
Improving Markov-based TCP Traffic
Classification
Gerhard Münz1, Stephan Heckmüller2, Lothar Braun1, and Georg
Carle1

1 Network Architectures and Services,
Technische Universität München, Germany
{muenz|braun|carle}@net.in.tum.de

2 Telecommunications and Computer Networks,
Universität Hamburg, Germany
heckmueller@informatik.uni-hamburg.de

Abstract
This paper presents an improved variant of our Markov-based TCP traffic classifier and demon-
strates its performance using traffic captured in a university network. Payload length, flow
direction, and position of the first data packets of a TCP connection are reflected in the states of
the Markov models. In addition, we integrate a new “end of connection” state to further improve
the classification accuracy. Using 10-fold cross validation, we identify appropriate settings for
the payload length intervals and the number of data packets considered in the models. Finally,
we discuss the classification results for the different applications.

1 Introduction

Traffic classification based on port numbers has reached its limits since a one-to-one mapping
between port and application does not exist for many modern network services. Examples are
peer-to-peer applications, which often allocate ports dynamically, and web applications, such
as streaming servers, which run on top of HTTP on the same port 80 or 443. Classification
based on deep packet inspection (DPI) involves pattern matching on packet payload which
is computationally intensive. Moreover, DPI is restricted to unencrypted traffic. Therefore,
network operators are interested in statistical classification methods which consider traffic
characteristics beyond packet contents.

The common assumption of statistical traffic classification is that the communication
behavior of an application influences the resulting traffic. Hence, by observing appropriate
traffic properties, it should be possible to distinguish applications with different behaviors.
In the literature, the application of machine learning techniques to the traffic classification
problem is very popular. Examples can be found in the survey paper of Nguyen and Armit-
age [8]. Similarly, multiple approaches to traffic classification are evaluated and compared in
the paper of Kim et al. [6]. Among other approaches, the authors consider various machine
learning algorithms with Support Vector Machines being the most accurate. In the article of
Este et al. [4], the amount of information carried by various traffic features is investigated.
The authors evaluate the mutual information of the traffic features and the application type.
They conclude that the packet sizes exhibit the highest amount of information concerning
the application type for multiple data sets.

In a previous paper, we present a novel TCP traffic classification approach using observ-
able left-right Markov models [7]. This work is motivated by Estevez-Tapiador et al. who
deploy observable ergodic Markov models for detecting anomalies in TCP connections [5].
In contrast to Estevez-Tapiador, we do not consider TCP flags but payload length, flow
direction, and position of the first data packets of a TCP connection. Our evaluation shows

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

2 Improving Markov-based TCP Traffic Classification

that taking into account the first four data packets per connection suffices to achieve very
good classification results. Evaluating additional data packets allow us to further increases
the accuracy. As an advantage to hidden Markov models (HMMs), which have been pro-
posed for traffic classification by Wright et al. [12] and Dainotti et al. [2], the utilization of
observable Markov models drastically simplifies the estimation of model parameters as well
as the classification of a new connection.

In Section 2 of this paper, we present an improved variant of the Markov-based traffic
classifier which uses an additional “end of connection” state to reflect the termination of
TCP connections with small numbers of data packets. In Section 3, we apply this ap-
proach to TCP traffic which was captured in the Munich Scientific Network and labeled
with help of OpenDPI [9], an open-source signature-based traffic classification library. Dif-
ferent parameter settings are compared based on the average accuracy achieved in a 10-fold
cross-validation. The most appropriate model parameters are then used to determine the
classification results for a realistic traffic mix. All in all, the results confirm earlier find-
ings that our approach yields very high classification accuracies even when dealing with
real-world traffic data.

2 Markov-based TCP Traffic Classifier

2.1 High-Level Description
Our traffic classifier considers the packet sequence at the beginning of a TCP connection as
the output of an observable Markov model (or Markov chain). In contrast to HMMs used
in other traffic classification approaches [2, 12], each packet in the sequence can be directly
linked to a specific state in the Markov model. Hence, given a packet sequence, we can
directly infer the initial state from the first packet, as well as all further state transitions
from the following packets. If the Markov model’s initial state and transition probabilities
are known, we can calculate the likelihood of the packet sequence.

Our TCP traffic classifier maintains multiple Markov models with identical states but
different initial state and transition probabilities. Each of these models reflects the traffic
characteristics of a different application. Given the sequence of the first data packets of a
TCP connection, the likelihood is calculated for all available Markov models. The classifier
then assigns the TCP connection to the application for which the corresponding Markov
model yields the maximum likelihood.

2.2 Considered Packet Attributes
The accuracy of the classification depends very much on the considered packet attributes.
As a simple example, we could take into account the flow direction of the packets. There
are only two possible directions, namely from the client which initiates the TCP connection
to server and vice versa. Hence, we can model this attribute in a Markov model with
only two states. In fact, the flow direction of the packets is an important aspect of the
communication pattern of an application. Nevertheless, this packet attribute alone is not
sufficient to accurately distinguish different applications.

In addition to the flow direction, we experimented with further packet attributes, such as
the packet length and the TCP flags, and compared the resulting classification accuracies [1].
We found that excellent classification results can be achieved if payload length (equaling the
TCP segment size), direction, and position of the first data packets within a TCP connection
are considered in the states of the Markov model [7]. Data packets are those packets which

Gerhard Münz, Stephan Heckmüller, Lothar Braun, and Georg Carle 3

contain at least one byte of payload. All other packets (such as handshake packets and
empty acknowledgment packets) are ignored because their transmission is usually triggered
by the TCP layer and not by the application.

The payload length of the data packets is quantized into a few intervals in order to map
the packet attributes to a reasonably small number of states. We denote these intervals as
sets of interval boundaries, i.e. Bi = {b1, . . . , bm}. Boundary sets with m members lead to
a mapping of the packet lengths onto m+ 1 intervals: [1; b1], [(b1 + 1); b2], . . . , [(bm + 1);∞).
Another measure to keep the number of states small is to restrict the number of data
packets considered in the Markov models. The number and boundaries of the payload
length intervals as well as the number of data packets need to be set appropriately to obtain
good classification results. We discuss these parameterization issues in Section 3.3.

2.3 New “end of connection” State
In the following, we present an improved variant of our traffic classifier. In addition to
the states reflecting packet attributes, we add a new state which is reached if a connection
terminates before the maximum number of data packets considered in the Markov models
is transmitted. The classification of such already ended connections is useful for collecting
traffic statistics, characterizing network hosts, etc. As we will show in Section 3.3, including
the “end of connection” (EOC) state leads to an improvement of the classification accuracy.

The new EOC state is highlighted in Figure 1 which displays the example of a Markov
model considering the first four data packets of a connection. In the example, the payload
length is quantized to four intervals I1, . . . , I4; the directions from client to server and server
to client are indicated as C ⇒ S and S ⇒ C. Hence, the total number of states is 33.
Transitions to the EOC state are possible from the first, second, and third data packet.

2.4 Model Estimation and Storage
Let’s assume that Σ = {σ1, . . . , σn} is the set of states of the Markov model. Then, the initial
state probabilities can be written as vector Π = (πσ1 , . . . , πσn

) where πσi
is the probability

that the first packet has the attributes described by σi. The transition probabilities form
an n × n matrix A = {aσi,σj

} where aσi,σj
specifies the probability of a transition from σi

to σj .
The initial state and transition probabilities are estimated from labeled training data, i.e.

TCP connections for which the application is known. For every application, the probabilities
are estimated with the following equations:

πσi
= F0(σi)∑n

k=1 F0(σk)
; aσi,σj

= F (σi, σj)∑n
k=1 F (σi, σk)

(1)

F0(σi) is the number of initial packets in the training data matching the attributes defined by
σi. F (σi, σk) is the frequency of transitions from packets described by σi to packets described
by σk. In order to obtain good estimates, a sufficiently large set of TCP connections is needed
which is representative for the traffic to be classified later.

In our case, only states representing data packets at the first position may be initial
states. Furthermore, transitions only occur from one data packet to the next or alternatively
to the EOC state. Hence, maintaining an n × 1 initial state probability vector Π and an
n × n transition matrix A is inefficient because most of the elements are zero probabilities
by definition. Due to the regular structure of the Markov model, the probabilities can
be stored in a much more memory efficient way. The elements in Π can be limited to

4 Improving Markov-based TCP Traffic Classification

Figure 1 Markov model of the improved classifier

the states defining attributes of the first data packet. If l is the number of data packets
considered, the transition probabilities can be saved in (l − 1) small transition matrices
At, t = 1, . . . , (l − 1), each including only transitions from packet position t to t + 1. As
an example, the probabilities of the Markov model given in Figure 1 can be stored in a Π
vector of length 8 and three 8× 9 transition matrices At.

Rare initial states or transitions are often not included in the training data. If such an
initial state or transition is observed in a TCP connection to be classified, the likelihood
of the Markov model drops to zero and disqualifies the associated application. This may
lead to wrong classification results. It may also happen that the connection cannot be
assigned to any application because the packet sequence has a zero likelihood for all Markov
models. For this reason, we replace all zero probabilities of logically possible initial states
and transitions by a positive value ε which is smaller than any of the estimated non-zero
probabilities. Afterwards, we normalize the initial state probabilities and the transition
probabilities such that

∑
i πσi

=
∑
j aσi,σj

= 1 for all models.
If a TCP connection can only be classified because of multiple zero probabilities replaced

by ε, it does not really seem to match the traffic characteristics of that application. Therefore,
we set a lower threshold h for the model likelihood which corresponds to a small number of
ε transitions. If this threshold is not exceeded for any application, the connection remains
unclassified. Throughout this paper, we use ε = 10−5 = 0.001% and h = ε3 = 10−15.

Concerning the complexity of model estimation, the computation of initial state and
transition probabilities using equations (1) requires counting the frequency of initial packet
attributes and transitions. The computational effort linearly depends on the number of data
packets considered and the number of connections in the training data. Compared to other
model types, this is very time-efficient.

Gerhard Münz, Stephan Heckmüller, Lothar Braun, and Georg Carle 5

Figure 2 Traffic classification using Markov models

2.5 Classification
During the classification phase, it is beneficial to calculate the log-likelihood instead of the
likelihood of the Markov models since this replaces multiplications by additions. Given
the first l data packets of a TCP connection O = {o1, o2, . . . , ol}, the log-likelihood for
this connection is calculated for all Markov models M (k) with Π(k) = (π(k)

σ1 , . . . , π
(k)
σn) and

A(k) = {a(k)
σi,σj} using the following equation:

log Pr
(
O|M (k)

)
= log

(
π(k)
o1

l−1∏
i=1

a(k)
oi,oi+1

)
= log π(k)

o1
+

l−1∑
i=1

log a(k)
oi,oi+1

(2)

If the connection contains less than l data packets (i.e. fewer data packets than considered
in the Markov models), the likelihood calculation stops after adding the logarithm of the
transition probability to the EOC state. The classifier finally selects the application for
which the log-likelihood is the largest. The overall classification process is illustrated in
Figure 2. The block diagram shows how the Markov models obtained during the training
phase are used to classify new TCP connections.

The computational effort necessary to classify a TCP connection is determined by the
computation of the log-likelihood which has to be calculated for every Markov model using
equation (2). This effort linearly depends on the number of models and on the length of the
state sequence which is bounded by the number of data packets considered in the models.

Other statistical traffic classification methods typically require more complex calcula-
tions. This is particularly true for HMMs where emission probabilities have to be considered
in addition to transition probabilities.

3 Evaluation

3.1 Training and Test Data
In order to evaluate our traffic classifier, we monitored traffic at the gateway which connects
the Munich Scientific Network to the German National Research and Education Network
(DFN). For our evaluation, we captured approximately six hours of IPv4/TCP traffic from

6 Improving Markov-based TCP Traffic Classification

Table 1 Application labels provided by OpenDPI

Application label Connections Percentage Distinct server ports

http 1,136,359 64.48% 81 (mainly ports 80, 8080)
ssl 158,331 8.98% 22 (mainly ports 443, 993, 995)
smtp 150,173 8.52% 5 (mainly ports 25, 587)
flash 92,273 5.24% 6 (mainly ports 1953, 80)
ssh 22,087 1.25% 3 (mainly port 22)
http+flash 20,030 1.14% 4 (mainly port 80)
pop 7,390 0.42% 1 (port 110)
ftp 6,232 0.35% 6,035 (73 connections to port 21)
windowsmedia 4,974 0.28% 1 (port 80)
imap 4,367 0.25% 1 (port 143)
dns 2,499 0.14% 1 (port 53)
bittorrent 1,735 0.10% 115 (e.g. ports 8080, 80, 6879)
rdpa 1,047 0.06% 1 (port 3389)
other 4,850 0.14% 38 (mainly 80)
unknown 150,013 8.51% 5295 (e.g. ports 10050, 2703)

a remote desktop protocol

and to the class B network of our computer science department. Traffic was captured in one
chunk on a busy weekday. We modified the intrusion detection system Bro [10] to classify the
captured packets into different TCP connections and to extract the corresponding sequences
of payload length and flow direction tuples. Individual TCP packets not belonging to any
valid TCP connection and TCP connections without any data packet were filtered out. In
total, we extracted packet attributes of 1,762,360 TCP connections, each containing at least
one data packet.

In addition to Bro, we applied OpenDPI [9] to obtain an application label for each
TCP connection. Since signatures can only be found in unencrypted traffic, connections
of applications running on top of SSL or TLS are identically labeled ssl. Similarly, all
connections of applications making use of SSH are labeled ssh. OpenDPI was applied to all
packets, which sometimes led to the situation that the label returned by OpenDPI changed
in the middle of the connection. Most frequently, this happened for TCP connections which
were first labeled http and later flash (20,300 occurrences), which we combined in a new
label http+flash. Other types of label changes were observed for 1,544 connections which we
all assigned to the label other (cf. below).

Table 1 shows the number of TCP connections and the number of distinct server port
numbers per application label. Applications with less than 1000 connections are not shown
individually but summed up as other. It is not surprising that 64.48% of the TCP connec-
tions are labeled http because HTTP traffic dominates in the Internet today. Although most
connections are directed to well-known server ports, we observe a certain number of connec-
tions with non-standard server ports. Traffic labeled ftp mostly includes data connections of
FTP sessions. These connections are typically established from the FTP server to an eph-
emeral port at the FTP client, which is accounted as server port (from the TCP perspective)
in the table. In addition, a small amount of FTP control connections is present. 8.51% of all
connections could not be classified by OpenDPI and are labeled unknown. Almost 28% of
these connections are established between two identical endpoints, one of them running an

Gerhard Münz, Stephan Heckmüller, Lothar Braun, and Georg Carle 7

unknown service on port 10050. More than 11% are directed to port 2703 which is commonly
used by Razor servers hosting databases with signatures for spam detection [11].

We restrict our classifier to application with more than 1000 connections in our data. For
each of these applications, we randomly select 1000 connections as training data. Although
there are more than 1000 connections, we do not include a Markov model for http+flash
because these connections get easily confused with http. While the training data contains
an equal number of connections for all applications, the test data shall reflect the original
traffic mix. Therefore, we select 2% of the connections of each application as test data,
making sure that none of the connections is contained in training and test data at the same
time.

3.2 Evaluation Metrics
As evaluation metrics, we calculate recall and precision for every application k:

recallk = number of connections correctly classified as application k
number of connections of application k in the test data

precisionk = number of connections correctly classified as application k
total number of connections classified as application k

A perfect classifier achieves 100% recall and precision values for all applications.
In order to compare different classifiers with a single metric, we calculate the overall

accuracy, which is the proportion of correctly classified connections. In the cross-validation
case (see Section 3.3), the overall accuracy is calculated for an equal number of connections
per application, which means that the overall accuracy is identical to the average recall.

3.3 Parameterization Using Cross-Validation
The performance of the classifier depends on the parameterization, in particular on the
number of considered data packets and the payload length interval boundaries. We use
10-fold cross-validation to assess the influence of different parameter settings. For this, the
training data is divided into ten disjoint sets. Then, ten classifiers are trained, each one with
a different set left out. For each classifier, we use the remaining fold not used for training
as test data. To evaluate the overall performance of a parameter setting, we consider the
minimum, mean, and maximum classification accuracy resulting from the ten runs.

As a starting point, we use similar interval boundaries as in our previous work [7],
namely B1 = {100, 300, 1450}. This means that the following four payload length intervals
are considered in the states of the Markov models: [1; 100], [101; 300], [301; 1450], [1451;∞).
A preliminary evaluation of B1 showed deficiencies in the classification of pop and smtp. By
inspection of the applications’ payload length distributions, we noticed systematic differences
in the payload length of the first data packet: For smtp, almost 90% of the first data packets
exceed 50 byte whereas, in case of pop, less than 20% contain more than 50 byte of payload.
Therefore, we add 50 as an additional boundary and evaluate the classifier’s performance
for B2 = {50, 100, 300, 1450}.

The interval boundaries mentioned so far are based on experimental evaluation of the
classifier’s performance and inspection of payload lengths. Given the huge number of pos-
sible boundary combinations, the alternative approach of finding interval boundaries in a
systematic and automatic manner is particularly complex. In order to limit the complexity,
we use an iterative greedy algorithm which determines the best additional boundary based
on an existing set of interval boundaries found in preceding iterations. This is accomplished

8 Improving Markov-based TCP Traffic Classification

Table 2 Cross-validation results for differing number of packets and boundaries

Packets Boundaries Overall accuracy (min/mean/max)
Without EOC state With EOC state

3 Packets B1 = {100, 300, 1450} 0.8433/0.8508/0.8708 0.8667/0.8764/0.8883
B2 = {50, 100, 300, 1450} 0.8758/0.8938/0.9025 0.8967/0.9096/0.9258
B3 = {40, 190} 0.8442/0.8544/0.8692 0.8433/0.8610/0.8792
B4 = {40, 190, 380} 0.8842/0.8995/0.9067 0.8933/0.9066/0.9183
B5 = {40, 190, 380, 620} 0.9092/0.9187/0.9317 0.9192/0.9287/0.9367

4 Packets B1 = {100, 300, 1450} 0.8583/0.8749/0.8975 0.8842/0.8993/0.9092
B2 = {50, 100, 300, 1450} 0.9158/0.9228/0.9333 0.9267/0.9397/0.9525
B3 = {40, 190} 0.8483/0.8584/0.8700 0.8717/0.8834/0.9000
B4 = {40, 190, 380} 0.9000/0.9163/0.9292 0.9142/0.9309/0.9425
B5 = {40, 190, 380, 620} 0.9208/0.9326/0.9450 0.9358/0.9463/0.9592

5 Packets B1 = {100, 300, 1450} 0.8725/0.8866/0.9000 0.8950/0.9050/0.9183
B2 = {50, 100, 300, 1450} 0.9308/0.9381/0.9458 0.9400/0.9469/0.9625
B3 = {40, 190} 0.8625/0.8760/0.8858 0.8908/0.8977/0.9108
B4 = {40, 190, 380} 0.9217/0.9318/0.9392 0.9408/0.9497/0.9583
B5 = {40, 190, 380, 620} 0.9442/0.9504/0.9567 0.9567/0.9635/0.9717

6 Packets B1 = {100, 300, 1450} 0.8817/0.8914/0.9067 0.8992/0.9102/0.9225
B2 = {50, 100, 300, 1450} 0.9300/0.9407/0.9533 0.9400/0.9491/0.9550
B3 = {40, 190} 0.8725/0.8814/0.8917 0.8900/0.8997/0.9075
B4 = {40, 190, 380} 0.9300/0.9393/0.9500 0.9400/0.9485/0.9575
B5 = {40, 190, 380, 620} 0.9433/0.9503/0.9617 0.9517/0.9625/0.9750

by analyzing the relation of the application labels and the state sequences of the corres-
ponding connections in the training data. We use a concept from decision tree learning,
the Gini impurity index which measures how “impure” the assignment of state sequences
to application labels is (cf. [3]). As a new boundary, we choose the boundary which res-
ults in a maximum reduction of impurity in order to achieve a strong differentiation of the
applications with respect to the state sequences. Considering state sequences of four data
packets, four iterations of this algorithm lead to the following interval boundary sets: {190},
B3 = {40, 190}, B4 = {40, 190, 380}, B5 = {40, 190, 380, 620}. We restrict ourselves to mod-
els with at least two boundaries which turned out to be the minimum number necessary for
achieving acceptable classification results.

In the following experiments, we compare the overall accuracy of five boundaries sets
B1, . . . , B5. Moreover, we assess the influence of the EOC state. The resulting minimum,
mean, and maximum overall accuracies are tabulated in Table 2 for 3 to 6 data packets. As
can be seen, we achieve a consistent increase in the mean overall accuracy by introducing
the EOC state. Detailed inspection of the application specific results shows that there is a
particularly strong increase of the mean recall for dns and ssl. As an example, the mean
recall for dns increases from 79.3% to 93.5% for boundary set B1 and 4 data packets. At
the same time, the mean recall for ssl is improved by 14.4 percentage points reaching 81.7%.
An improvement of about 2 percentage points is also observed for ftp whenever the EOC
state is included. Regarding the other applications, the effect on the recall value is in the
range of ±1 percentage points in most of the cases. Due to the better overall accuracy, we
concentrate on models including the EOC state in the following discussion.

Gerhard Münz, Stephan Heckmüller, Lothar Braun, and Georg Carle 9

The models based on the smallest boundary set B3 exhibit the worst performance. We
conclude that the boundary set should have a minimum size of 3, corresponding to four
payload length intervals. Moreover, the parameterizations with interval boundary sets B2,
B4 and B5 yield higher overall accuracy compared to the boundary set B1. In particular,
the models based on these boundary sets exhibit better performance in distinguishing the
protocols smtp and pop. Based on the boundary set B5 and 4 data packets, we achieve a
mean recall of 87.1% and 97.8% for pop and smtp, respectively. In comparison, the model
based on B1 reaches 71.9% and 67.1%, only.

The models based on the interval set B5 exhibit a slightly higher accuracy than models
based on B2 and B4. On the other hand, the number of states in the models can be reduced
by means of the smaller boundary set B4. Depending on the scenario, this may compensate
for the disadvantages in terms of accuracy. Concerning the number of considered data
packets, there is a consistent increase in accuracy from 3 to 5 packets for all parameterizations
considered. With 6 packets, the accuracy slightly decreases for B4 and B5 wheres a small
increase is observed for the other settings. Therefore, we conclude that the best number of
data packets depends on the interval boundaries. For the boundary sets reaching relatively
higher overall accuracies, i.e. B2, B4 and B5, the strongest increase occurs when considering
4 instead of 3 data packets. Only minor improvements can be achieved by integrating more
data packets into these models, which is consistent with our earlier findings [7].

3.4 Classification of Test Data
In the last subsection, we obtained the best overall accuracy with Markov models considering
five data packets, the new EOC state, and five payload length intervals with boundaries
B5 = {40, 190, 380, 620}. With these settings, we train a new traffic classifier using the
entire set of training data (i.e. all ten folds). Thereafter, we apply the classifier to the TCP
connections in the test data which represent about 2% of the original traffic. As described
in Section 3.1, none of the connections in the test data is included in the training data.
Connections belonging to one of the twelve applications considered in the Markov models
are classified with an overall accuracy of 94.51%, which is 1.8 percentage points smaller than
the average accuracy achieved in the cross-validation. The reason is the different traffic mix
which now corresponds to the percentages shown in Table 1.

Table 3 shows the recall and precision values of the twelve applications as well as the
proportion of unclassified connections, which is negligible in all cases. In addition, the last
column indicates the labels assigned to the incorrectly classified connections. All applications
are detected with a recall value equal or larger than 92%. The low precision values for
bittorrent, dns, and windowsmedia go back to several http connections being classified as one
of these applications. Several smtp connections are classified as pop, which explains the low
precision value of pop.

For comparison, we train and apply another traffic classifier which considers the same
number of data packets and the same payload length intervals but does not include the
EOC state in the Markov models. Table 4 shows the results based on the same training
and test data as used before. As can be seen, the recall value of dns significantly decreases
from 92% with EOC state to 82% without EOC state. The recall values of http and ftp
decline by about 2.4 percentage points, the one of ssl is reduced by 1.1 points. For the
other applications, the recall is identical or only slightly decreased. The overall accuracy
now is 92.70%, which is about 1.8 percentage points smaller than before. As expected, the
influence of the EOC state on the application specific recall values is very similar to what
we observed in the cross-validation results for this setting.

10 Improving Markov-based TCP Traffic Classification

Table 3 Classification results of test data for B5 = {40, 190, 380, 620} with EOC state

Recall Precision Unclassified Most frequently misclassified as

bittorrent 0.9428 0.0906 0.0000 http, ssl
dns 0.9200 0.1776 0.0000 windowsmedia, bittorrent, ssl
flash 0.9777 0.9535 0.0000 http, ssl
ftp 0.9840 0.8145 0.0000 http
http 0.9428 0.9957 0.0008 windowsmedia, ssl, bittorrent
imap 0.9431 0.9880 0.0000 smtp, pop, ssh
pop 0.9729 0.4298 0.0000 smtp
rdp 1.0000 0.9130 0.0000
smtp 0.9354 0.9975 0.0003 pop
ssh 0.9909 0.9977 0.0000 pop
ssl 0.9406 0.8954 0.0000 bittorrent, http, windowsmedia
windowsmed 1.0000 0.1923 0.0000

Table 4 Classification results of test data for B5 = {40, 190, 380, 620} without EOC state

Recall Precision Unclassified Most frequently misclassified as

bittorrent 0.9428 0.0518 0.0000 ssl
dns 0.8200 0.1872 0.0000 ssl, windowsmedia, bittorrent
flash 0.9788 0.8853 0.0000 http, ssl
ftp 0.9600 0.9448 0.0000 http
http 0.9193 0.9948 0.0008 ssl, bittorrent, windowsmedia
imap 0.9431 0.9880 0.0000 smtp, pop, ssh
pop 0.9729 0.4298 0.0000 smtp
rdp 1.0000 0.9130 0.0000
smtp 0.9357 0.9975 0.0000 pop
ssh 0.9909 0.9977 0.0000 pop
ssl 0.9295 0.8435 0.0000 bittorrent, http, windowsmedia
windowsmed 1.0000 0.1923 0.0000

In the following, we continue our discussion of the classification results obtained with
EOC state. As described in Section 3.1, OpenDPI provided more than one label for several
TCP connections. In most of these cases, the first label was http, followed by a label related
to multimedia content, such as flash or mpeg. Although we did not include any of these
connections in the training data, more than 98% of those contained in the test data are
appropriately classified as http.

Now, we have a closer look at the traffic which was marked as unknown by OpenDPI. For
these connections, we can use the server port number as a weak indicator of the application.
As already mentioned, a large proportion of unknown connections is directed to port 10050
on one host. All of these connections are classified as rdp, which is Microsoft’s remote
desktop protocol. Almost all traffic to port 2703 (Razor) is classified as pop. In both cases,
there seems to be a strong similarity to the corresponding protocols although the signatures
of OpenDPI do not match.

Regarding unknown connections to well-known port numbers, the classification results
are often as expected. For example, most of the connections to port 143 are classified

Gerhard Münz, Stephan Heckmüller, Lothar Braun, and Georg Carle 11

as imap. About half of the connections to ports 25 and 110 are recognized as smtp and
pop, respectively. 59% of the connections to port 443 (intended for https) and 100% of
the connections to port 1352 (Lotus Notes) are classified as ssl. Although Lotus Notes
is likely to use SSL, OpenDPI did not label any of these connections as ssl. 3.3% of the
connections labelled unknown go to port 80. Interestingly, only 13% of them are classified as
http while 32% are considered as ssl and 12% remain unclassified. A probable explanation
for not finding any conformance with HTTP is that port 80 is used by other protocols and
applications.

4 Conclusion

In this paper, we presented and discussed a TCP traffic classification approach using ob-
servable Markov models. Departing from our previous work [7], we proposed the integration
of an additional state which further improves the classification accuracy. We tested and
evaluated the improved classifier under real-world conditions using TCP traffic captured
in the Munich Scientific Network. By means of cross-validation, we first evaluated various
parameterizations and proposed methods to systematically derive the interval boundaries
needed for quantizing payload lengths. Thereafter, we demonstrated that our approach is
able to classify a representative traffic mix into twelve application classes with very high
accuracy.

Our traffic classifier is based on Markov models which are intuitive and easy to under-
stand. As another advantage, the training and classification complexity is low. A time-
consuming task is the greedy search for appropriate payload length intervals. Future work
will show whether this task actually needs to be repeated for training data from different
networks or whether the traffic characteristics across networks are consistent enough to yield
good classification results using the same payload length intervals or even the same Markov
models.

Regarding the design of our classifier, we still see room for improvements, in particular
regarding the mapping of payload length to states. We currently use constant payload
length intervals for all packet positions. Instead, the best set of interval boundaries could
be determined separately for each packet position, which may lead to better classification
results. As a downside, this flexibility increases the complexity of finding appropriate values
for all boundaries.

Most kinds of unencrypted traffic can be correctly classified based on port numbers or
signatures. Nevertheless, it is useful to deploy our traffic classifier in parallel in order to
determine the most likely application for those connections which remain unclassified by
DPI. Apart from that, we are currently investigating the classification of encrypted traffic
with the goal to distinguish different applications running on top of SSL and TLS. For these
kinds of traffic, our Markov-based classifier possibly provides useful information while DPI
is only able to detect SSL or TLS records.

Acknowledgments

We gratefully acknowledge support from the German Research Foundation (DFG) funding
the LUPUS project in which this research work has been conducted.

12 Improving Markov-based TCP Traffic Classification

References
1 Hui Dai, Gerhard Münz, Lothar Braun, and Georg Carle. TCP-Verkehrsklassifizierung mit

Markov-Modellen. In Leistungs-, Zuverlässigkeits- und Verlässlichkeitsbewertung von Kom-
munikationsnetzen und Verteilten Systemen, 5. GI/ITG-Workshop MMBnet 2009, Ham-
burg, Germany, September 2009.

2 Alberto Dainotti, Walter de Donato, Antonio Pescapè, and Pierluigi Salvo Rossi. Classi-
fication of network traffic via packet-level hidden markov models. In Proc. of IEEE Global
Telecommunications Conference (GLOBECOM) 2008, New Orleans, LA, USA, November
2008.

3 Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification. John Wiley
& Sons, 2001.

4 Alice Este, Francesco Gringoli, and Luca Salgarelli. On the stability of the information
carried by traffic flow features at the packet level. Computer Communication Review,
39(3):13–18, 2009.

5 Juan M. Estevez-Tapiador, Pedro Garcia-Teodoro, and Jesus E. Diaz-Verdejo. Stochastic
protocol modeling for anomaly based network intrusion detection. In Proc. of IEEE Inter-
national Workshop on Information Assurance (IWIA) 2003, Darmstadt, Germany, March
2003.

6 Hyun-chul Kim, Kimberly Claffy, Marina Fomenkov, Dhiman Barman, Michalis Faloutsos,
and KiYoung Lee. Internet traffic classification demystified: Myths, caveats, and the best
practices. In Proc. of ACM International Conference on Emerging Networking Experiments
and Technologies (CoNEXT) 2008, Madrid, Spain, December 2008.

7 Gerhard Münz, Hui Dai, Lothar Braun, and Georg Carle. TCP traffic classification us-
ing Markov models. In Proc. of Traffic Monitoring and Analysis Workshop (TMA) 2010,
Zurich, Switzerland, April 2010.

8 Thuy T. T. Nguyen and Grenville Armitage. A survey of techniques for internet traffic clas-
sification using machine learning. IEEE Communications Surveys & Tutorials, 10(4):56–76,
2008.

9 OpenDPI Homepage. http://www.opendpi.org/, 2010.
10 Vern Paxson. Bro: A System for Detecting Network Intruders in Real-Time. Computer

Networks, 31(23-24):2435–2463, December 1999.
11 Vipul’s Razor Homepage. http://razor.sourceforge.net/, 2010.
12 Charles Wright, Fabian Monrose, and Gerald Masson. HMM profiles for network traffic

classification (extended abstract). In Proc. of Workshop on Visualization and Data Mining
for Computer Security (VizSEC/DMSEC) 2004, pages 9–15, Fairfax, VA, USA, October
2004.

	Introduction
	Markov-based TCP Traffic Classifier
	High-Level Description
	Considered Packet Attributes
	New ``end of connection'' State
	Model Estimation and Storage
	Classification

	Evaluation
	Training and Test Data
	Evaluation Metrics
	Parameterization Using Cross-Validation
	Classification of Test Data

	Conclusion
	Acknowledgment

