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Networks as Graphs
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Introduction to Graphs

I As you well know a graph G consists of nodes ( ) and edges ( )
I G=(V,E) with V the set of nodes (vertices) and E the set of edges.
I Edges (A,B) connect two nodes A and B. A = B ⇒ self-edge.
I Undirected Graph: Edges have no direction.
I Directed Graph: Edges (arcs, arrows) have a direction. Edge

(A,B) from node A to node B can only to be traversed from A to
B and not in opposite direction.

I MultiGraph: Multiple edges per direction possible.
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Some Terminology

I Distance: Length of shortest path
I Edge Weight: Distance of an edge (all weights 1 = distance is

hop count)
I Diameter: Longest distance in graph
I Strongly-Connected Component: A subset of nodes and edges

that can mutually reach each other.
I Connected Component: A subset of nodes and edges that can

mutually reach each other if graph were undirected.
I In communication networks, we often implicitly assume a

connected graph. This is challenged by NAT and firewalls
though.

I n = Number of nodes

I m = Number of edges
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Describing Graphs

I Adjacency List: List of all n nodes and in each line all edges from
the node to other nodes are listed.

Example:
A B C

B A

C A D

D A

I Adjacency Matrix: n-x-n matrix with weight from all nodes to all
nodes. 0 means no edge.

0 1 1 0
1 0 0 0
1 0 0 1
1 0 0 0

I For export and import there are graph formats like GEXF, GML,
GraphML, . . . that multiple tools understand.
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Networks vs Graphs

I Graphs abstract from the actual network.
I It preserves the virtual structure of the network (relationships

between nodes) and algorithms can operate on it.
I Node properties and link properties can be added to graphs as

node or edge properties.
I Graphs do not cover aspects of networks where networks use

edges depending on policies (e.g. due to peering agreements
and implication of link costs), e.g. path via C to A only for own
nodes, most likely worse path via D to A for other nodes.
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Describing Networks

I The data model of a network contains more information than a
graph.

I Device information
I Physical and virtual locations of device
I State information
I ...

I Management Information Bases (MIBs) in network management
are tree-like data structures that can be queried and walked
through from the network, e.g. via SNMP.

I Description languages like Network Description Language (NDL)
or Network Markup Language (NML) provide XML data formats
for network data models.
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Python Networkx Basics

Networkx is a graph library for Python, for documentation:
http://networkx.github.io/documentation/latest/

To generate a graph:
import networkx as nx

G = nx.Graph() # or nx.DiGraph() or nx.MultiGraph()

To add nodes:
G = G.add node(name)

G = G.add node(name, cost=0.3, foo=bar)

To add edges:
G = G.add node(sourcenode, destnode)

G = G.add node(sourcenode, destnode, weight=0.3, foo=bar)
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Python Networkx Basics

Accessing and Changing properties:
G.node[name][’foo’] = bar

G.edge[source][dest][’weight’] = 0.3

For more detail, we refer to the library and our example python files.
The library will provide functions for many graph properties and
algorithms.
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Simple Topologies

I Nodes are given. With a topology, we mean which edges do
exist and what kind of structure does than form.

I Prominent Topologies
I Full-Mesh: all nodes are mutually interconnected

I m = n * (n - 1). Half if undirected.
I Circle: the structure forms a circle or cycle

I m = n

I Tree: the structure forms a tree.
I m = n - 1
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Maps and Topologies

I To model the positions of nodes in the real-world, they could be
placed on a map.

I This may allow to estimate the physical distance between nodes
and use it in the graph.

I This information may also be used to generate a topology.
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Physical Layer / Lower Layer vs Higher Layer
Topologies

I On lower layers physical layer proximity is more relevant than on
higher layers.

I This is due to the cost of physical (e.g. optical) links that need to
be built and maintained.

I The lower layers provide the local connectivity between nodes
that then allows the higher layers to cross the Internet.

I Gabriel graphs are one example for a topology that represents
more the lower layers like from an Internet Service Provider.

I http://sndlib.zib.de provides a large set of topologies and
optimization problems from real backbone networks.
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Shortest Path Problems

I Shortest Path Problems can be specified in different ways
I Find shortest path from A to B
I Find shortest path to all nodes from A (single-source-shortest path)
I Find shortest path from all nodes to all other nodes (all-pairs

shortest path)

I Routing or forwarding in networks does not necessarily want
shortest paths

I Finding a cost-optimal spanning tree will not provide shortest
paths, but connected network

I Connectivity vs Shortest Path
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Algorithms for Shortest Path Problems

I Dijkstra: greedy algorithm for single-source shortest path, needs
non-negative link weights

I Bellman-Ford: all-pairs shortest path algorithms, can handle
negative link weights

I Meta Algorithms
I A*: search strategy, generalization of Dijkstra’s algorithm
I Breadth-First-Search
I Depth-First-Search

I nx.shortest path(G) will give you a list of shortest paths.
Source and destination can be specified.
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Traffic Engineering and
Optimization Methods
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Traffic Engineering

I Traffic Engineering is about optimizing a network for a given
traffic demand towards certain goals and constraints.

I This can include
I Generating the topology
I Generating the forwarding / routing tables (potentially in different

granularity than e.g. IP routing1, also per flow)
I . . .
I Question: Is this different from finding the shortest path?

1Use optimizer for finding optimal routing, select parameters so that routing
protocols (e.g. OSPF) agree under normal circumstances.
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Optimization Introduction

I Before answering the question from the previous slide, lets look
at optimization.

I In optimization,
I we have a certain set X of variables x1, x2, . . . that we can assign to

values to.
I we have a objective function (cost) to determine the cost given

certain values for x1, x2, . . .
I the goal is to select the values for X so that the objective function is

minimized.
I we tend to have constraints that limit the possible values for X.

Depending on the methods, this may be part of the objective
function2. In others, they have to be specified in addition.

I the space of all possible values X can take is called search space.
2Compare this with the definition of NP as class of problems for which one can

verify solutions in P. Here, the objective function verifies if constraints are met and what
kind of costs arise in a more or less efficient way. The difficulty is to search for and find
the optimal solution.
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Objective Function and Convex Optimization

I The objective function (also called fitness, fitness landscape, . . . )
can be of any complexity. If it random-looking, it is hard to search
for the minimum3.

I Most search methods (also Genetic / Evolutionary Algorithms)
expect that neighboring X generate similar objective function
outputs. Due to that, exploring the neighborhood of good values
is beneficial.

I Some optimizers expect that the objective function is continuous
and differentiable in X.

I The more mathematical properties of an objective function is
known, the easier it is to find a global optimum and to proof that
this is an optimum.

I If possible, it seems desirable to define optimization problems in
way that it is easy to find the optimum.

3Given the set of all possible functions as objective function, there are so-called No
Free Lunch theorems that say that no matter in what order you search the search
space, all orderings are the same on average.
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Objective Function and Convex Optimization

I Convex Function: a function is convex if any line segment
between two points on its graph is equal or above the function.

I Linear functions are convex.
I Quadratic functions like x2 are convex.
I There are also convex function in multi-dimensional spaces (e.g.

f (x1, x2, x3) = x2
1 + x2

2 + x2
3 ).
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Objective Function and Convex Optimization

I Assume, we have two minima. The figure above shows that even
the smallest peak between these minima will contain points on
the graph where the line segment of a line between them will not
completely lie over the graph.

I For the traffic engineering problem, we will use the python library
cvxopt and the solver glpk in addition, which can be called from
cvxopt.
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Shortest Path vs Optimization

I Back to the shortest path problem. When is our optimization not
the same?

I Shortest Path Problem: Link weights on links, find shortest paths.
I If we add cost to the links and want to minimize cost?

I Can still be solved by shortest path algorithm, just use cost as link
weight.

I If we take the demand into consideration:∑
a,b demand(a,b) ∗ costForPath(a,b) ?
I Still the same as cost-optimal path is optimized per demand and

not inter-demand!
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Shortest Path vs Optimization

I When is our optimization not the same?
I Given cost and weight, find shortest paths where cost (different

from weight!) is below a threshold.
I This deviates from a shortest path problem as cost cannot be

combined with weight as it is a constraint that we do not optimize
but keep below a certain level.

I Given weight, demand, and link capacities, find shortest paths
where the demand over the links does not exceed their capcity.

I This deviates from a shortest path problem as longer paths with
more capacity might have to be taken.

I If we sum up different kinds of objectives like link cost per
demand over the link and distance for each combination of
nodes.

I When we want to ensure certain properties like:
I k diverse paths per direction
I avoid certain nodes for certain demands (e.g. Alice and Bob do not

want Mallory on their path)
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Shortest Path vs Optimization

I Problem: Given cost and weight, find shortest paths where cost
(different from weight!) is below a threshold.

I Compute Shortest Paths.
I If cost constraint is met, solution is shortest path.
I If not, loop over until constraints met:

I Select a set of candidate solutions in the proximity of the current
solution.

I If a better one (with respect to cost, maybe not too much worse
than shortest path solution) is found, select it.

I If cost constraints met, try to optimize distance in similar manner
given the cost remains under the threshold.

I Meta Heuristics:
I Gradient Descent: Scan the neighborhood of the certain position in

the search space, select the one that follows the gradient towards to
minimum.

I In discrete problems, this means scan the neighborhood, go to best
solution found there. Then repeat.

IN2045, SoSe 2014, Deterministic Discrete Modeling: Traffic Engineering and Optimization Methods – Meta-heuristics / Gradient Descent 24



Fakultät für Informatik Technische Universität München

Introduction Linear Programming

I Linear Programming (Linear Optimization) is a class of
optimization problems that are defined solely by linear equations
and linear inequalities.

I Objective: Minimize cT ∗ x where
I x is a vector of free variables (x1, x2, x3, . . . ) to be determined.
I c is a corresponding cost vector of similar size
I Objective function: x1 ∗ c1 + x2 ∗ c2 + x3 ∗ c3 + . . .
I Note: Problems to find a maximum can be transformed into

problems to find a minimum and vice versa by −c.

I Given a linear objective function and no further constraints, the
optimimum for an xi is either −∞ if ci > 0 or∞ if ci < 0.

I Thus, to have finite optima, there need to be constraints that
produce upper or lower bounds for each xi .
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Introduction Linear Programming

I Linear inequalities (≤ or ≥) cut off a part of the search space.
I e.g. x1 + 3 ∗ x2 − 4 ∗ x3 ≤ −3.5
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Introduction Linear Programming

I Given enough inequalities (3 in the figure), the search space can
be reduced to a finite area.

I Since xi ’s either increase or decrease the cost function, optima
have to be on the intersection points on the edge of the search
space.
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Introduction Linear Programming

I Equalities reduce the search space by 1 dimension. Here from a
2-dimensional area to a line.

I Linear Programs are usually defined by specifying:
I the cost vector c
I a matrix G and vector h with G ∗ x ≤ h for the inequalities
I a matrix A and vector b with A ∗ x = b for the equalities
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Primal and Dual Problem in Linear Optimization

I The primal problem is the minimization (or maximization)
problem given to the linear optimizer.

I The dual problem is then the related maximization problem that
helps to compute and proof lower bounds for the minimum. It is
not the same problem just written as maximimation problem!
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Traffic Engineering

I Network Operators want to dimension that their networks so that
the costumer demands are met, the costs are low, the
performance good.

I The underlying model is again a graph with routers and other
hosts as nodes and the links as edges.

I In addition, some nodes have demands to send certain amounts
of traffic to other nodes. This is usually given as traffic matrix.

I Traffic matrix: matrix that contains typical (average, maximum)
demands between all nodes.

I The goal is now to find a cost-optimal allocation of the demands
over paths in the graph that satisfies all constraints like
capacities of links.
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Path Flow Problem

I For each demand all (possible, reasonable, desired) paths are
given. The problem is to distribute each demand over its possible
paths so that the demand is met and costs are optimized.
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Path Flow Problem

I Variables x: each xi stands for one demand and one path for the
demand and it says how much of the demand it sent over the
corresponding path.

I Cost vector c:
∑

demand d,path p
∑

link l∈p xindexOf (d,p) cost(l)
I Inequalities:

I All traffic over a link l has to be lower than its capacity.∑
xi uses l xi ≤ capacity(l)

I No negative traffic amounts. For all xi : −xi ≤ 0
I Equalities:

I Sum of the traffic sent over the paths for a demand has to match
the demand d.

∑
xi is for d xi = d
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Link Flow Problem

I In the Path Flow Problem definition we assumed to have a
predefined set of paths. We can skip this when we define the x
as demand d over a link l.

I Variables x: each xi stands for one demand and one link and the
value is how much of this demand goes over the link.

I Cost vector c:
∑

link l
∑

xi belongs to l xi cost(l)
I Inequalities:

I All traffic over a link l has to be lower than its capacity.∑
xi uses l xi ≤ capacity(l)

I No negative traffic amounts. For all xi : −xi ≤ 0
I Equalities:

I For each demand and each node, generated / consumed demand
by the node has to match outgoing / incoming demand. Routed
incoming and outgoing demands have to be equal.
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Integer Linear Programming / Mixed Integer Linear
Programming

I Integer Linear Programming is a class of linear optimization
problems where the variables x are integer numbers instead of
real numbers. All other values like cost vector, equlities, and
inequalities remain real-valued.

I If some x are integer and some x are real-valued. Then, we
speak of a mixed integer linear program.

I In our traffic engineering problems, we need integer linear
programs e.g. to disallow the splitting up of demands on parallel
paths.
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Thanks for your attention!

Questions?
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