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Abstract. Today’s communication networks are threatened by an increasing 
number intrusion attempts, worms, and denial of service (DoS) attacks. Apart 
from general measures for attack prevention, the possibility to detect ongoing 
attacks in order to take appropriate countermeasures constitutes an important 
asset for network security. We present a novel approach for attack detection 
based on cooperating autonomous detection systems (CATS). While a single 
detection system is able to identify ongoing attacks autonomously, cooperation 
with remote detection systems located in other parts of the network can improve 
the detection performance.  

1 Introduction 
The detection of intrusions, violations, and attacks is a significant task in nowadays 
communication networks. A brief history and overview to intrusion detection is, for 
example, given by Kemmerer and Vigna [13]. The number of denial of service attacks 
(DoS) and distributed denial of service attacks (DDoS) is increasing every day. 
Typically, important servers from government or industrial systems are attacked, yet 
we already see similar attacks against primary systems at universities. In addition, the 
effectiveness and malignance of such attacks is increasing [12].  

In this paper we present a novel approach addressing these problems: CATS, a 
Cooperating Autonomous deTection System. The goal is to identify ongoing attacks 
using autonomously working detection system that are able to improve their detection 
performance through cooperation in a group of multiple detection systems. We use a 
common taxonomy of attack detection systems in order to classify and compare our 
approach with existing systems. 

The proposed detection system will be implemented and used in the context of 
Diadem Firewall, an IST funded project [1]. 

The rest of the paper is organized as follows. A taxonomy of attack detection 
systems as well as a review of related work is presented in section 2. General 
requirements for an efficient detection system are discussed in section 3. Our novel 
approach for intrusion detection, the cooperating autonomous detection system, is 
presented in section 4. Section 5 evaluates the proposed system and compares it to 
existing detection systems. Finally, the conclusions are provided in section 6. 



2 Taxonomy and related work 
In order to classify our novel approach for cooperative autonomous detection of 
intrusions and DoS attacks, we first provide a taxonomy of detection systems and an 
overview of related work. 

2.1 Taxonomy 

Several attempts have been made in order to provide a taxonomy and classification of 
intrusion detection systems (IDS) as well as denial of service (DoS) attacks and 
detection techniques [2, 14, 15]. We provide a brief taxonomy of detection techniques 
and define the terms used in this paper. 

First, we use the term “attack detection” instead of “intrusion detection” because 
we do not want only refer to the detection of intrusion attempts into a protected 
system, but also include the detection of attacks that aim to disturb the well 
functioning of the system, e.g. by causing system break-downs, resource exhaustion or 
any other kind of DoS to legitimate users. Furthermore, we define the term “attack” as 
any kind of intrusion or DoS attack. We define the term “detection system” as a 
system that performs detection of intrusions, DoS attacks, or both. This generalization 
is reasonable since most of today’s systems combine intrusion and DoS attack 
detection.  

A common classification criterion distinguishes two types of attack detection: host-
based and network-based detection. Host-based detection is restricted to a single host. 
Typically the detection system is directly executed on the protected host, which allows 
access to a wide range of security-related information, like log file entries, the state of 
running processes and logged-on users. It also allows analyzing network 
communication on any protocol layer, including the content of encrypted connections. 
In contrast, network-based detection addresses a network including the traffic from 
and to the connected hosts. Such a detection system is usually executed on a dedicated 
machine that passively captures and analyses the traffic on the network. As an 
advantage, network-based detection does not require any changes of the protected 
hosts and networks, and one system is sufficient for a larger number of hosts. On the 
other hand, the captured network traffic is the only source of information that can be 
used. 

Another criterion refers to the detection method. We distinguish between 
knowledge-based detection, also known as rule-based detection, and anomaly 
detection. Knowledge-based detection comprises any method that disposes 
information about known attacks with the purpose to search for equal or similar 
occurrences. In case of network-based detection, systems that search the captured 
packets for attack signatures and bit patterns belong to this category, but also any 
systems that look for potential misbehavior and suspicious usage of protocols (e.g. 
during a port scan). Anomaly detection uses an opposite approach: based on 
information about normal network or system behavior, a significant derivation from 
this reference model is considered as indicator of a potential attack. Anomaly 
detection is able to recognize previously unknown attacks. However, derivation from 
normal behavior can have other reasons than attacks, resulting in false positives. 
Anomaly detection can be built on statistical tests and analysis.  

If more than one host or larger networks are to be surveyed, a distributed detection 
system consisting of several subsystems can be deployed. These subsystems are 
located on different host or in different parts of the network. According to the 



relationship between the subsystems, we adopt the classification of [15] and 
differentiate between autonomous, cooperative, and interdependent subsystems. 
Autonomous subsystems act as independent and fully functional detection systems, i.e. 
they detect attacks independently without communication or interaction between them. 
Even if such subsystems deliver their detection results to a centralized entity e.g. a 
common database, they would still operate in an autonomous way. Cooperative 
subsystems are capable of autonomous detection. In addition, they can improve their 
detection performance through cooperation. Interdependent subsystems cannot 
operate autonomously, e.g. because one subsystem controls other subsystems in order 
to coordinate the detection process. Another example is a distributed detection system 
that organizes its subsystems in a hierarchical manner. In this case, two aspects of 
interdependency are possible: subsystems of higher hierarchy levels may control 
subsystems of lower levels, or subsystems of higher levels may depend on data 
delivered by lower-level subsystems. 

Figures 1 to 3 show three examples of distributed detection systems with 
autonomous, cooperative and interdependent subsystems. Optional parts are drawn in 
dashed lines. In figure 1, the subsystems work autonomously without any cooperation. 
An optional centralized database can be used to gather all alerts generated by the 
subsystems. Figure 2 shows a detection system of autonomous subsystems that 
cooperate with each other. Again, alerts might be collected in a centralized database. 
Finally, a system of interdependent subsystems is depicted in figure 3. The detection 
subsystems are controlled by a centralized controller subsystem that might optionally 
adapt its control according to the reported alerts. 
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Fig 1. Distributed detection system with autonomous subsystems 
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Fig 2. Distributed detection system with cooperative autonomous subsystems 
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Fig 3. Distributed detection system with interdependent subsystems 

2.2 Related work 

In this section, we present four examples of relevant related work in the area of 
distributed detection systems. Some of them also provide automatic response 
functionality. However, in the context of this paper we concentrate on the detection 
mechanisms. 

EMERALD [19] is a distributed detection and response system that has been 
developed at the SRI research institute in 1997. EMERALD was conceived to apply 
mainly host-based detection techniques, but its architecture is also suitable for 
network-based detection. It applies both knowledge-based and anomaly detection 
methods. The subsystems, called monitors, are organized in a three-level hierarchy. 
Each monitor of the two higher levels receives and correlates the detection results of 
various monitors of the corresponding lower level. Therefore, a subscription-based 
communication scheme is used that allows the subscriber to specify in which kind of 
detection results it is interested. According to our taxonomy, the EMERALD monitors 
can be classified as interdependent subsystems since monitors of higher levels depend 
on the detection results of lower-level monitors. 

Prelude IDS [4, 21, 22] is an open-source project that consists of three functional 
components: sensors, managers, and countermeasure agents. The sensors deploy 
knowledge-based techniques for both network and host-based detection. Anomaly 
detection is not applied. Several sensors are associated to a manager that receives the 
detection alerts: it processes and correlates the alerts and decides on appropriate 
countermeasures. If more than one manager is used, the managers are organized in a 
hierarchy with a single one at the top. Since both sensors and managers are subsystems 
that are involved in the detection process and since managers depend on the results 
delivered by the sensors, the Prelude subsystems can be classified as interdependent. 

D-WARD [16] is a network-based DDoS detection and defense system developed 
by Jelena Mirkovic at the University of California Los Angeles (UCLA). The 
D-WARD architecture consists of fully autonomous subsystems that are deployed at 
the entry points of so-called source-end networks. The subsystems analyze and control 
the outgoing traffic with the goal to prevent hosts of the observed networks from 
participating in DDoS attacks. Therefore each subsystem autonomously imposes rate 
limits on suspicious flows. The detection method is based on predefined models of 
normal traffic and can thus be classified as anomaly detection. 

COSSACK [17] is a distributed, network-based DDoS attack detection and 
response system developed at the Information Science Institute (ISI) of the University 
of Southern California, funded by DARPA. The COSSACK subsystems, called 



watchdogs, are located at edge networks. If a watchdog detects an attack against the 
associated edge network, it multicasts an attack notification to the other watchdogs. 
Upon reception of such a notification, a watchdog checks if the attack flow or parts of 
it originate from its own edge network. If so, the watchdog tries to block or rate-limit 
the corresponding flow by setting filter rules in routers or firewalls. With respect to 
attack detection, the subsystems can be classified as cooperative since the notification 
messages help other watchdogs to detect an ongoing attack. COSSACK principally 
applies anomaly detection techniques. 

Table 1 summarizes the classification of the presented systems. It already includes 
our novel approach CATS whose detailed description follows in section 4. 

Table 1 Overview of existing distributed detection systems 

System Type of detection Detection methods Relationship between 
subsystems 

EMERALD host-based knowledge-based 
and anomaly 
detection 

interdependent 

Prelude IDS host-based and 
network-based 

knowledge-based 
detection 

interdependent 

D-WARD network-based anomaly detection autonomous 
COSSACK network-based anomaly detection cooperative 
CATS network-based knowledge-based 

and anomaly 
detection 

cooperative 

3 General requirements for autonomous attack detection 
In this section we concentrate on general requirements for distributed attack detection. 
Based on this set of requirements, existing detection systems as well as our novel 
approach, CATS, can be assessed. The requirements are introduced using two typical 
denial of service scenarios, which are described in the following section. 

3.1 Denial of service scenarios 

Denial of service attacks focus on the prevention of an offered service. This can be 
done in two ways: first, by exhausting network resources on the path towards the 
target server and secondly, by exhausting resources of that server. An example for the 
first scenario is a distributed ICMP flood attack. A TCP SYN flood attack is an 
example for the second scenario. Both scenarios are depicted in figure 4. Further 
information on distributed denial-of-service attacks can be found in [6]. 



Fig 4. Typical denial of service scenarios. A: ICMP flood using a reflector 
network; B: TCP SYN flood using intermediate systems, e.g. compromised / 
malicious computers 

3.1.1 ICMP flood attack 
An ICMP flood attack can take place in two ways. First, so called broadcast pings can 
be employed utilizing an unsecured reflector network for forwarding the ICMP echo 
request messages towards a victim network. Secondly, IP address spoofing can be 
used by sending ICMP echo requests to multiple stations in the network with the IP 
address of the victim inserted in the source IP address of each packet. All the receivers 
of these ICMP request will answer by sending an appropriate response to the victim, 
from which they think the request was coming from. This scenario is shown in figure 
4A. The result of this attack is an overload of the network paths near the victim. 
Therefore, normal service requests suffer from the artificial network congestion and 
cannot be served in an adequate time. 

3.1.2 TCP SYN flood attack 
The goal of a TCP SYN flood attack (see figure 4B) is to exhaust local resources at 
the victim. TCP is a connection oriented transport protocol. Thus, in order to transmit 
data, a connection has to be established first. This is done by sending a TCP SYN 
packet which is answered by an ACK+SYN. After the reception of the SYN packet, a 
half-open connection remains until it is timed out or the ACK+SYN is being 
answered. 

Benefiting form this working principle of TCP, TYP SYN flood attacks employ 
compromised computers as a relay for a particular attack. All the relay hosts are 
commanded to send as many TCP SYN packets as possible to the victim. Resources 
required for state information of half-open connections are exhausted quickly, 
preventing the victim from receiving legitimate service requests. 

3.2 Requirements for detection systems 

Based on the described scenarios, general requirements for detection systems are 
derived in the following.  

3.2.1 Detection of attacks 
The capability of a detection system to detect anomalies and concrete attacks in a 
local context is evident. The capability of the detection system to detect anomalies and 
attacks in a global context is also important. The key properties of detection 
mechanisms are listed in the following. 
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Local context 
Attack detection in a local context, i.e. based on information from packet data 
received at the detection system only is a straightforward process integrated in almost 
all detection systems. This capability requires no intercommunication or interaction 
with other detection systems. Both types of attacks (see figure 4) can be detected by a 
system near the victim. Nevertheless, only a system near the attacker is able to detect 
the source of the attack if IP address spoofing techniques are used. 

Additionally, traceback mechanisms can be deployed to identify the source of a 
spoofed IP packet. Unfortunately, such mechanisms have significant resource 
requirements. 
Global context 
Using a global context, i.e. information gathered at multiple points in the network, 
allows improved detection of ongoing attacks in the network. Both scenarios 
described before can be detected with a global context. Therefore, this capability is an 
essential requirement. The communication overhead introduced by the different 
interacting detection systems is an important performance measure of the complete 
system. 
Knowledge-based detection 
Knowledge-based detection was the first kind of attack detection deployed in the 
Internet. While statistical conclusions are not possible, well-known attacks can be 
detected efficiently using this methodology. 
Anomaly detection 
The capability to employ anomaly detection mechanisms is a further requirement for 
highly accurate attack detection. With the increasing capacities of network links, pure 
knowledge-based detection systems suffer from their inability to process every single 
data packet. By employing statistical methods for anomaly detection, high-speed 
detection engines can be realized. Anomaly detection also allows to detect new kinds 
of attacks, or slightly modified variants of known ones, that cannot be detected by 
knowledge-based systems. 

3.2.2 Autonomous behavior 
To prevent a distributed detection system from becoming a target itself and to increase 
the availability of the overall system, each subsystem should perform attack detection 
autonomously. The intercommunication between the subsystems may increase the 
detection accuracy but should not become a pre-requisite for the functionality of the 
global detection system. Autonomous behavior requires the following capabilities:  
Self-Configuration 
A first requirement for autonomous behavior is the capability of self-configuration. 
Starting from a master configuration, or even starting from scratch, the system must be 
capable to set all required configuration parameters, such as the current location of the 
probe or the type and number of neighboring entities to which communication 
relationships are to be applied. 
Self-Maintenance 
Self-maintenance is the process of adapting the configuration parameters to the current 
situation. Autonomously working entities must be capable to adapt to a changing 
environment. This adaptation, typically realized by reconfiguration of runtime 
parameters, comprises of changes in the resource management and in the 
configuration of tasks and processes. 



Self-Healing 
Self-healing is an important function of autonomously working entities. In the case of 
problems, mechanisms must be available which determine the kind of problem and 
initiate a healing process. For example, if the system faces memory shortages, the 
attack detection must be modified by selecting algorithms and parameters which 
require less memory (while typically resulting in a lower detection rate). 
Self-Optimization 
Finally, self-optimization is an important requirement for autonomous systems. In this 
context we understand self-optimization as the ability to optimize the detection 
quality. This can be achieved by exchanging information about already identified 
attacks or suspicious network connections and also by statistically forwarding parts of 
collected data packets and network statistics to neighboring probes. 

3.2.3 Distributed intelligence 
A detection system can benefit from distributed intelligence. In the context of attack 
detection, we distinguish between two aspects of distributed intelligence: distributed 
detection, and separation of monitoring and detection functionalities. 
Distributed detection 
Distributed detection means that multiple detection systems are involved in the 
detection process, each analyzing a variable part of the monitored data. As a 
consequence, the detection load can be partitioned dynamically according to the 
available resources at the different detection engines. 
Separation of monitoring and detection 
Monitoring and detection functionalities should be separated in order to allow for an 
analysis of the monitored data at different locations and in different contexts. As a 
consequence, distributed intelligence may improve the detection performance and may 
increase the robustness of the whole system. 

4 Cooperative autonomous attack detection 
The objective of this section is to describe our novel approach for attack detection 
using cooperative autonomous detection systems. First, the architecture is presented 
followed by a classification of our approach based on the presented taxonomy. 

4.1 Architecture of our novel autonomous detection system 

The architecture of an individual detection system is depicted in figure 5. It consists of 
an outer part for network monitoring and an inner part for detection.  

The network monitoring part is responsible for capturing packets and flow statistics 
from the network, either directly using a connected network interface, or by 
employing monitoring probes and the standardized IP flow export (IPFIX) [7, 20] and 
packet sampling (PSAMP) [8, 11] protocols. This part also performs necessary 
preprocessing of the gathered data, such as packet filtering or generation of statistical 
flow measurements needed by the detection part. It is further divided into a layer for 
packet monitoring and sampling and a layer for statistical measurements. 

The detection part is divided into two detection engines, one providing statistical 
anomaly detection and the other applying knowledge-based detection mechanisms. 
The required packet data and statistical measures are provided by the network 
monitoring part. 



The main reason for separating the network monitoring part and the detection part 
is to allow for a multi-hierarchy monitoring environment for capturing packets and 
flow statistics. The accounting NSLP protocol [10] can be employed for the 
configuration of the monitoring environment. This allows for deploying one detection 
system that analyzes data monitored at different points of the network. Furthermore, a 
detection system can become itself a source of information to other detection systems 
by exporting monitoring data. 

 

Fig 5. Architecture of our novel autonomous detection system 

In the following subsections, the network monitoring part and the detection part of 
the detection system are described in more detail. 

4.1.1 Packet monitoring and sampling layer 
The architecture of our detection system allows two ways to capture packet data from 
the network: by using a directly connected NIC, and by employing PSAMP exporters, 
which send the collected information in a standardized way [9]. The packet 
monitoring and sampling layer is responsible for capturing of packet data received via 
NICs or PSAMP. Moreover this layer may preprocess the packet data. Filters or 
sampling algorithms may be applied to reduce the amount of packets being further 
processed. 

Within the detection system, the collected packet data is used for two purposes. 
First it can be directly passed on to the detection part in order to look for known attack 
signatures. Secondly it can be forwarded to the statistical measurement layer that 
generates flow statistics from the packet data. Additionally, the detection system can 
export packet data to other detection systems using PSAMP. This functionality is 
described in section 4.1.5. 

4.1.2 Statistical measurement layer 
The statistical measurement layer generates statistical flow measures based on the 
packet data received by the packet monitoring and sampling layer, and the flow 
statistics received via IPFIX. Examples for statistical measures are the number of 
bytes and packets per flow or per aggregate, the number of connections per time, and 
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the number of similar connections. The resulting statistical measures build the basis 
for further anomaly detections. For instance, an unusually high connection rate may 
indicate a distributed denial of service attack where typically each connection consists 
of only a single packet. 

The statistical measurement layer does not only provide the data for the local 
detection mechanisms. It may also export the generated flow statistics via IPFIX. 
Using the terms of IPFIX [7], this corresponds to the functionality of an exporter or 
concentrator. 

4.1.3 Anomaly detection 
In our novel detection system, we integrate two separate, independently working 
detection engines - an anomaly detection engine and a knowledge-based detection 
engine - in order to achieve high detection rates. The detection of an attack results in 
the generation of an event that is combined with additional information for 
characterizing the attack. This information can be exchanged with other detection 
systems in order to improve the detection performance. On the other hand, it can be 
used to trigger appropriate countermeasures. 

The anomaly detection works on statistical data received from the lower statistical 
measurement layer. This detection process is looking for unusual behavior without any 
precognition. It compares long-time behavior to short-time behavior and maintains 
different profiles, e.g. per destination, aggregate, and others. Potential techniques are 
statistical tests, neural networks, and Bayes networks. The architecture of our 
autonomous detection system allows to integrate a variety of other detection 
algorithms. 

4.1.4 Knowledge-based detection 
The knowledge-based approach represents the second main pillar of our detection 
engine. This engine searches the packet stream for known signatures and 
misbehaviors. Open-source tools such as snort [3, 5] and Bro [18], which are widely 
used in the Internet community, build the basis for this part of the detection. 

4.1.5 Export of packet data and flow statistics 
One detection system is capable of exporting packet data and flow statistics to other 
detection systems using PSAMP and IPFIX. This export capability is useful since one 
system might not be able to process all interesting or suspicious packet data and flow 
statistics. Through the export, it is possible to delegate parts of the detection work to 
other systems. A much more important advantage is the possibility to organize several 
detection systems in a multi-level hierarchy. In such a constellation, some systems 
may focus on processing data from their local environment. While performing attack 
detection using locally captured packet data, these detection systems also forward 
packet data and flow statistics to systems of a higher hierarchy level. Higher-level 
systems receive and process data from various parts of the network. Hence, a system 
of a higher-level may be able to examine certain aspects of an attack better than the 
lower-layer systems. This is particularly true for distributed attacks. 

The detection systems use PSAMP and IPFIX both for data from monitoring 
probes, and for data from other detection systems. 

4.2 Cooperation of multiple autonomous detection systems 

So far, an individual, autonomously operating detection system can achieve a good 
detection rate by incorporating features from different approaches: knowledge-based 
detection and anomaly analysis. Additionally, the possibility to use a nearly unlimited 



monitoring network allows to gather packet data from multiple points in the network. 
From this respect, our approach is directly comparable to distributed detection 
systems such as EMERALD and Prelude IDS. However, our approach can achieve 
significant advantages due to its double detection mechanisms. 

In this section we show how the detection quality can be enhanced further by 
loosely coupling multiple autonomous detection systems to cooperating ones, which 
additionally improves the overall detection quality. 

Figure 6 shows a diagram of multiple interacting detection systems. Apart from the 
export of sampled packets and flow statistics using PSAMP and IPFIX (see section 
4.1.5), the interaction between the systems is based on the exchange of information 
about suspicious network traffic. 

 

Fig 6. Interactions between multiple autonomously working detection systems 

We assume that several types of attacks cannot be detected directly, especially 
distributed attacks. Instead, only assumptions can be generated about which packets or 
flows may belong to attacks. There are two main reasons for this: 

1. Typically, a detection system obtains only a fraction of the packets belonging 
to an ongoing attack because it is not located directly at the attacker or at the 
victim. 

2. In multi-gigabit networks, the capacity of monitoring probes and detection 
systems is limited. Frequently, sampling algorithms are employed for coping 
with the high data rates, which also drop packets belonging to an attack.  

We address both problems by creating state information for all suspicious data 
flows. Starting from a first assumption of an ongoing attack, the detection system has 
to refine the analysis in order to confirm or reject the assumption. In a first step, the 
aggregation level will be decreased until the potential attack flows can be isolated and 
a corresponding filter rule can be formulated. Subsequently, the filters at the 
monitoring probe and the detection systems can then be programmed in order to 
capture and analyze all packets belonging to the suspicious flows. Ideally, sampling 
algorithms are applied only on packets that do not belong to suspicious flows.  

In case that deeper analysis confirms an initial assumption, the state information is 
sent to other detection systems. Other systems that have not yet detected the same 
attack flow proceed as if the state information was a local assumption, trying to 
confirm or reject it by refining the analysis. As a result, the detection system can either 
affirm that it observes the same attack flow, or it dismisses the state information. 

Therefore, the cooperation of detection systems allows to improve the detection 
rate significantly and helps to identify the path of the attack flows through the 
network. 



5 Evaluation of cooperating autonomous detection systems 
In order to evaluate our concept of cooperating autonomous detection systems, we 
first provide a classification according to our taxonomy. Then we show how the 
general requirements given in section 3 are fulfilled. Finally we compare CATS with 
existing approaches. 

5.1 Classification 

Our detection system provides network-based attack detection. It applies both 
knowledge-based and anomaly detection methods. Since the two methods are 
complementary, a combination allows to benefit from the advantages of both methods 
while mitigating the individual drawbacks. Finally, our concept can be classified as 
cooperative, since the individual detection systems work autonomously while 
improving their detection performance through cooperation. 

5.2  Assessment based on the requirements 

In section 3, we listed general requirements for attack detection systems. In this 
section, we show how CATS satisfies them. 

First, we stated that attack detection should support both a local and a global 
context. Most existing detection systems are limited to attack detection in a local 
context, using monitoring data from the local environment. There exist some 
mechanisms for a global context, in particular the traceback mechanisms. However, in 
most cases attack detection in a global context is reduced to the deployment of 
independent, local detection systems at various locations in the network and a central 
entity that receives the detection results. Our system addresses the global context 
requirement in two ways. First, the clear separation of network monitoring and attack 
detection allows that each individual detection system processes monitoring data 
received from monitoring probes located at remote parts of the network. Secondly, the 
cooperation between different detection systems allows distributed detection in a 
global context. 

In compliance to the requirements, our approach provides both knowledge-based 
and anomaly detection using two distinct detection engines.  

With respect to the desired autonomous behavior, we outline some design aspects 
concerning the four categories self-configuration, self-maintenance, self-healing, and 
self-optimization. With respect to self-configuration, a discovery mechanism is needed 
that enables the detection system to discover monitoring probes as well as other 
detection systems for cooperation. For this purpose, service discovery mechanisms 
that have been developed for other problem domains can be employed. Self-
maintenance and self-healing address the ability to adapt the monitoring and detection 
load according to the available resources of monitoring probes and detection systems 
by setting PSAMP and IPFIX parameters accordingly. An aspect of self-optimization 
is the capability to refine the applied analysis methods in order to confirm or reject 
initial attack assumptions. The usage of dynamic profiles instead of fix thresholds for 
anomaly detection allows self-optimization according to temporally changing network 
conditions. 

Last but not least, our approach profits from distributed intelligence through the 
separation of monitoring and detection functionalities and the cooperation between 
multiple detection systems.  



5.3 Comparison with other attack detection approaches 

In section 2.2, we briefly presented four research projects in the area of distributed 
detection systems. The only cooperative system was COSSACK. COSSACK also is 
the most recent project, and appears superior to the other three systems. Therefore, we 
concentrate on a comparison of our detection system with the COSSACK system. 

The main differences between COSSACK and our system are the employed 
detection methods, the location of deployment in the network, and the treatment of 
spoofed source addresses. 

5.3.1 Employed detection methods 
COSSACK applies so-called “blind” detection techniques, which corresponds to 
anomaly detection in our taxonomy. Our proposed detection engine integrates both 
knowledge-based and anomaly detection.  

5.3.2 Location of deployment 
COSSACK watchdogs are deployed at edge networks in order to detect attacks against 
hosts inside the surveyed network. Instead, our detection system can be deployed 
anywhere in the network. Moreover we think that a deployment of several detection 
systems at appropriate locations inside the network is promising. Such locations may 
be access routers, gateways, but also core routers. 

Papadopoulos et al. discuss the question of location in [17]. Apparently they 
abandoned the idea to place their watchdogs inside the core of the network. First, they 
argue that monitoring and detection cannot be performed at line speed because of the 
very large link bandwidth. Our solution faces this problem using packet sampling and 
aggregated flow statistics. Hence, the monitoring and detection load can be controlled 
and limited by adapting the PSAMP and IPFIX parameters accordingly. As soon as a 
profound assumption of an attack exists, the sampling rate as well as the level of 
aggregation for the corresponding flow is lowered for deeper analysis of what is going 
on.  

Papadopoulos [17] presents another reason for not deploying the watchdogs in the 
core network: Watchdogs classify flows according to predefined aggregate rate 
thresholds. These thresholds are set depending on the link bandwidth between the 
edge network and the core. However, in the core only coarse approximations of the 
edge link bandwidth are available. We do not use fixed thresholds but dynamic 
profiles for anomaly detection. These profiles do not rely on prior knowledge since 
they are created in a self-learning process. 

5.3.3 Source address spoofing 
COSSACK watchdogs identify the origin of an attack examining the source addresses 
of the corresponding packets. Obviously this method does not work if attackers use 
spoofed source addresses. Papadopoulos et al mention this problem without 
addressing it any further, arguing that there are sufficient technical remedies like 
egress and ingress filters that inhibit source address spoofing. We do not think that 
such filters can be applied in all possible cases (see also [6]). Instead we prefer not to 
rely on the correctness of source addresses. Using our cooperating detection systems, 
it should be possible to track the course of the attack flow by identifying the 
monitoring probes where the flow has been seen. Even though the origin networks 
cannot be identified exactly with this method, we still will be able to determine where 
the attack flow could be preferably blocked or rate-limited.  



5.4 Assessment Summary 

In Table 2, we compare CATS with related detection systems regarding their 
fulfillment of the requirements depicted in section 3.2. Obviously, CATS is the only 
system that fulfills all requirements. 

Table 2 Requirements analysis 

 EMER-
ALD 

Prelude 
IDS 

D-
WARD 

COSS-
ACK 

CATS 

Local 
context 

yes yes yes yes yes 

Global 
context 

no (host-
based) 

no no yes yes 

Knowledge-
based detection 

yes yes no no yes 

Attack 
detection 

Anomaly 
detection 

yes no yes yes yes 

Autonomous behavior 
 

no no yes yes yes 

Sep. of monitor-
ring & detection

no no no no yes Distributed 
intelligence 

Distributed 
detection 

yes partly no no yes 

6 Conclusions 
In this paper we presented a novel approach for efficient and high-quality attack 
detection called CATS. The proposed detection system makes use of a distributed 
monitoring environment and achieves improved detection results through cooperation 
with remote detection systems. The detection quality is further increased by 
combining anomaly and knowledge-based detection mechanisms. 

In order to assess our approach, we provided a conceptual comparison with existing 
systems. We conclude that our approach allows to achieve significant performance 
enhancements compared to existing approaches. Currently, we are implementing a 
prototype of the detection system in the context of the Diadem Firewall [1] project. 
This prototype will allow us to verify the capabilities of the detection system using 
real-world and simulated traffic. 
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