and clustering coefficient 

Betweenness 

Spectrum 
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Average degree 

Definition: average node degree     
 

where  m = number of links  

       n = number of nodes (a.k.a graph size)  

 

Interpretation  

Coarsest connectivity characteristic of the topology   

Networks with higher    are “better-connected” on 
average and, consequently, are likely to be more 
robust   

Detailed topology characterization based only on the 
average degree is limited   

 Reason: graphs with the same average node degree can 
have very different structure 
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Degree Distribution (1) 

Definition: node degree distribution (DD) P(k) is 
the probability that a randomly selected node is k-
degree   

 

      
 

 where n(k) = number of nodes of degree k (k-degree 
nodes)   

 

Degree distribution contains more information about 
connectivity than the average degree 

 Reason: given a specific form of P(k) we can always 
restore the average degree by 

 

 

 where kmax is the maximum node degree in the graph 
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Degree Distribution (2) 

Interpretation  
Most frequently used topology characteristic 

[Faloutsos99] observation that Internet’s degree 
distribution (both router and AS-level) follows a power 
law had significant impact on network topology research   

– Structural Internet models before failed to exhibit 
power laws  organized hierarchy existence among ASes   

– [Tangmunarunkit02]: topologies derived from 
structural generators that incorporated hierarchies 
of AS tiers did not have much in common with 
topologies obtained from real observed data 

Smooth power law degree distribution indicates  

– Indicates no organized tiers among ASes 

– The power law distribution also implies substantial 
variability associated with degrees of individual 
nodes 
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Degree Distribution (3) 

Note 
Node Degree Distribution (DD) tells how many nodes of a 
given degree are in the network but it does NOT provide 
information on the interconnection between these nodes 

Reason: given P(k), structure of the neighborhood of 
the average node of a given degree is still unknown 
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Degree Distribution (4) 

Approximated by long tail power law distribution of node 
degree k: P(k) ~ kg, where power-law exponent g = 2.254 
 

 

 

 

 

 

 

 

 

 

 

In practice, the distribution is not a strict power law 
The Internet contains more 2-degree nodes than 1-degree nodes  

The distribution has a longer tail, i.e. the maximum degree 
is much larger large than expected by the power-law 

The Internet is characterized by a fewer nodes with a 
large degree a large number of nodes with a low degree 

Source: Faloutsos et al (1999) 

lo
g
(d

v
) 

log(rv) 



49 

Joint Degree Distribution (1)  

Definition: joint degree distribution (JDD) 
P(k1,k2), or the node degree correlation matrix is 
the probability that a randomly selected edge 
connects k1-degree and k2-degree nodes  

 

   

 
 where  

 μ(k1,k2) = 1 if k1 = k2 and 2 otherwise 

 m(k1,k2) is the total number of edges connecting 
nodes of degrees k1 and k2 

  

JDD contains more information about the graph 
connectivity than the degree distribution 

 Reason: given a specific form of P(k1,k2) one can 
always restore both the degree distribution P(k) and   k
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Joint Degree Distribution (2) 

Summary statistic of JDD: Average neighbor 
connectivity knn 
 

 
 

 Average neighbor degree of the average k-degree node 
  

JDD shows whether AS of a given degree 
preferentially connect to high- or low-degree AS  
 

JDD provides more information than DD (information 
about 1-hop neighborhoods around a node) but JDD 
does not tell us how neighbors interconnect 
 

Note: in a full mesh graph, knn(k) reaches its 
maximal possible value: n − 1. Therefore, for 
uniform graph comparison plot normalized values 
knn(k)/(n − 1)   
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JDD and Assortativity coefficient r 

Summary statistic of JDD: assortativity coefficient r 

 

 

 where −1 ≤ r ≤ 1 
 

Interpretation of r   
Disassortative networks (r < 0) have an excess of 
radial links (links connecting high-degree nodes to 
low-degree nodes) i.e. links connecting nodes of 
dissimilar degrees   
– Cons: more vulnerable to both random failures and 
targeted attacks   

– Pros: vertex covers in disassortative graphs are 
smaller, which is important for applications such as 
traffic monitoring and prevention of DoS attack  

Assortative networks (r > 0) have an excess of 
tangential links i.e links connecting nodes of 
similar degrees  
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Assortative coefficient r  

The Internet exhibits a negative correlation between a 
node’s degree k and its nearest-neighbors average degree  

 

 

 

 

 

 

 

 

 Disassortative mixing (r = -0.236 < 0): high-degree 
nodes tend to connect with low-degree nodes and visa 
versa 

Diassortative mixing 
r < 0 

Assortative mixing    
r > 0 
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Characteristic Path Length 

Definition: characteristic path length L (of a 
graph G=(V,E): average of path length d(i,j) over 
all pairs of vertices i, j  V 

 

 

 

Path length or distance d(i,j): number of edges of 
the shortest path between vertices i and j 
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Distance (1) 

Definition: distance distribution d(x) is the 
probability that a random pair of nodes are at 
distance x of each other 

Divided by the total number of pairs n2 (self-pairs 
included)   

 

Associated statistics with distance distribution of 
a graph  

Average distance dm 
Standard deviation s (a.k.a distance distribution 
width since distance distributions in Internet 
graphs have a characteristic Gaussian-like shape) 
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Distance (2) 

Interpretation  
Distance distribution is important for routing   
– Distance-based locality-sensitive approach as root of 

most modern routing algorithms: performance of routing 
algorithms depend mostly on the distance distribution  

– Short average distance and narrow distance distribution 
width break the efficiency of traditional hierarchical 
routing: root causes of inter-domain routing 
scalability issues in the Internet 
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Distance (3) 

Distance distribution (shortest path length)  
Performance parameters of routing algorithms depend solely 
on distance distribution 

Internet: 86% of AS pairs are at distance 3 to 4 AS hops 

Average AS_Path Length 
PDF 



57 

Distance (4) 

Consequence: efficient application of hierarchical, 
aggregation-based routing to Internet-like topologies is 
hopeless 

Distance: Hierarchical routing performs well for topologies where 
average distance d between nodes increases polynomially with 
network size n:  d(n) ~ n exp(m), m>0 

 > <  Internet topology average distance d growths at most 
logarithmically with network size (n):  d(n) ~ log(n) 

 

Path length increase: Hierarchical routing performs well when ratio  

 

 

 > <  Internet characteristic routing path length is almost constant 
hence, ratio →  for distance →  

 Note: applying hierarchical aggregation-based routing to the Internet 
AS-level topology would incur about 15-times AS-path length increase  

distance (a,b)          _ → cte 
routing path length (a,b) 
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Clustering (1) 

Quantifies how close node’s neighbors are to 
forming a clique (complete graph i.e. every pair of 
distinct vertices is connected by an edge) 
 

Definition: Local clustering coefficient c(i) of 
vertex i of degree ki (has ki neighbors)    

 

 
  

where  
E|G(i)| is the number of edges in neighborhood of vertex i  

ki (degree of vertex i): the number of edges incident to 
the vertex i 

ki(ki-1)/2 is the maximum possible number of edges between 
neighbors of vertex i (max. possible number of edges that 
could exist among the vertices within the neighbourhood of 
vertex i) 
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Clustering (2) 

If two neighbors of a node are connected, then 
these three nodes together form a triangle (3-
cycle) 

  Local clustering measure of average number of 
3-cycles   

c=1 c=1/3 c=0 
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Clustering (3) 

Definition: Clustering coefficient   of the graph 
G=(V,E) is the average of the local clustering 
coefficients of all the vertices |V| = n 
 

 

 
Clustering coefficient Ccoeff measure of the percentage of 
3-cycles among all connected node triplets in the graph 

Interpretation 
Clustering is a measure of local robustness in the graph    

Implications  
– The higher the local clustering of a node, the more 

interconnected are its neighbors, thus increasing path 
diversity locally around the node   

– Networks with strong clustering are likely to be chordal or 
of low chordality, 4 which makes certain routing strategies 
perform better 

– Clustering used as litmus test for verifying the accuracy of 
a topology model or generator    
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Clustering (4) 

A graph is considered small-world 

if its clustering coefficient C is significantly higher than a 
random graph constructed on the same vertex set 

if the graph has approximately the same mean-shortest path length 
as its corresponding random graph 

 
Regular graph 

high clustering 
large diameter 

 

 

Random graph 

small clustering 
small diameter 

 

Small-world graph 

high clustering 
small diameter 

 

 

 

N = 1000  k  =10 
D = 100  L = 49.51 
C = 0.67 

N =1000  k = 8-13 
D = 14   L = 11.1 
C = 0.63 

N = 1000 (k =5-18) 
D = 5  L = 4.46 
C = 0.01 
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Clustering (5) 

C(p) = clustering coeff.           

L(p) = characteristic path length 

L 

C 

p 

regular       SW       random 
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Betweeness (1) 

Betweenness  
Most common metric to measure centrality  

Measures the number of shortest paths traversing a 
vertex(node) or edge(link) if each individuals send a 
message to all other individuals  

Estimation of the potential traffic load (flow of 
information) on this node/link assuming uniformly 
distributed traffic following shortest paths 

Definition 
sij : number of shortest paths between nodes i and j 

z : either a node or link 

sij(z) : number of shortest paths between i and j 
going through z 

 Betweeness B(z):   

 

The maximum possible value for node and link 
betweenness is n(n − 1)  to compare betweenness in 
graphs of different sizes, normalization by n(n − 1) 
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Betweeness (2) 

Definition 
sij : number of shortest paths between nodes i and j 

x : node 

sij(x) : number of shortest paths between i and j 
going through node x 

 Betweeness:   

 

 

Definition 
sij : number of shortest paths between nodes i and j 

y : link 

sij(y) : number of shortest paths between i and j 
going through link y 

 Betweeness:   
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Betweeness (3) 

Interpretation 
Important metric for traffic engineering applications 
that try to estimate potential traffic load on 
nodes/links and potential congestion points in a 
given topology   

 

Critical for evaluating the accuracy of topology 
sampling by tree-like probes (e.g. BGP)   
– The broader the betweenness distribution, the higher 
the statistical accuracy of the sampled graph   

– Note: exploration process statistically focuses on 
nodes/links with high betweenness thus providing an 
accurate sampling of the distribution tail and 
capturing relevant statistical information   

 

Note: link betweenness is not a measure of centrality 
but a measure of a certain combination of link 
centrality and radiality 
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Spectrum (1) 

Definition   
A : n × n adjacency matrix of a graph constructed by 
setting the value of its element as 
– aij = aji = 1 if there is a link between nodes i and j  

– all other elements have value 0  

Scalar l are the eigenvalue and vector v the 
eigenvector of A if A v = l v  

Spectrum of a graph is the set of eigenvalues l of 
its adjacency matrix A 

Interpretation: (one of the) most important global 
characteristics of the topology   

Provides bounds for critical graph characteristics 
such as distance-related parameters, expansion 
properties, and values related to separator problems 
estimating graph resilience under node/link removal   

Most networks with high values as eigenvalues have 
small diameter, expand faster, and are more robust  
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Spectrum (2) 

Example of spectrum-related metrics 
Robustness of network 
– Critical metric for topology comparison analysis 

– Measure of network robustness under link removal 
(equals minimum balanced cut size of a graph) 

– Relation to spectrum: graph’s largest eigenvalues 
provide bounds on network robustness with respect to 
both link and node removals   

Performance: Maximum traffic throughput of network  
– Relation  to spectrum: network conductance can be 

tightly estimated by the gap between the first and 
second largest eigenvalues 
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Spectrum (3) 

Application to Traffic engineering 
Graphs with larger eigenvalues have, in general, 
more node- and link-disjoint paths to choose from 

 

Spectral analysis   
Powerful tool for detailed investigation of network 
structure 

Example: discovering clusters of highly 
interconnected nodes and revealing AS hierarchy  
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Example: Five networks with the same 
node degree distribution 

(a) Node degree distribution (degree 
versus rank on log-log scale) 

(b) Network resulting from PA  

(c) Network resulting from the general 
model of random graphs (GRG) method 
with a given expected degree sequence 

(d) Heuristically optimal topology 
(HOT) using Power Law Random Graph 
(PLRG) 

(e) Abilene-inspired topology 

(f) Sub-optimally designed topology 
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Scaling dependency on Topology 

Internet topological properties characterized by  
Node degree (k) distribution: approximated by long tail power law 
distribution P(k) ~ k-γ, γ = 2.254 (scaling index) 

 The Internet is characterized by a fewer nodes with a large degree 
a large number of nodes with a low degree 

Node degree correlation: negative correlation between a node’s 
degree k and its nearest-neighbors average degree  

 Disassortative mixing (r = -0.236 < 0): high-degree nodes tend to 
connect with low-degree nodes and visa versa 

Clustering coefficient: characterizes the extent to which vertices 
adjacent to any vertex v are adjacent to each other) = 0.4   

 Strong clustering means large number of triangular sub-graphs (>< 
regular tree structure) 

Characteristic path length: median of the means of shortest path 
lengths connecting each node to all other nodes ~ 3.7   

Average distance between nodes grows proportionally to log(n), 
where n is number of nodes 



Backup Material 
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Power-laws are laws of the form: P(k) = C k-g 

where 
g : scale index (or power law exponent, typically 2 
≤ g ≤ 3) 

C : constant 

Properties of power laws 

 

Power-law distribution gives a line in log-log plot 

 

 

P(k)  = C k-g   log(P(k))  =  -g log(k) + log C 

degree 

frequency 

log degree 

log frequency α 

Power-law distributions 
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Power-law distributions: Examples 

Heavy-tail distribution 
non-negligible fraction of nodes has very high degree 
(hubs) 

scale-free: no characteristic scale, average is not 
informative 

 

Source [Newman 2003] 
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