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Probability Distributions




iﬁ"“ Probability Distributions in Scipy

Q Scipy provides a large number of continuous and discrete distributions.

o Creating a distribution
= RV = scipy.stats.DISTRIBUTION(PARAMETERYS)
« Parameters loc and scale typically define variable parts of distribution
 In case of normal distribution loc is mean, scale standard deviation.
« Example

— rv = scipy.stats.norm(loc=1, scale=2) defines a distribution with
mean 1 and stddev 2.

a Generating random numbers
= The function rvs returns random number stream.

 e.g. rv.rvs() (1 random number)
rv.rvs(100) (stream with 100 random numbers)




iﬁ"“ Probability Distributions in Scipy

a Other functions
= pdf (Probability Density Function)
* e.g. rv.pdf(-0.3)
= cdf (Cumulative Distribution Function)
e e.g. rv.cdf(-0.3)
= ppf (Percent Point Funtion, Quantile)
* e.g. rv.ppf(0.99)

o Plotting
x=np.linspace(rv.ppf(0.01),rv.ppf(0.99),100)
plt.plot(x,rv.pdf(x))
plt.show()




'4" Random numbers - Continuous

o Uniform distribution: RV X ~U(a,Db) (LK 8.3.1)
1

= Density function: f(x)=——,X e [a; b]
b—a
= Range: [a- b]
= Distribution function: F(X) = b—a
= Expectation: E(X)= a ; b
2
= Variance: VAR(X) = (b—a)

12

= Generation: U~U(0)1,X =a+((b-a)u
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- Continuous

a Normal distribution(1/2):

= Density function:

= Distribution function:
= Range:

= Mode:

= Expectation:

= Variance:

= Scalability:

RV X ~N(u,0°) (LK 8.3.6)

[ (x=p)®
e 2.6°2
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Foiod]
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VAR(X) = o~

X ~N(01) = (u+0X)~ N(u, %)
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a Normal distribution(2/2):
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o Lognormal distribution(1/2): RV X ~LN(w&,0°) (LK 8.3.7)

Special property of the lognormal distribution

it Y ~N(u,0?) > e ~LN(y0o?)

= Range: [0,0)

= Algorithm: Composition
- Y ~N(u,o* X =g’
(m0%) ==
s

= Variance: VAR(X) = g2+ (e"z —1)

Note that y and o are NOT the mean and the variance of the lognormal distribution!
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o Lognormal distribution(2/2):

RV X ~LN(g,0°) (LK8.3.7)
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0 Exponential distribution(1/2): RV X ~exp(A) (LK 8.3.2)
= Density function: f(x)=4-e™ fur x>0

= Distribution function: ~ F(X)=1— p M

= Range: [O, oo[ Mode: 0
1

= Expectation: E(X)= 7

= Variance: VAR(X) = %

= Coefficient of variation: C,,, =1

—In(U)

= Generation: Inversion U ~U(0,1), X =
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a Exponential distribution(2/2):
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;4{“ Random numbers - Discrete
/ N\

o Uniform (discrete) (1/2) RV X ~DU(i, j) (LK 8.4.2)

-

1
= Distribution: p(k) =+ J—1+1
0 Otherwise

it keli,i+Li+2,..,j}

= Range: 1<k< ]
= Expectation: E(X)= (I _; J)
Y
= Variance: VAR(X) = (J _! +1) -1
12
= Generation: Inversion

U~U@©1) X=i+|(j-i+1)U]

DU(0,1) and Bernoulli(0.5) distributions are the same




e

o Uniform (discrete) (2/2) RV X ~DU(i, j) (LK 8.4.2)

p(x) A

Wi —i+ 1t

Distribution
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;4{“ Random numbers - Discrete
/ N\

o Bernoulli (1/2) RV X ~Bernoulli (p) (LK 8.4.1)

= Example: Flipping a coin (1_ p if k=0
= Distribution: p(k)=1p If k=1
\O Otherwise
. Range: i<k<j
= Expectation: E(X)=p
- Variance: VAR(X)=p-(1-p)
1-p

=  Coefficient of variation: CVar = |—
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a Bernoulli (2/2) RV X ~Bernoulli (p) (LK 8.4.1)

= Mode: O or 1 (depends on the definition of the
outcome)

= Generation: Inversion U ~U(0,1)

OiIf U<p
1 Otherwise

= Distribution !

Bernoulli (0.3) o

Random Variable X
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;4{“ Random numbers - Discrete
/ N\

a N-Bernoulli (1/2) RV X ~ Bernoulli (n, p) (LK 8.4.4)

= Example: Flipping a coin

n times
. Distribution: o(k) = (E) o (= p)™*  0<k<n
= Range: 0<k<n
= Expectation: E(X)=np
= Variance: VAR(X)=n-p-(1-p)

1-p

=  Coefficient of variation: CVar = |—

n-p
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;4{“ Random numbers - Discrete
/ N\

a N-Bernoulli (2/2) RV X ~ Bernoulli (n, p) (LK 8.4.4)

= Mode: O or 1 (depends on the definition of the

outcome)
= Generation: Composition

Bernoulli (n, p)~ > Bernoulli (p)

0<i<n

= Distribution \ERRRERRRRRRRRRRERERR

Bernou I I i (20’ O 3) : 04 : B . ] BernOU I I i (20’ O . 7)

91011121314151617181920
m Variable X




'4" Random numbers - Discrete

o Geom (1/2) RV X ~Geom (p) (LK 8.4.5)

Example: Number of unsuccessful Bernoulli — Experiments until a
successful outcome (e.g. number of retransmissions)

Distribution: p(X)=p-[1—p)
Distribution function: F(X)=1-(1- p)LXJ+1
Expectation: E(X) — _1 P
P
- 1-
Variance: VAR ( X ) _
1

Coefficient of variation: CVar = |—
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a Geom (2/2) RV X ~Geom (p) (LK 8.4.5)

= Mode: 0

= Generation: Inversion U ~U(0,)
| )
In(1- p)

" Distribution (EEERERERERERRRRRRREE
08 g
o N : P

Geom (0.7) — o

(S ey
Geom (03) > ZZ

011 121314151617181920
ariable X
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;4{“ Random numbers - Discrete
/ N\

o Poisson(1/3) RV X ~Poisson (1) (LK 6.2.4)

Example: Number of events that occur in an interval of time when the
events are occurring at a constant rate (hnumber of items in a
batch of random size)

= Distribution: p(x) — ﬂ“_l.e—z if ¥ {0’1,2’".}
X!
(g
' 3L i x=0
= Distribution function: F(x) = i-o I
0 if x<O

Parameter: A>0
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;4{“ Random numbers - Discrete
/ N\

0 Poisson(2/3) RV X ~Poisson (A1) (LK 6.2.4)

= Range: {0123,...}

= Expectation: E(X)=A1

= Variance: VAR(X) =41
1

=  Coefficient of variation: Cpor = —F—
Ja

= Mode ANA-=1 \isaninteger
|_2,J otherwise

= Special characteristics:

« x=0 |:> exponential distribution

(time interval between two consecutive events)
« Number of events until a certain point in time is Poisson distributed
« Period of time until n events have occurred is Erlang distributed
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o Poisson(3/3) RV X ~ Poisson (1) (LK 6.2.4)
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Statistical Tests




52"“ Statistical tests

a Scenario: Given a set of measurements, we want to check if
they conform to a distribution; say: U(0,1)

a Graphs are nice indicators, but not really tangible: “How
straight is that line?” etc.

a We want clearer things: Numbers or yes/no decisions

a Statistical tests can do the trick, but...

= Warning #1: Tests only can tell if measurements do not fit a
particular distribution—i.e., no “yes, it fits” proof!

= Warning #2: The result is never absolutely certain, there is always
an error margin.

= Warning #3: Usually, the input must be ‘iid’:
* Independent
« ldentically distributed
= >You never get a ‘proof’, not even with an error margin!

IN2045 — Network Analysis SS 2014
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iﬁ"“ X’ test (Pearson, 1900)

Q Input:
= Series of n measurements X; ... X,
= A distribution function f (the ‘theoretical function’)

0 Measurements will be tested against the distribution

= ~formal comparison of a histogram with the density function of the
theoretical function

a Null hypothesis HO:
The X; are IID random variables with distribution function f




;2"“ X test: How it works

Q

Divide [0...1] into k equal-size intervals

Count how many X, fall into which interval (histogram):

Nj := number of X; in j-th interval [aj_1 aj[

Calculate how many X; would fall into the j-th interval if they were
sampled from the theoretical distribution:

p, = j:"l f(x)dx  (f: density of theor. dist.)

]

Calculate squared normalised difference between the observed and
the expected:

< (N; —np;)’
2 . J J
A 2 ,
= np;

Obviously, if x2 is “too large”, the differences are too large, and we
must reject the null hypothesis

But what is “too large”?

IN2045 — Network Analysis SS 2014
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;2'"‘ X test: Using the x? distribution

o The x2 distribution

= A test distribution
= Parameter: degrees of freedom (short df)
" x’(k-1 df) =T'(*2(k-1) , 2)

» Mathematically: The sum of n independent
squared normal distributions

o Compare the calculated x? against the x? distribution
= |f we use K intervals, then ¥? is distributed corresponding to the x?
distribution with k-1 df
= Let x4_1 .4 be the (1—-a) quantile of the distribution
= ais called the confidence level

= Reject HO if x* > X%, ;4 (i.e., the X; do not follow the theoretical
distribution function)

IN2045 — Network Analysis SS 2014
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iﬁ"“ X test and degrees of freedom

O X° test can be used to test against any distribution

a Easy in our case: We know the parameters of the
theoretical distribution f —it's U(0,1)

a Different in the general case:

= For example, we may know it's N(u, o) (normal distribution)
but we know neither y nor o

» Fitting a distribution: Find parameters for f that make f fit the
measurements X; best

= Topic of a later lecture

a Theoretically:

Have to estimate m parameters
= Also have to take x%,_,_; 1o iNto account

a Practically:
m<2 and large k
= Don't care...

IN2045 — Network Analysis SS 2014
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'y :
V4% 2: 2
e X which parameters

a How many intervals (k)?

A difficult problem for the general case

Warning: A smaller or a greater k may change the outcome of the
test!

As a general rule, use k>100
As a general rule, make the intervals equal-sized

As another general rule, make sure that Vj: np; 2 5
(i.e., have enough samples that we expect to have at least 5
samples in each interval)

QO = As a general rule, you need a lot of measurements!
o What confidence level?

At most a=0.10 (almost too much);
typical values: 0.001, 0.01, 0.05 [, and 0.10]

The smaller, the better confidence in the test result

IN2045 — Network Analysis SS 2014
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'l" Alternatives to test

0 Kolmogorov—Smirnov test (KS test)
= Another very popular test
= Advantages:
« No grouping into intervals required
 Valid for any sample size, not only for large n
« More powerful than x? for a number of distributions
» Disadvantages:
« Applicability more limited than x?
« Difficult to apply to discrete data

« If distribution needs to be fitted (unknown parameters),
then K-S works only for a number of distributions

o Anderson-Darling test (A—D test)
= Higher power than K-S for some distributions

a ...a lot of other tests

» Rule of thumb: The less more specialised the test, the higher its
power compared to other tests — but the less generally applicable

IN2045 — Network Analysis SS 2014
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v4q Statistical Tests

a So far, we've seen the x2 distribution fitting test and the Kolmogorov-
Smirnov test (KS)

0 Both test if a given set of measurements is consistent with a theoretical
distribution

Note the wording: ,Consistent with®, but not ,comes from*

0 There are many, many other statistical tests for many, many other
applications




%Z Siatist _ .
4 Statistical Tests = Hypothesis Tests

o We would like to ,prove” some statement, based on statistical
calculations
Examples:

« Measurements x; are consistent with a normal distribution
« The mean of the measurements xi is greater than 5

o Call this statement our 'work hypothesis' or 'alternative hypothesis'
(Arbeitshypothese) H

0 Formulate the contrary: null hypothesis H,

0 H,and H,need to be:
« Exclusive: Either H, is true or H, is true
« Exhaustive: All possible results will satisfy one of the two




og Test Statistic

0 Hope to find statistical evidence that H, is highly improbable

0 Mathematically:
« Input data =x. (...rather arbitrary label)
« Calculate a so-called test statistic: TS(x,)
« Usually: If test statistic is above some threshold, then refuse H,
. Test statistic depends on specific test
« Threshold depends on specific test and on desired accuracy




X/
;ir.‘ Test Accuracy: Error Types

0 As mentioned before: No test can give a 100% guarantee — we're

talking about statistics here, and statistics always deals with the
unknown

o Differentiate between two types of errors:

Test rejects H, Test accepts H,
In reality, H, is false Correct decision Type Il error,
(3 error,
false negative
In reality, H, is true Type | error, Correct decision
a error, (albeit not the one
false positive that we wanted in
most cases...)

T



ey, :
2 Error types explained by example (1/2)

O Suppose you have developed a medical drug. Development has cost
an enormous amount of money. Now you want to test if the drug is
harmful to your patients

a Type | error (a error)

Probability that people get harmed
Can cost lives: Invest a lot of effort to avoid it.

a Type Il error (B error)
Probability that you reject a drug that is actually perfectly safe
Can waste money: Unpleasant, but more acceptable.




-V
£

% Error types explained by example (2/2)

Q

Suppose you have developed a new network protocol. By applying a
statistical test to the output of some network simulations, you hope to
show that the protocol increases network performance (=H,).

a Type | error (a error)

Probability that you claim that the protocol is great, whereas it is actually
rubbish

If you do not specify your a error, or if it is too large (i.e., your confidence
level is too low), then nobody will believe your results!

But also beware that you can achieve any confidence level given a
study on the basis of non-representative scenarios with enough
sample values!

a Type Il error (B error)

Probability that you wrongly assume that your great protocol does not
help anything

Presumably interesting to you, but the reader of your paper does not care
about the risk that you might have failed detecting the performance
increase: Obviously, you did not fail, since otherwise the paper would not
have been written...

IN2045 — Network Analysis SS 2014
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X/ :
;ﬁ" Balancing error types

a Problem:
Reducing one error increases the other and vice versa. Damn.

Only solution to reduce both: Increase the sample size. Usually a
superlinear factor (e.g., to reduce one error by 1/2 while keeping the other
constant, we must increase sample size by 4)

o In the majority of the cases, keeping the a error low is more important

a = 5% has been accepted for years (although there has been some
criticism), 1% is better, 0.1% is extremely good

B =10% or 20% is usually acceptable; but usually, it is not calculated

Do not choose a too small if there are only few samples: Small sample size
and small a both will increase 38 to unacceptable

values — then you would almost always accept the null hypothesis and thus
(wrongly) reject your work hypothesis




Y _
J¢g Error types: summary

o Usually, Type-1 errors (a errors) are the more serious ones

Q In order to minimise one type of error (e.g., Type 1 error), you only
have the choice between...:

Increasing the Type 2 error
Increasing the sample size
Picking a different statistical test that has better error properties




?"! Ve : Sianifi
5] An ,Alternative®: Significance Tests

P-value (R. A. Fisher): How likely is the result to happen?

Test statistic is a dependent random variable that follows a specific
distribution (test distribution, e.g., Student's t distribution or x? distribution) if
the null hypothesis holds

Using the theoretical distribution, calculate the probability that our
measurements attain our given values or even more extreme values if the
null hypothesis holds:

« Thisis defined as the p value

. Note that the p value itself is uniformly distributed in [0...1] if the null
hypothesis holds, and it is near O if it does not hold.

Refuse HO if this seems unlikely: i.e., refuse if p < a

In other words: Our threshold for the test statistic is the point where its
distribution ,has no meat®, i.e., the p value gets too low

IN2045 — Network Analysis SS 2014
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vog We have two types of tests?

Q Intheory, distinguish:

Hypothesis test that we just explained:
Fix an a, calculate the test statistic and accept or reject the null hypothesis

Fisher's probability test:
For the given data, calculate the p value for the null hypothesis, and decide
how likely the null hypothesis is

a In practice, combine both!
p value is more expressive

Fixed a is more commonly known/accepted; often allows better
comparisons to other studies




e .
,,ﬁ. How to combine both types of a test?

a With modern statistical programs, this is possible — in most cases, it is
even done automatically!
a Good practice:
Tell the reader your p value (especially if null hypothesis sounds quite
likely!)
Traditionally, the p value is judged with star symbols within braces:
e ] means:P<0.1%
e ] means:0.1% <P <1%
o [¥] means: 1% <P <5%
a If possible, calculate the p value and derive statements about a

e.g.: , The null hypothesis could be refused at a confidence level of a=0.5,
but not at a confidence level of a=0.1"




Experimental Planning
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Y4g Comparing two alternative systems

o Comparison of two systems:
Is there a difference in value for a given response variable?

e.g., difference in achieved network throughput

a Test criterion:
1. Calculate difference between the two response variables

2. This difference is statistically significant if its confidence interval (Cl) does
not contain 0

e.g.: Cl (throughputTCP Reno — throughputTCP Vegas) # 0

— We can assume that the difference in throughput which the
two congestion control algorithms TCP Reno and TCP Vegas achieve
IS statistically significant




'4" Is this enough?

a Good: Very simple
o Bad: Quite restricted applicability

= Only should be applied if the response has the same variance for the two
levels — not often the case

» Better: Modified or Welch two-sided t confidence intervals

» Calculating the confidence interval for the response differences only can
tell us if two levels of one factor make a difference

= What if we want to analyse more than two levels for a given factor?
« E.g., TCP Reno vs. TCP Vegas vs. TCP Cubic: 3 levels

= What if we have more than one factor?

« E.g., TCP congestion control algorithm, TCP window size, network
delay, link bandwidth: 4 factors




iﬁ"“ Other issues with respect to testing and studies

O Publication Bias

= Only positive examples are publised.

= Given 1 positive example, 19 negative, having this is related to the chance
to meet a p-value of 5 percent.

= Consequence

» Decline effect: Effect of treat or network protocol decreases over
repetitions and for larger subsequent studies.




,4‘ Why compare system alternatives?

o Goals:
= Better understanding of system
= Better control of system
= Better performance of system
= Make a decision!

a Methods:
= Try out in different simulated environments
» Try out different workloads with different characteristics
» Try out different network topologies
= Try out with different system parameters




N | .
24¢ Linear model and regression

0 Have nsamples x, ,andy, ,oftwo random variables x andy

Q Yy is ‘not really’ a random variable:
it's also dependent on x
O Linear model:y=ax+b+e
= a:slope
* Db:intercept
= e error
0 ldea: Chose a and b such that e is minimised
= Calculate sum of squared errors:

I:> Minimise Sum of Squared Errors (SSE)




X .
70 Calculating aand b

. ig(xi - mean(x))(yi o mean(y)) _ COV(X, y)
1<y, 2 Var (x)
; Z_ll(xi mean(x))

0 N.B.: different, but equivalent formulae in literature (you can omit
dividing by n-1 in var and cov)
o Usually built into statistical programs

o Graphical interpretation:

!
8
ey

Fit a straight line that goes through o ﬁg@/
the points in the (x,y) scatterplot N ° VA o
» Db: intercept (Achsenabschnitt) ” : OOO@%»‘;) 2o
= a: slope (Steigung) ™ SR

0.0 02 04 0.6 0.8 1.0

X
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;ﬁ" Are we actually allowed to apply regression?

o Check correlation coefficient for linearity.

o Warning:

The residuals e (as iny = a-x + b + €) must be normally distributed!

Exploit the central limit theorem: Calculate averages of multiple
independent simulation runs with the same factor level

Check that it looks normal: QQ plots or some normality test




X< : : :
4@ Regression and experiment planning

Q In our nomenclature: y = response, x = factor level
0 Regression can tell us how much the factor influences the response.
Answers gquestions like:
= Does it make sense to explore further factor levels in a given direction?
= Does it make sense to check factor levels in between?
o Good:
= We now can have multiple factor levels

o Bad:
= We still have only one factor
= |t must be linearly proportional

» The residuals must be normally distributed
(but that constraint won’t go away with ANOVA either)




B Nonli .
2@ Nonlinear Regression 1/2

a Often, the relationship between x and y is not linear
a Solution: Try to find a suitable transformation
» Lety be the simulation outcome (response)

= Then apply the model y* =a-x+b + e
where y* = f(y)

» Transformation function f can be, for example:
» Logarithm
« Exponential
e Square root
e Square
« Some other polynomial (usually quadratic or cubic)
 Logistic function (logistic regression)
* Inverse (1/x)




'4" Nonlinear Regression 2/2

a Which transformation function is the right one?

Careful consideration of the system: You have to think!

Check if the y* are normally distributed — the y are probably not normally
distributed in this case

a QQ plots can help
o Admittedly, a matter of experience
o Warning:

Overfitting, arbitrary curve fitting: “Just try around with some
transformations and pick the one that matches best” — no, try to avoid that!

A correlation can be coincidence
Correlation does not imply causation

Example: Decreasing number of pirates leads to increasing global
temperatures (Church of the Flying Spaghetti Monster)

Again: First think about the system, then postulate a meaningful
transformation
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o Short for ‘ANalysis Of VAriances’
= Historical term
= Explained in next slides
o Be careful: “variance analysis” is a more general term!
Often, that term describes a slightly different analysis:

= Calculate variances of the responses for different levels of one (or several)
factors

= Analyse statistically if the variances are the same
= Very similar to ANOVA, but slightly different!




iﬁ".‘ ANOVA Terminology

Q

factor: input variable (e.g., TCP window size), condition, structural
assumption (e.g., TCP congestion control algorithm)

level: one factor value that is used in our experiments

response: system parameter of interest that depends on given set of
factors (e.g., achieved TCP throughput)

run: evaluation of response for a given set of factor values
* |.e., the analysed simulation result
» There will (should!) be multiple runs

Remember:

Q

Q

Q

In simulation experiments, responses vary for runs of the same factor
values due to random effects.

In experiments, the same is true due to system variation (other users,
etc.).

Therefore: several runs / measurements have to be performed!
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ey,
;ﬁ" ANOVA Nomenclature

0 Factor has a levels (‘treatments’ for historical reasons: ANOVA was
developed in pharmaceutical research)

0 Each level is replicated/observed n times

o Data:
replication
level 1 L n
1 Y L Yin
M M M
a yal L yan

o Question we want to answer:
= |s there an effect of factor levels on system responses?
» |f so: how much?




'y : :
24 ANOVA and experiment planning

o Usually many factors

- Example: TCP window size, TCP congestion control algorithm, network
bandwidth, network delay,
packet loss rate

a Which factor combinations should we try out? — ANOVA can give
answers to these questions:

-  Which factors are interesting factors (i.e., have much influence), so we
should try out more levels for them?

- Which factors have interesting interactions, so we should try out more
factor level combinations for them?

- Which factors, which interactions can be left out?
Q Structuring the experiments like this is called factorial design
= Of course, not limited to simulation experiments

o Warning:
= |tis not sufficient to vary one parameter at a time!
= Parameters may interact (see next slides)
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o Example: 2 factors, i.e., a 22 design
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o Design matrix:
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» Interaction of factors A and B: Is there a difference in the changes of the
response if A is changed while B is kept either on level ‘+" or ‘—'?

" no interaction, i.e. response |

B
+
no (or small) difference in changes: §

» interaction, difference in changes:
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