

Chair for Network Architectures and Services – Prof. Carle Department of Computer Science TU München

Network Analysis IN2045 Evaluation of simulation and measurement results

Prof. Alexander von Bodisco Stephan Günther Dr. Heiko Niedermayer Prof. Dr.-Ing. Georg Carle

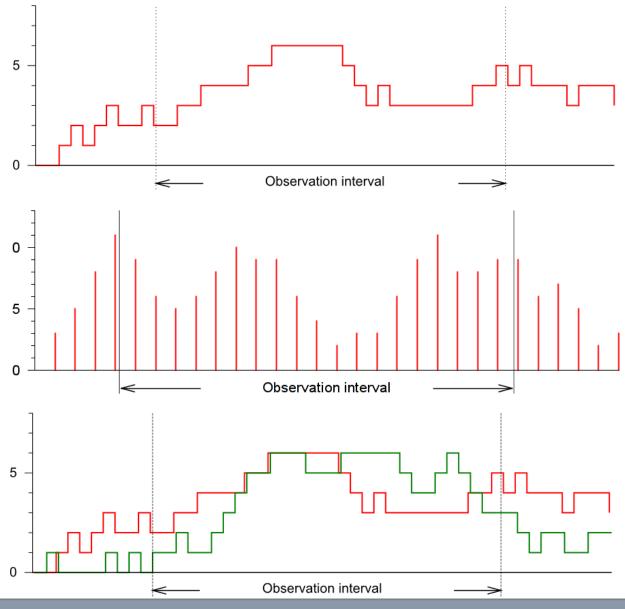
Chair for Network Architectures and Services Department of Computer Science Technische Universität München http://www.net.in.tum.de

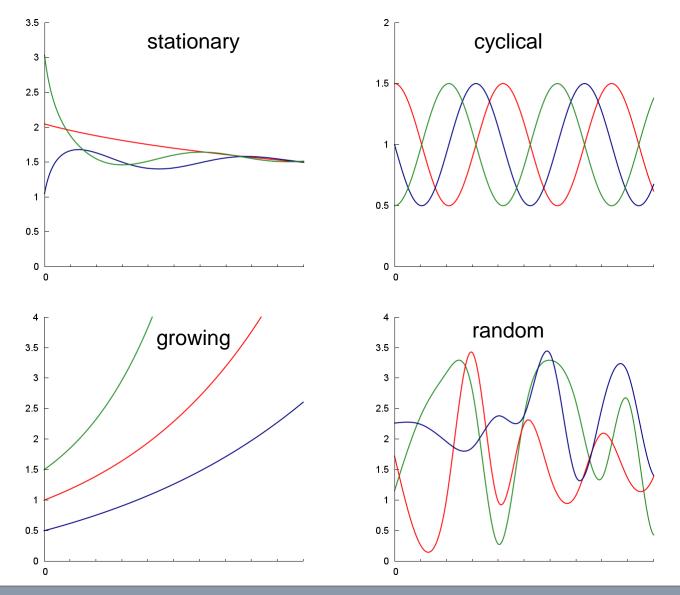
- The slides may often say *simulation*, yet the issues and methods also apply for *measurements*, in particular if they come from observing variables over a certain set of
 - Times
 - Repetitions
 - Set-ups
 - ...

- System Initialization
- **E**stimator
 - Consistent Estimator
 - Unbiased Estimator
 - Variance of an Estimator
 - Efficient Calculation of an Estimator
- Confidence Interval
 - Tschebyscheff Confidence Interval
 - Central Limit Theorem
 - t-Distribution Confidence Interval
- Evaluation of Simulation / Measurement Results
 - Replicate-Delete Method
 - Batch Means Method
 - Stationarity

Simulation study

- Goals:
 - Evaluation of system S
 - Impact of (manageable) input variables C
 - Impact of (unmanageable) input variables U
 - Evaluation of outcome (result) P
 - Performance parameter Y
- Problem:
 - Infinite number of different outcomes
 - Probability of a certain outcome cannot determined in advance
 - Parameter of interest can be regarded as random variable

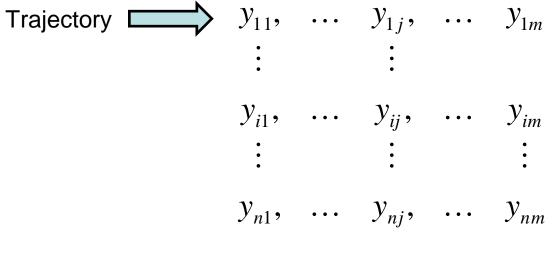




IN2045 – Network Analysis, SS 2014

Evaluation:

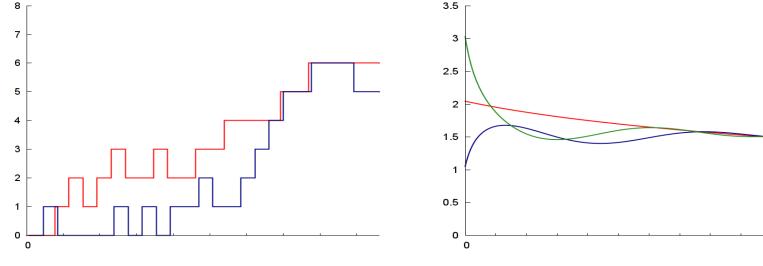
- n simulation runs
- m samples per simulation run
- jth sample of the corresponding simulation run
- i number of simulation run



Simulation Matrix

System Initialization

- Initialization state has to be chosen with respect to the expectation of the random variable
- The transient phase of the system depends on the initialization state
- The mean of the random variable (usually) converges to a certain level
- Subsequent measurements are often correlated (e.g. waiting queue length)



Random variable Y for different simulation runs

Mean of random variable Y depending on the initialization state

Estimator (Schätzer)

Definition:

An estimator is a statistic which is used to infer the value of an unknown parameter (estimand) in a statistic model.

- Problem:
 - Estimate different characteristics (e.g. mean) of an observed parameter (e.g. delay or packet loss) with a small/certain number of samples.
 - · Calculate the quality of the estimation

Consistent estimator (konsistenter Schätzer)

Definition:

An estimator is called consistent if its precision increases with the number of samples

$$\lim_{n \to \infty} P[|\tilde{Y}_j - E(Y_j)| > \varepsilon] = 0 \quad \forall \varepsilon > 0$$

- **Unbiased estimator** (erwartungstreuer Schätzer)
 - Definition:

An estimator is called unbiased if its mean equals the true mean of the estimation parameter.

- Example:
 - Assume a very large population of elements with a different characteristic (e.g. height of individuals) and µ being the mean of the characteristic
 - Let $E[\hat{Y}_i]$ be the mean of n collected sample values and \overline{X} the random variable which consists of these mean values.

$$\overline{X} = \frac{1}{n} \cdot (X_1 + X_2 + \ldots + X_n)$$

$$E(\overline{X}) = E\left[\frac{1}{n} \cdot (X_1 + X_2 + \ldots + X_n)\right] = \frac{1}{n} E[X_1 + X_2 + \ldots + X_n]$$

$$E(X_1) = E(X_2) = \ldots = E(X_n) = \mu$$

$$E(\overline{X}) = \mu$$

□ Estimation of E(Y)

- Estimator \widetilde{Y}
- Estimation (value) \hat{Y}
- Point Estimator of E(Y) $\hat{Y}_j = \frac{1}{n} \cdot \sum_{i=1}^n y_{ij}$
- Random Variable \widetilde{Y}_{j}
- Outcome of $RV \ \widetilde{Y}_j$ \longrightarrow \hat{Y}_j
- Consistency of \widetilde{Y} \longrightarrow $\lim_{n \to \infty} P[|\widetilde{Y}_j E(Y_j)| > \varepsilon] = 0 \quad \forall \varepsilon > 0$

- \Box Variance of the estimator \tilde{Y} represents a first indicator of its quality
 - Calculation of the variance of the estimator after n samples

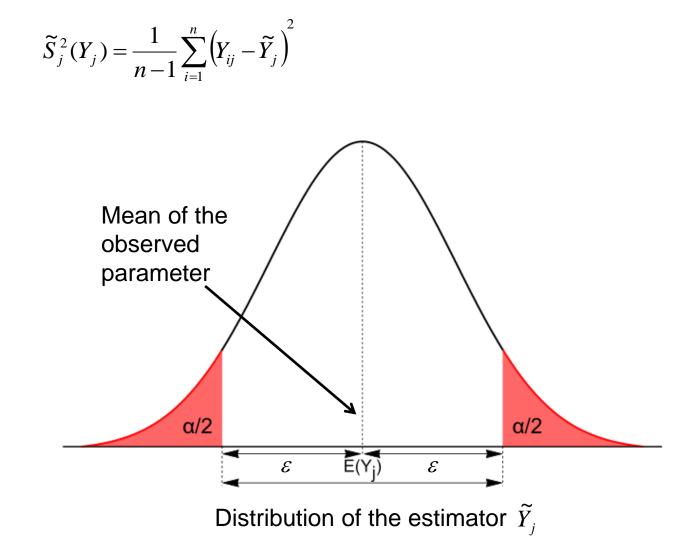
$$\sigma^{2}(\widetilde{Y}_{j}) = E\left(\left(\widetilde{Y}_{j} - E(\widetilde{Y}_{j})\right)^{2}\right)$$
$$= E\left(\left(\frac{1}{n}\sum_{i=1}^{n}Y_{ij} - E(Y_{j})\right)^{2}\right)$$
$$= \frac{1}{n^{2}}\left(\sum_{i=1}^{n}E\left((Y_{ij} - E(Y_{j}))^{2}\right) + \sum_{i=1}^{n}\sum_{k=1,k\neq i}^{n}E\left((Y_{ij} - E(Y_{j})) \cdot (Y_{kj} - E(Y_{j}))\right)\right)$$

Double sum represents the correlated part which is 0 if y_{ij} are uncorrelated

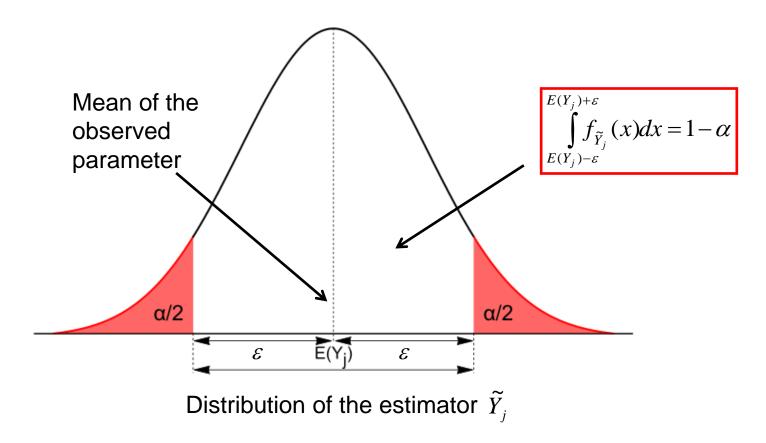
$$\sigma^{2}(\tilde{Y}_{j}) = \frac{1}{n^{2}} \sum_{i=1}^{n} E((Y_{ij} - E(Y_{j}))^{2}) = \frac{1}{n^{2}} \cdot n \cdot \sigma^{2}(Y_{j}) = \frac{\sigma^{2}(Y_{j})}{n}$$

- Variances of the estimator increases
 - with the variance of the estimand
 - if the number of samples is reduced

Unbiased estimator for $\sigma^2(Y_j)$



- □ Assume that the probability density function of the estimator $f_{\tilde{Y}_j}(y)$ is known in advance
 - The probability that \tilde{Y}_i lies within the interval is $1-\alpha$



Biased estimator for the sample variance $\sigma^2(Y_j)$

$$\widetilde{S}_{nj}^{2}(Y_{j}) = \frac{1}{n} \sum_{i=1}^{n} \left(Y_{ij} - \widetilde{Y}_{j}\right)^{2} = \frac{\sum_{i=1}^{n} x_{i}^{2}}{n} - \frac{\left(\sum_{i=1}^{n} x_{i}^{2}\right)}{n^{2}}$$

 \tilde{S}_{nj}^{2} is a biased estimator of the sample variance since it systematically underestimates it.

Bessel's correction

The biased estimator can be transformed in an unbiased estimator of the sample variance by applying Bessels's correction.

 $\frac{n}{n-1}$

Unbiased estimator for the sample variance $\sigma^2(Y_j)$

$$\widetilde{S}_j^2(Y_j) = \frac{n}{n-1} \cdot \widetilde{S}_{nj}^2(Y_j) = \frac{1}{n-1} \sum_{i=1}^n \left(Y_{ij} - \widetilde{Y}_j \right)^2$$

Efficient calculation of the estimator

1. Problem

Number of samples yij can become high which results in high memory consumption

Solution

F

Recursion
$$\hat{Y}_{j}(k) = \frac{k-1}{k}\hat{Y}_{j}(k-1) + \frac{y_{kj}}{k}$$

2. Problem

The calculation of the sample variance requires the direct evaluation of the estimation of the variance

$$\hat{S}_{j}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} \left(y_{ij} - \hat{Y}_{j} \right)^{2}$$

Every sample yij has to be stored

• Solution

- Store the sums of
$$y_{ij}$$
 and y_{ij}^2

- Calculate
$$\hat{S}_{j}^{2} = \frac{1}{n-1} \left(\sum_{i=1}^{n} (y_{ij})^{2} - n \cdot (\hat{Y}_{j})^{2} \right)$$

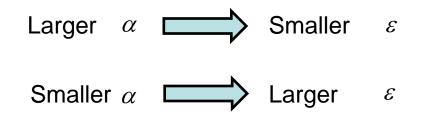
The size of n can be reduced if means are used instead of single sample values.

IN2045 – Network Analysis, SS 2014

Confidence interval

• Definition:
$$P[|\widetilde{Y}_j - E(Y_j)| \ge \varepsilon] = \alpha$$

Calculate an interval 2 ϵ around the $E(Y_j)$ such that a sample of \tilde{Y}_j lies in the interval with a probability of $1-\alpha$



- $\hat{Y}_j \pm \varepsilon$ is called $(1-\alpha) \cdot 100\%$ confidence interval of $E(Y_j)$
- $[\hat{Y}_j \varepsilon, \hat{Y}_j + \varepsilon]$ is called interval estimator
 - Interval estimators are more important than point estimators since they make probability based assumptions which consider the variance of the estimator.

Confidence interval according to Tschebyscheff

• Let X be a random variable with mean E(X) and variance $\sigma^2(X)$

$$P[|X - E(X)| \ge c] \le \frac{\sigma^2(X)}{c^2} \quad \forall c > 0$$

• Replace c by ε and X by \widetilde{Y}_j . Variance of \widetilde{Y}_j is $\frac{\sigma^2(Y_j)}{n}$

$$P[|\widetilde{Y}_j - E(Y_j)| \ge c] \le \frac{\sigma^2(X)}{n \cdot \varepsilon^2}$$

Confidence interval according to Tschebyscheff

- Example:
 - Calculate the 90% confidence interval of

$$\alpha = \frac{\sigma^2(Y_j)}{n \cdot \varepsilon^2} = 0.1$$

• Now assume a sample size n = 10

 Thus, a confidence interval of half size requires four times the number of samples

$$\longrightarrow \qquad \frac{\sigma^2(Y)}{n \cdot \varepsilon^2} = \frac{\sigma^2(Y)}{m \cdot (\varepsilon/2)^2} \qquad \longleftarrow \qquad m = 4 \cdot n$$

Confidence interval according to Tschebyscheff

- Disadvantages:
 - The calculation requires knowledge of the variance $\sigma^2(Y)$ of the estimand which is typically unknown and must thus be replaced by the estimator \hat{S}_i^2 .

Note that this breaks the pre-condition of Tschebyscheff which makes the calculated bounds invalid.

 Tschebyscheff intervals are very large / pessimistic since they are valid for any given distribution.

The pessimistic characteristic of Tschebyscheff is often used as justification for replacing the variance $\sigma^2(Y)$ with the estimator \hat{S}_j^2 .

Confidence interval according to Tschebyscheff

- Example:
 - Flipping a coin. RV Y => Y e {0-head, 1-tail}
 - E(Y) = 0.5, $\sigma^2(Y) = 0.25$
 - Flipping the coin 10 times after another
 - Calculate 90% confidence interval

n = 10 (samples)

• Experiment 1: 0000101001

$$\hat{Y} = 0.3 \quad \land \quad \hat{S}^2 = 0.23333$$
[-0.183, 0.783]
[0, 0.783]

• Experiment 2: 0110111001

$$\hat{Y} = 0.6 \wedge \hat{S}^2 = 0.26667$$
[0.084, 1.116] [0.084, 1.000]

Confidence interval according to Tschebyscheff

- Example:
 - Flipping a coin. RV Y => Y e {0-head, 1-tail}
 - E(Y) = 0.5, $\sigma^2(Y) = 0.25$
 - Flipping the coin 20 times after another
 - Calculate 90% confidence interval

n = 20 (samples)

Concatenation of Experiment 1 and 2: 00001 01001 01101 11001

$$\hat{Y} = 0.3 \quad \land \quad \hat{S}^2 = 0.23333$$

$$[0.089, 0.811]$$

- Summary:
 - The true mean lies within the interval with a probability of 90%
 - 1 of 10 experiments will not contain the true mean

Central limit theorem

The distribution of the (normalized and centralized) sum of a large number of independent and identical distributed random variables can be approximated by the (standard) normal distribution.

Lindeberg-Lévy theorem

Let $X_1, X_2, ..., X_n$ be a sequence of random variables within the same probability space which are independent and follow the same distribution. The mean of each random variable is μ and the standard variation is σ .

In the following we take a closer look at the nth sum of the sequence.

$$S_n = X_1 + X_2 + \ldots + X_n \quad \blacksquare \quad P[S_n] = n\mu \quad \blacksquare \quad \sigma^2[S_n] = n\sigma$$

Introduce a new standardized random variable Z_n

$$Z_n = \frac{S_n - n\mu}{\sigma\sqrt{n}}$$

Central limit theorem

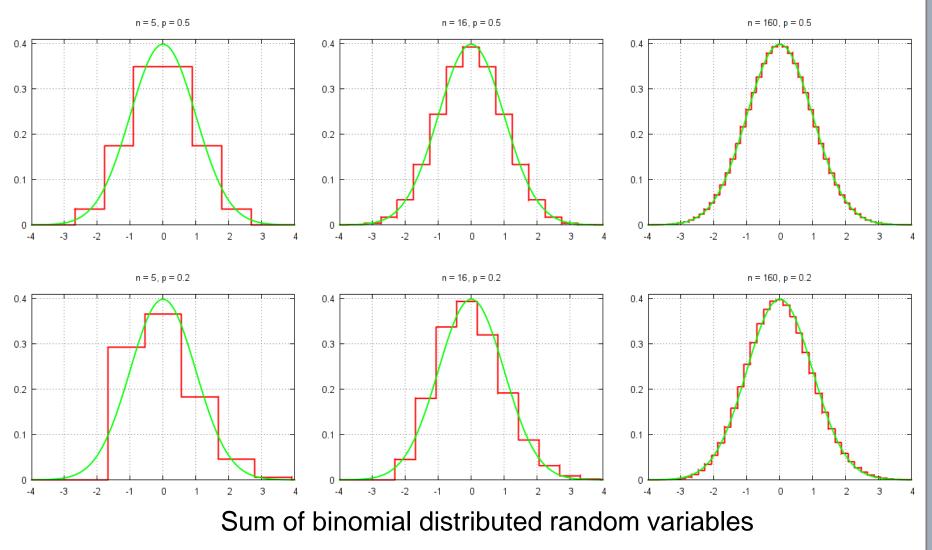
The distribution of the random variable Z_n converges against the (standard) normal distribution according to the central limit theorem if the number of summands n increases.

$$\lim_{n \to \infty} P(Z_n \le z) = \Phi(z) \qquad z \in R$$

With $\Phi(z)$ representing the (standard) normal distribution N(0,1)

$$\lim_{n \to \infty} P(\frac{\overline{X}_n - \mu}{\sigma / \sqrt{n}} \le z) = \Phi(z)$$
$$\overline{X}_n = \frac{S_n}{n} = \frac{X_1 + \dots + X_n}{n}$$

Central limit theorem



Confidence interval according to the central limit theorem

- Idea: The central limit theorem is still valid if σ^2 is replaced by \tilde{S}^2 . Thus, it is possible to calculate the critical values out of the normal distribution.
- Recapitulate the "flipping of a coin example" with *Y* representing the distribution of the estimator and *Y* being the distribution of the estimand. Then we can calculate the confidence interval as follows:

$$P[|Z| \ge \varepsilon] = P\left[\left|\frac{\tilde{Y} - E(Y)}{\tilde{S}/\sqrt{n}}\right| \ge \varepsilon\right] = \alpha$$

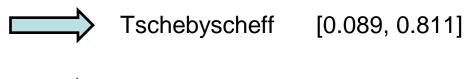
$$P[|\tilde{Y} - E(Y)| \ge \varepsilon \cdot \tilde{S}/\sqrt{n}] = \alpha$$

$$\tilde{Y} \pm z_{\alpha} \cdot \tilde{S}/\sqrt{n}$$

$$z_{\alpha} \text{ is the } \alpha/2 \text{ percentile of } N(0,1)$$

Confidence interval according to the central limit theorem

The central limit theorem generates smaller confidence intervals



Central Limit [0.262, 0.638]

- Question: What is the minimum value for n to allow the assumption that the estimator is normally distributed?
 - The minimum value of n depends on the distribution of the estimand *Y*. In worst case scenarios, the mean of the estimand *E*[*Y*] may be outside the confidence interval with a probability which is significantly higher than α .

- Empirical evaluation of the confidence interval calculation according to the (student) t-distribution
 - Problem:

Only a view results for different distributions are known.

• In the following we assume that *Y* is already normal distributed

$$\longrightarrow \frac{\widetilde{Y} - E[Y]}{\widetilde{S} / \sqrt{n}}$$
 follows a t-distribution with n-1 degrees of freedom

Critical / popular values of the t-distribution can be taken from tables

$$\hat{Y} \pm t_{n-1,1-\alpha/2} \cdot \frac{\widehat{S}}{\sqrt{n}}$$

Empirical evaluation of the confidence interval calculation according to the (student) t-distribution

Idea:

Apply a known distribution and calculate the confidence interval. Then repeat the experiment k times and estimate the probability with which the outcome of the experiment remains within the calculated boundaries.

- Example: 90% confidence interval, k = 500 repetitions

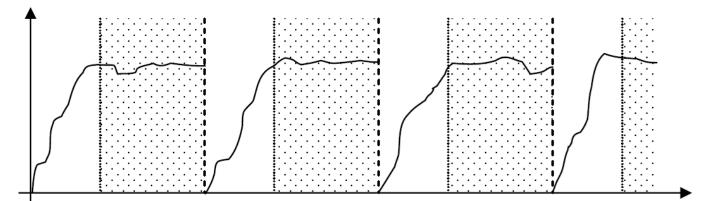
Verteilung	n=5	n=10	n=20	n=40
Normal	0.910	0.902	0.898	0.900
Exponential	0.854	0.878	0.870	0.890
Lognormal	0.758	0.768	0.842	0.852
Hyperexp.	0.584	0.586	0.682	0.774

Table taken from Law: Simulation Modeling and Analysis, 4th Edition

How to get useful simulation results out of a simulation (measurement)

Replicate-Delete Method (LK 9.5.2)

- Estimate the duration of the transient phase
- Replicate Simulate a large number of runs
- Delete Remove the transient phase since it does not contain meaningful results
- The duration of the simulation has to be a much longer than the duration of the transient phase
- Calculate the confidence intervals by using the mean values of the individual simulation runs



Replicate-Delete Method

- Advantage:
 - Most simple approach
 - Less affected by correlation
 - Typically supported by all simulation tools
- Disadvantage:
 - Requires correct estimation of the duration of the transient phase.
 - Underestimation of the duration of transient phase results in falsified simulation results.
 - Requires more time compared to Batch-Means since the transient phase has to be simulated several times.

Evaluation of Simulation Results / Statistics Fundamentals

Covariance

Covariance is a measure which describes how two variables change together

 $Cov(X,Y) = E[(X - E[X])(Y - E[Y])] = E[XY] - E[X] \cdot E[Y]$

- Special Case: Cov(X, X) = VAR[X]
- Other Characteristics:
 - Cov(X,a) = 0
 - Cov(X,Y) = Cov(Y,X)
 - Cov(aX, bY) = abCov(X, Y)

•
$$Cov(X+a,Y+b) = Cov(X,Y)$$

Evaluation of Simulation Results / Statistics Fundamentals

Correlation function

Correlation function describes how two random variable tend to derivate from their expectation

$$Cor(X,Y) = \frac{Cov(X,Y)}{\sqrt{VAR(X) \cdot VAR(Y)}}$$

- Characteristics:

 - Y = -X \longrightarrow Cor(X,Y) = -1 (Maximum negative)
 - Cor(X,Y) > 0 Both random variable tend to have either high or low values (difference to their expectation)
 - Cor(X,Y) < 0
- The random variables differ from each other such that one has high values while the other has low values and vice versa (difference to their expectation)

Evaluation of Simulation Results / Statistics Fundamentals

□ Autocorrelation (LK 4.9)

Autocorrelation is the cross-correlation of a signal with itself. In the context
of statistics it represents a metric for the similarity between observations of
a stochastic process. From a mathematical point of view, autocorrelation
can be regarded as a tool for finding repeating patterns of a stochastic
process.

Definition:

 Correlation of two samples with distance k from a stochastic process X is given by:

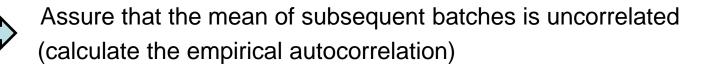
$$\frown$$
 $Cor(X,Y)$ with $Y_i = X_{i+j}$

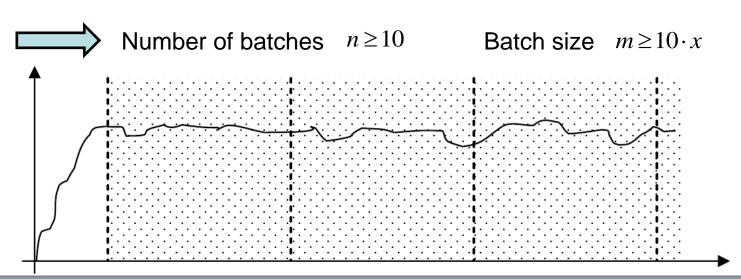
Use case:

- Test of random number generators (remember spectral test)
- Evaluation of simulation results (c.f. Batch-Means)

Batch-Means Method (LK 9.5.3)

- Estimate the duration of the transient phase
- Perform a long simulation run
- Remove the transient phase
- Divide the gathered results in n intervals of equal length (Batches) which hold m samples





Batch-Means Method

- Calculate the confidence intervals by using the mean values of the batches
- Minimize the absolute and relative error by increasing the number of batches (longer simulation run)

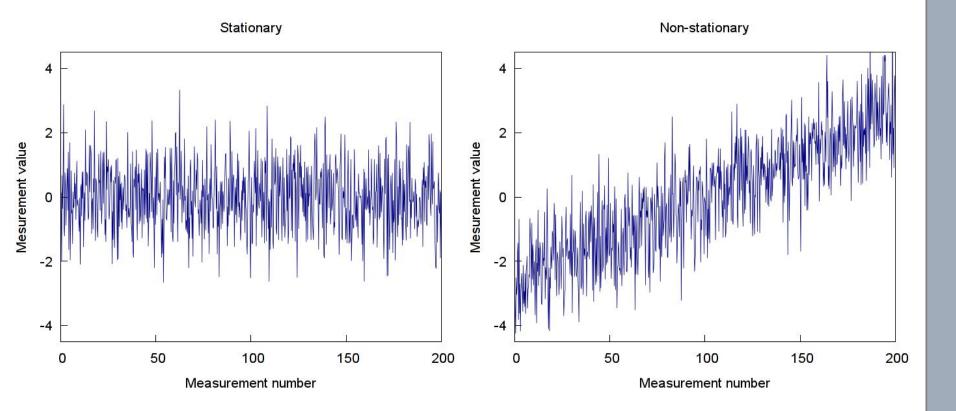
Optional approach:

- Estimate the duration of the transient phase
- Choose a sufficient value for m
- Simulate until the confidence interval has the desired size

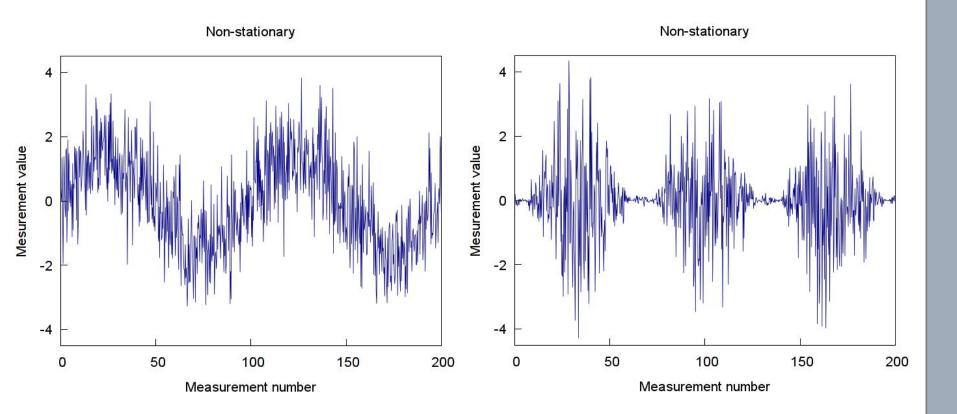
Batch-Means Method

- Advantage:
 - Minimizes the time to get meaningful results since only a single transient phase has to be simulated
 - Errors of the estimation of the duration of the transient phase decrease with increasing number of batches
- Disadvantage:
 - Calculation of n and m is complicated and usually requires detailed knowledge of the simulation
 - Calculation of the autocorrelation of the intervals have to be calculated in order to assure that the corresponding means are not correlated

□ What's stationarity? – An intuitive graphical explanation:



□ Its not just trends



Non-stationarity

- May happen if you observe a phenomenon on the Internet.
 - Number of Attacks seen by IDS
 - Average Number of Facebook friends of a Facebook user
 - Currently popular movie
 - Changing network graphs due to some process of adding and deleting edges
 - Measurement time exceeds the time where assumptions hold
 - ...
- Non-stationarity may be overcome when changing the observed variables relevant for your actual question (given that the non-stationary variable is not your main objective)

Mathematical definitions of stationarity

- Strong stationarity:
 - All samples Xi are drawn from exactly the same underlying distribution
 - In practice, this is hard or impossible to prove
- Other types of stationarity:
 - Mean stationary:
 - Variance stationary: $Var(Xi) = const \forall i$
 - Covariance stationary: $Cov(Xi, Xi+k) = const(k) \forall i$
 - Weakly stationary:

µ(Xi) = const ∀i

(only dependent on lag)

The Xi are mean stationary and covariance stationary

In practice, weak stationarity is most commonly used

Assume Xi and Yi are [weakly] stationary processes. Then...:

- You can shift a stationary process:
 α + Xi is stationary, too
- You can scale a stationary process:
 β · Xi is stationary, too
- You can add stationary processes together:
 Xi + Yi is stationary, too

- □ Important term in statistics
 - Many methods, algorithms, mechanisms assume that all samples come from the same distribution
 - Warning: We experience phenomena such as convergence phases at the beginning of simulations, etc. this means it's not stationary [yet]!
 - Often would need strong stationarity, but often weak can do the trick
 - May be interesting to analyse if the output of a simulator / experiment / ... is [weakly] stationary or not
- □ How to test for [weak] stationarity?
 - Tests usually built into statistics packages
 - Parametric tests for stationarity
 - Make assumptions about underlying data (e.g., normally distributed)
 - Nonparametric tests for stationarity
 - Need more measurements (usually 5%–35% more samples)

- Calculating confidence intervals
 - Assumption: All samples are drawn from the same population
 - But what if you take measurements from a process that has not converged yet?
 - Solution: Check the time series of measurements for stationarity