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Probability Distributions 

 

 

 

 

Probability Distributions 
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Probability Distributions in Scipy 

 

 Scipy provides a large number of continuous and discrete distributions. 

 

 Creating a distribution 

 RV = scipy.stats.DISTRIBUTION(PARAMETERS) 

• Parameters loc and scale typically define variable parts of distribution 

• In case of normal distribution loc is mean, scale standard deviation. 

• Example 

– rv = scipy.stats.norm(loc=1, scale=2)  defines a distribution with 

mean 1 and stddev 2. 

 

 Generating random numbers 

 The function rvs returns random number stream. 

• e.g.  rv.rvs()  (1 random number) 

  rv.rvs(100) (stream with 100 random numbers) 
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Probability Distributions in Scipy 

 

 Other functions 

 pdf  (Probability Density Function)  

• e.g. rv.pdf(-0.3) 

 cdf (Cumulative Distribution Function) 

• e.g. rv.cdf(-0.3) 

 ppf (Percent Point Funtion, Quantile) 

• e.g. rv.ppf(0.99) 

 

 Plotting 

x=np.linspace(rv.ppf(0.01),rv.ppf(0.99),100) 

plt.plot(x,rv.pdf(x)) 

plt.show() 
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Random numbers - Continuous 

 Uniform distribution:                                             (LK 8.3.1) 

 

 Density function: 
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Random numbers - Continuous 

 Normal distribution(1/2):                                             (LK 8.3.6) 

 
 Density function: 

 

 Distribution function: 

 

 Range:   

 

 Mode:              

 

 Expectation:  

 

 Variance: 

 

 Scalability: 
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Random numbers 

 Normal distribution(2/2):                                             (LK 8.3.6) 

 

Probability Density Function Cumulative Density Function 

),(~ 2NXRV
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Random numbers 

 Lognormal distribution(1/2):                                             (LK 8.3.7) 

 

 Special property of the lognormal distribution  

    

          if  

 

 Range: 

 

 Algorithm:  Composition 
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Note that μ and σ are NOT the mean and the variance of the lognormal distribution! 
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Random numbers 

 Lognormal distribution(2/2):                                             (LK 8.3.7) 

 

Probability Density Function Cumulative Density Function 

),(~ 2LNXRV
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Random numbers 

 Exponential distribution(1/2):                                             (LK 8.3.2) 

 

 Density function: 

 

 Distribution function: 

 

 Range:                                                           Mode: 0 

 

 Expectation:                                        

 

 Variance: 

 

 Coefficient of variation: 
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Random numbers - Continuous 

 Exponential distribution(2/2):                                             (LK 8.3.2) 

 

 

    

 

)exp(~ XRV

Probability Density Function Cumulative Density Function 

Pictures taken from Wikipedia 
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Random numbers - Discrete 

 Uniform (discrete) (1/2)                          (LK 8.4.2) 

 

 

 Distribution: 

 

 

 Range:     

 

 Expectation: 

 

 

 Variance: 

 

 Generation: Inversion 
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DU(0,1) and Bernoulli(0.5) distributions are the same 
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Random numbers - Discrete 

 Uniform (discrete) (2/2)                          (LK 8.4.2) 
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Distribution 
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Random numbers - Discrete 

 Bernoulli (1/2)                          (LK 8.4.1) 

 

 Example: Flipping a coin 

 

 Distribution: 

 

 

 Range:     

 

 Expectation: 

 

 Variance: 

 

 

 Coefficient of variation:  
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Random numbers - Discrete 

 Bernoulli (2/2)                          (LK 8.4.1) 

 

 Mode:   0 or 1  (depends on the definition of the  

                outcome)    

 Generation:  Inversion 
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Random numbers - Discrete 

 N-Bernoulli (1/2)                                                 (LK 8.4.4) 

 

 Example: Flipping a coin 

   n times 

 

 Distribution: 

 

 Range:     

 

 Expectation: 

 

 Variance: 

 

 

 Coefficient of variation:  

),(~ pnBernoulliXRV

nkpp
k

n
kp knk 








  0)1()(

nk 0

)1()( ppnXVAR 

npXE )(

pn

p
cVar






1



Network Security, WS 2008/09, Chapter 9   17 IN2045 – Network Analysis SS 2014   17 

Random numbers - Discrete 

 N-Bernoulli (2/2)                                                 (LK 8.4.4) 

 

 Mode:  0 or 1  (depends on the definition of the   

               outcome)    

 Generation: Composition 

 

 

 

 

 Distribution 
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Random numbers - Discrete 

 Geom (1/2)                                         (LK 8.4.5) 

 

 Example: Number of unsuccessful Bernoulli – Experiments until a  

  successful outcome (e.g. number of retransmissions) 

 

 Distribution: 

 

 Distribution function: 

 

 Expectation: 

 

 

 Variance: 

 

 

 Coefficient of variation: 
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Random numbers - Discrete 

 Geom (2/2)                                         (LK 8.4.5) 

 

 Mode:  0  

  

 Generation: Inversion 
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Random numbers - Discrete 

 Poisson(1/3)                                              (LK 6.2.4) 

 

 Example:  Number of events that occur in an interval of time when the  

  events are occurring at a constant rate (number of items in a  

  batch of random size) 

 

 Distribution: 

 

 

 

 Distribution function: 
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Random numbers - Discrete 

 Poisson(2/3)                                              (LK 6.2.4) 

 

 Range: 

 

 Expectation: 

 

 Variance: 

 

 Coefficient of variation:  

 

 Mode 

 

 Special characteristics: 

•                                    exponential distribution    

             (time interval between two consecutive events)  

• Number of events until a certain point in time is Poisson distributed 

• Period of time until n events have occurred is Erlang distributed 

)(XVAR



1
Varc

)(XE

 ...,3,2,1,0

0x

)(~ PoissonXRV

 

 



 1 λ is an integer 

otherwise 



Network Security, WS 2008/09, Chapter 9   22 IN2045 – Network Analysis SS 2014   22 

Random numbers - Discrete 

 Poisson(3/3)                                              (LK 6.2.4) )(~ PoissonXRV
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Random numbers - Discrete 

Picture taken from LK, p.309 

 Poisson(3/3)                                              (LK 6.2.4) )(~ PoissonXRV
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Statistical Tests 

 

 

 

 

Statistical Tests 
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Statistical tests 

 Scenario: Given a set of measurements, we want to check if 
they conform to a distribution; say: U(0,1) 

 Graphs are nice indicators, but not really tangible: “How 
straight is that line?” etc. 

 We want clearer things: Numbers or yes/no decisions 

 Statistical tests can do the trick, but… 
 Warning #1: Tests only can tell if measurements do not fit a 

particular distribution—i.e., no “yes, it fits” proof! 

 Warning #2: The result is never absolutely certain, there is always 
an error margin. 

 Warning #3: Usually, the input must be ‘iid’: 

• Independent 

• Identically distributed 

 ⇒You never get a ‘proof’, not even with an error margin! 
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χ2 test (Pearson, 1900) 

 Input: 

 Series of n measurements X1 … Xn  

 A distribution function f (the ‘theoretical function’) 

 Measurements will be tested against the distribution 

 ~formal comparison of a histogram with the density function of the 

theoretical function 

 Null hypothesis H0: 

The Xi are IID random variables with distribution function f 
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χ2 test: How it works 

 Divide [0…1] into k equal-size intervals 

 Count how many Xi fall into which interval (histogram): 

 Nj := number of Xi in j-th interval [aj-1 … aj[ 

 Calculate how many Xi would fall into the j-th interval if they were 

sampled from the theoretical distribution: 

      

      (f: density of theor. dist.) 

 

 Calculate squared normalised difference between the observed and 

the expected: 

 

 

 

 Obviously, if χ2 is “too large”, the differences are too large, and we 

must reject the null hypothesis 

 But what is “too large”? 
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χ2 test: Using the χ2 distribution 

 The χ2 distribution 

 A test distribution 

 Parameter: degrees of freedom (short df) 

 χ2(k–1 df) = Γ(½(k–1) , 2)  (gamma distribution) 

 Mathematically: The sum of n independent 

squared normal distributions 

 Compare the calculated χ2 against the χ2 distribution 

 If we use k intervals, then χ2 is distributed corresponding to the χ2 

distribution with k–1 df 

 Let χ2
k–1,1–α be the (1–α) quantile of the distribution 

 α is called the confidence level 

 Reject H0 if χ2 > χ2
k–1,1–α (i.e., the Xi do not follow the theoretical 

distribution function) 
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χ2 test and degrees of freedom 

 χ2 test can be used to test against any distribution 

 Easy in our case: We know the parameters of the 
theoretical distribution f —it’s U(0,1) 

 Different in the general case: 
 For example, we may know it’s N(μ, σ)    (normal distribution) 

but we know neither μ  nor σ 

 Fitting a distribution: Find parameters for f that make f fit the 
measurements Xi best 

 Topic of a later lecture 

 Theoretically: 
Have to estimate m parameters 
⇒ Also have to take χ2

k–m–1,1–α into account 

 Practically: 
m≤2 and large k 
⇒ Don’t care… 
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χ2: which parameters? 

 How many intervals (k)? 
 A difficult problem for the general case 

 Warning: A smaller or a greater k may change the outcome of the 
test! 

 As a general rule, use k>100 

 As a general rule, make the intervals equal-sized 

 As another general rule, make sure that ∀j: npj ≥ 5 
(i.e., have enough samples that we expect to have at least 5 
samples in each interval) 

 ⇒ As a general rule, you need a lot of measurements! 

 What confidence level? 
 At most α=0.10 (almost too much); 

typical values: 0.001, 0.01, 0.05 [ , and 0.10] 

 The smaller, the better confidence in the test result 
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Alternatives to test 

 Kolmogorov–Smirnov test (KS test) 
 Another very popular test 

 Advantages: 

• No grouping into intervals required 

• Valid for any sample size, not only for large n 

• More powerful than χ2 for a number of distributions 

 Disadvantages: 

• Applicability more limited than χ2 

• Difficult to apply to discrete data 

• If distribution needs to be fitted (unknown parameters), 
then K-S works only for a number of distributions 

 Anderson–Darling test (A–D test) 
 Higher power than K-S for some distributions 

 …a lot of other tests 
 Rule of thumb: The less more specialised the test, the higher its 

power compared to other tests – but the less generally applicable 
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Statistical Tests 

 So far, we've seen the χ2 distribution fitting test and the Kolmogorov-
Smirnov test (KS) 

 Both test if a given set of measurements is consistent with a theoretical 
distribution 

 Note the wording: „Consistent with“, but not „comes from“ 

 There are many, many other statistical tests for many, many other 
applications 
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Statistical Tests = Hypothesis Tests 

 We would like to „prove“ some statement, based on statistical 

calculations 

Examples: 

 Measurements x
i
 are consistent with a normal distribution 

 The mean of the measurements xi is greater than 5 

 Call this statement our 'work hypothesis' or 'alternative hypothesis' 

(Arbeitshypothese) H
A 

 Formulate the contrary: null hypothesis H
0 

 H
A 

and H
0 

need to be: 

 Exclusive: Either H
A 

is true or H
0 

is true 

 Exhaustive: All possible results will satisfy one of the two 
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Test Statistic 

 Hope to find statistical evidence that H
0
 is highly improbable 

 Mathematically: 

 Input data = x
i
  (...rather arbitrary label) 

 Calculate a so-called test statistic: TS(x
i
) 

 Usually: If test statistic is above some threshold, then refuse H
0 

 Test statistic depends on specific test 

 Threshold depends on specific test and on desired accuracy 
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Test Accuracy: Error Types 

 As mentioned before: No test can give a 100% guarantee – we're 

talking about statistics here, and statistics always deals with the 

unknown 

 Differentiate between two types of errors: 

 

 

Test rejects H
0 

Test accepts H
0 

In reality, H
0
 is false Correct decision Type II error, 

β error, 

false negative 

In reality, H
0
 is true Type I error, 

α error, 

false positive 

Correct decision 

(albeit not the one 

that we wanted in 

most cases…) 
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 Suppose you have developed a medical drug. Development has cost 

an enormous amount of money. Now you want to test if the drug is 

harmful to your patients 

 Type I error (α error) 

 Probability that people get harmed 

 Can cost lives: Invest a lot of effort to avoid it. 

 Type II error (β error) 

 Probability that you reject a drug that is actually perfectly safe 

 Can waste money: Unpleasant, but more acceptable. 

Error types explained by example (1/2) 
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 Suppose you have developed a new network protocol. By applying a 

statistical test to the output of some network simulations, you hope to 

show that the protocol increases network performance (=H
A
). 

 Type I error (α error) 

 Probability that you claim that the protocol is great, whereas it is actually 

rubbish 

 If you do not specify your α error, or if it is too large (i.e., your confidence 

level is too low), then nobody will believe your results!  

• But also beware that you can achieve any confidence level given a 

study on the basis of non-representative scenarios with enough 

sample values! 

 Type II error (β error) 

 Probability that you wrongly assume that your great protocol does not 

help anything 

 Presumably interesting to you, but the reader of your paper does not care 

about the risk that you might have failed detecting the performance 

increase: Obviously, you did not fail, since otherwise the paper would not 

have been written… 

Error types explained by example (2/2) 
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Balancing error types 

 Problem: 

 Reducing one error increases the other and vice versa. Damn. 

 Only solution to reduce both: Increase the sample size. Usually a 

superlinear factor (e.g., to reduce one error by 1/2 while keeping the other 

constant, we must increase sample size by 4) 

 In the majority of the cases, keeping the α error low is more important 

 α = 5% has been accepted for years (although there has been some 

criticism), 1% is better, 0.1% is extremely good 

 β = 10% or 20% is usually acceptable; but usually, it is not calculated 

 Do not choose α too small if there are only few samples: Small sample size 

and small α both will increase β to unacceptable 

values – then you would almost always accept the null hypothesis and thus 

(wrongly) reject your work hypothesis 
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 Usually, Type-1 errors (α errors) are the more serious ones 

 In order to minimise one type of error (e.g., Type 1 error), you only 

have the choice between…: 

 Increasing the Type 2 error 

 Increasing the sample size 

 Picking a different statistical test that has better error properties 

Error types: summary 
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P-value (R. A. Fisher): How likely is the result to happen? 

 Test statistic is a dependent random variable that follows a specific 
distribution (test distribution, e.g., Student's t distribution or χ² distribution) if 
the null hypothesis holds 

 Using the theoretical distribution, calculate the probability that our 
measurements attain our given values or even more extreme values if the 
null hypothesis holds: 

 This is defined as the p value 

 Note that the p value itself is uniformly distributed in [0...1] if the null 
hypothesis holds, and it is near 0 if it does not hold. 

 Refuse H0 if this seems unlikely: i.e., refuse if p ≤ α 

 In other words: Our threshold for the test statistic is the point where its 
distribution „has no meat“, i.e., the p value gets too low 

An „Alternative“: Significance Tests 



Network Security, WS 2008/09, Chapter 9   41 IN2045 – Network Analysis SS 2014   41 

We have two types of tests? 

 In theory, distinguish: 

 Hypothesis test that we just explained: 

Fix an α, calculate the test statistic and accept or reject the null hypothesis 

 Fisher's probability test: 

For the given data, calculate the p value for the null hypothesis, and decide 

how likely the null hypothesis is 

 In practice, combine both! 

 p value is more expressive 

 Fixed α is more commonly known/accepted; often allows better 

comparisons to other studies 
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How to combine both types of a test? 

 With modern statistical programs, this is possible – in most cases, it is 
even done automatically! 

 Good practice: 

 Tell the reader your p value (especially if null hypothesis sounds quite 
likely!) 

 Traditionally, the p value is judged with star symbols within braces: 

 [***] means: P ≤ 0.1% 

 [**] means: 0.1% < P ≤ 1% 

 [*] means: 1% < P ≤ 5% 

 If possible, calculate the p value and derive statements about α 

 e.g.: „The null hypothesis could be refused at a confidence level of α=0.5, 

but not at a confidence level of α=0.1“ 
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Experimental Planning 

 

 

 

 

Experimental Planning 
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Comparing two alternative systems 

 Comparison of two systems: 

Is there a difference in value for a given response variable? 

 

 e.g., difference in achieved network throughput 

 

 Test criterion: 

1. Calculate difference between the two response variables 

2. This difference is statistically significant if its confidence interval (CI) does 

not contain 0 

 

 e.g.: CI (throughputTCP Reno – throughputTCP Vegas) ∌ 0 

 

  → We can assume that the difference in throughput which the  

 two congestion control algorithms TCP Reno and TCP Vegas achieve 

 is statistically significant 
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Is this enough? 

 Good: Very simple 

 Bad: Quite restricted applicability 

 Only should be applied if the response has the same variance for the two 

levels – not often the case 

• Better: Modified or Welch two-sided t confidence intervals 

 Calculating the confidence interval for the response differences only can 

tell us if two levels of one factor make a difference 

 What if we want to analyse more than two levels for a given factor? 

• E.g., TCP Reno vs. TCP Vegas vs. TCP Cubic: 3 levels 

 What if we have more than one factor? 

• E.g., TCP congestion control algorithm, TCP window size, network 

delay, link bandwidth: 4 factors 
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Other issues with respect to testing and studies 

 

 Publication Bias 

 Only positive examples are publised. 

 Given 1 positive example, 19 negative, having this is related to the chance 

to meet a p-value of 5 percent. 

 Consequence 

• Decline effect: Effect of treat or network protocol decreases over 

repetitions and for larger subsequent studies. 
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Why compare system alternatives? 

 Goals: 

 Better understanding of system 

 Better control of system 

 Better performance of system 

 Make a decision! 

 

 Methods: 

 Try out in different simulated environments 

• Try out different workloads with different characteristics 

• Try out different network topologies 

 Try out with different system parameters 
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Linear model and regression 

 Have n samples x1…n and y1…n of two random variables x and y 

 y is ‘not really’ a random variable: 
it’s also dependent on x 

 Linear model: y = a∙x + b + e 

 a: slope 

 b: intercept 

 e: error 

 Idea: Chose a and b such that e is minimised 

 Calculate sum of squared errors: 

 

 

          Minimise Sum of Squared Errors (SSE) 
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Calculating a and b 

 

 

 

 

 

 

 N.B.: different, but equivalent formulae in literature (you can omit 
dividing by n-1 in var and cov) 

 Usually built into statistical programs 

 

 Graphical interpretation: 
Fit a straight line that goes through 
the points in the (x,y) scatterplot 

 b: intercept (Achsenabschnitt) 

 a: slope (Steigung) 
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Are we actually allowed to apply regression? 

 

 Check correlation coefficient for linearity. 

 

 Warning: 

 The residuals e (as in y = a∙x + b + e) must be normally distributed! 

 Exploit the central limit theorem: Calculate averages of multiple 

independent simulation runs with the same factor level 

 Check that it looks normal: QQ plots or some normality test 
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Regression and experiment planning 

 In our nomenclature: y = response, x = factor level 

 Regression can tell us how much the factor influences the response. 
Answers questions like: 

 Does it make sense to explore further factor levels in a given direction? 

 Does it make sense to check factor levels in between? 

 Good: 

 We now can have multiple factor levels 

 Bad: 

 We still have only one factor 

 It must be linearly proportional 

 The residuals must be normally distributed 
(but that constraint won’t go away with ANOVA either) 
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Nonlinear Regression 1/2 

 Often, the relationship between x and y is not linear 

 Solution: Try to find a suitable transformation 

 Let y be the simulation outcome (response) 

 Then apply the model y* = a∙x + b + e  

where y* = f(y) 

 Transformation function f can be, for example: 

• Logarithm 

• Exponential 

• Square root 

• Square 

• Some other polynomial (usually quadratic or cubic) 

• Logistic function (logistic regression) 

• Inverse (1/x) 

• … 
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Nonlinear Regression 2/2 

 Which transformation function is the right one? 

 Careful consideration of the system: You have to think! 

 Check if the y* are normally distributed – the y are probably not normally 
distributed in this case 

 QQ plots can help 

 Admittedly, a matter of experience 

 Warning: 

 Overfitting, arbitrary curve fitting: “Just try around with some 
transformations and pick the one that matches best” – no, try to avoid that! 

 A correlation can be coincidence 

 Correlation does not imply causation 

 Example: Decreasing number of pirates leads to increasing global 
temperatures (Church of the Flying Spaghetti Monster) 

 Again: First think about the system, then postulate a meaningful 
transformation 
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ANOVA 

 Short for ‘ANalysis Of VAriances’ 

 Historical term 

 Explained in next slides 

 Be careful: “variance analysis” is a more general term! 

Often, that term describes a slightly different analysis: 

 Calculate variances of the responses for different levels of one (or several) 

factors 

 Analyse statistically if the variances are the same 

 Very similar to ANOVA, but slightly different! 

 



Network Security, WS 2008/09, Chapter 9   55 IN2045 – Network Analysis SS 2014   55 

ANOVA Terminology 

 factor: input variable (e.g., TCP window size), condition, structural 
assumption (e.g., TCP congestion control algorithm) 

 level: one factor value that is used in our experiments 

 response: system parameter of interest that depends on given set of 
factors (e.g., achieved TCP throughput) 

 run: evaluation of response for a given set of factor values 

 i.e., the analysed simulation result 

 There will (should!) be multiple runs 

 

Remember: 

 In simulation experiments, responses vary for runs of the same factor 
values due to random effects. 

 In experiments, the same is true due to system variation (other users, 
etc.). 

 Therefore: several runs / measurements have to be performed! 
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ANOVA Nomenclature 

 Factor has a levels (‘treatments’ for historical reasons: ANOVA was 

developed in pharmaceutical research) 

 Each level is replicated/observed n times 

 Data: 

 

 

 

 

 

 

 

 

 Question we want to answer: 

 Is there an effect of factor levels on system responses? 

 If so: how much? 

level 1
replication

L n

1 11y L 1ny

M M M

a 1ay L any
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ANOVA and experiment planning 

 Usually many factors 

 Example: TCP window size, TCP congestion control algorithm, network 
bandwidth, network delay, 
packet loss rate 

 Which factor combinations should we try out? – ANOVA can give 
answers to these questions: 

 Which factors are interesting factors (i.e., have much influence), so we 
should try out more levels for them? 

 Which factors have interesting interactions, so we should try out more 
factor level combinations for them? 

 Which factors, which interactions can be left out? 

 Structuring the experiments like this is called factorial design 

 Of course, not limited to simulation experiments 

 

 Warning: 

 It is not sufficient to vary one parameter at a time! 

 Parameters may interact (see next slides) 
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2k factorial designs 

 Example: 2 factors, i.e., a      design 

 

 

 4 design points: 

 

 

 

 

 

 Design matrix:  

- 

low 

+ 

high 
Factor A 

low   - 

high + 

Factor B 

Run Factor A Factor B Response

1 - - 1r

2 + - 2r

3 - + 3r

4 + + 4r

22
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2k factorial designs 

 Interaction of factors A and B: Is there a difference in the changes of the 

response if A is changed while B is kept either on level ‘+’ or ‘–’? 

 

 

 

 

 no interaction, i.e. 

no (or small) difference in changes: 

 

 

 

 interaction, difference in changes: 

- + 
A 

response 
B 

- 

+ 

- + 
A 

response 
B 

- 

+ 

A 

- + 

response B 

- 

+ 


