
TCP Traffic Classification Using Markov Models

Gerhard Münz1, Hui Dai2, Lothar Braun1, Georg Carle1

Network Architectures and Services – Institute for Informatics
Technische Universität München, Germany

1{muenz|braun|carle}@net.in.tum.de, 2dai@in.tum.de

Abstract. This paper presents a novel traffic classification approach
which classifies TCP connections with help of observable Markov mod-
els. As traffic properties, payload length, direction, and position of the
first packets of a TCP connection are considered. We evaluate the accu-
racy of the classification approach with help of packet traces captured in
a real network, achieving higher accuracies than the cluster-based classi-
fication approach of Bernaille [1]. As another advantage, the complexity
of the proposed Markov classifier is low for both training and classifica-
tion. Furthermore, the classification approach provides a certain level of
robustness against changed usage of applications.

1 Introduction

Network operators are interested in identifying the traffic of different applica-
tions in order to monitor and control the utilization of the available network
resources. Since the traffic of many new applications cannot be identified by
specific port numbers, deep packet inspection (DPI) is the current technology of
choice. However, DPI is very costly as it requires a lot of computational resources
as well as up-to-date signatures of all relevant applications. Furthermore, DPI
is limited to unencrypted traffic. Therefore, traffic classification using statistical
methods has become an important area of research.

In this paper, we present a novel classification approach which models transi-
tions between data packets using Markov models. While most existing Markov-
based traffic classification methods rely on hidden Markov models (HMMs), we
make use of observable Markov models where each state directly reflects certain
packet attributes, such as the payload length, the packet direction, and the po-
sition within the connection. Using training data, separate Markov models are
estimated for those applications which we want to identify and distinguish. The
classification of new connections is based on the method of maximum likelihood
which selects the application whose Markov model yields the highest a-posteriori
probability for the given packet sequence.

We restrict the evaluation of our approach to the classification of TCP traf-
fic. Based on traffic traces captured in our department network, we compare
the outcome of the Markov classifier with the results of Bernaille’s cluster-based
classification approach [1]. Furthermore, we show an example of changed appli-
cation usage and its effect on the classification accuracy. Last but not least, we
assess and discuss the complexity of the Markov classifier.

After giving an overview on existing Markov-based traffic classification ap-
proaches in Section 2, we explain our approach in Section 3. Section 4 presents
the evaluation results before Section 5 concludes this paper.

2 Related Work

In the recent past, various research groups have proposed the utilization of sta-
tistical methods for traffic classification. Common to these approaches is that
application specific traffic characteristics are learned from training data. Typi-
cally, the considered properties are statistics derived from entire flows or con-
nections, or attributes of individual packets. Examples for these two kinds of
properties are the average packet length and the length of the first packet of a
connection, respectively. Nguyen and Armitage provide a comparison of various
existing approaches in a survey paper [2]. In the following, we give an overview
on existing traffic classification approaches which make use of Markov models.

Wright et al. [3] and Dainotti et al. [4] estimate a separate HMM for each
application considering packet lengths and inter-arrival times. In an HMM, the
output of a state is not deterministic but randomly distributed according to the
emission probability distribution of the state. While the state output is observ-
able, transitions between states are hidden. Readers looking for a comprehensive
introduction to HMMs are referred to Rabiner’s tutorial [5]. Wright [3] considers
TCP connections and deploys left-right HMMs with a large number of states
and discrete emission probability distributions. In contrast, Dainotti [4] gener-
ates ergodic HMMs with four to seven states and Gamma-distributed emission
probabilities for unidirectional TCP and UDP traffic from clients to servers;
packets without payload are ignored. In both cases, traffic classification assigns
new connections to the application whose HMM yields the maximum likelihood.

Our approach is motivated by Estevez-Tapiador et al. who use observable
ergodic Markov models for detecting anomalies in TCP connections [6]. In an
observable Markov model, each state emits a different symbol, which allows de-
ducing the state transitions from a series of observations directly. In the case
of Estevez-Tapiador et al., the Markov model generates the sequence of TCP
flag combinations observed in those packets of a TCP connection which are sent
from the client to the server. Hence, every state represents a specific combina-
tion of TCP flags, every transition the arrival of a new packet in the same TCP
connection. The transition matrix is estimated using training data which is free
of anomalies. During the detection phase, anomalies are then detected by cal-
culating the a-posteriori probability and comparing it with a lower threshold.
Estevez-Tapiador et al. use separate Markov models for different applications
which are distinguished by their well-known port numbers.

We adopt and extend the modeling approach of Estevez-Tapiador for clas-
sifying TCP connections. The training phase is identical: we estimate distinct
Markov models for the different applications using training data. In the classifi-
cation phase, however, we calculate the a-posteriori probabilities of an observed
connection for all Markov models. Thereafter, the connection is assigned to the

application for which the Markov model yields the maximum a-posteriori prob-
ability. In contrast to Estevez-Tapiador, we consider both directions of the TCP
connection and take payload lengths instead of TCP flag combinations into ac-
count.

In prior work [7], we achieved good classification results with states reflecting
the payload length and PUSH flag of each packet. However, the deployed Markov
models did not consider the position of each packet within the connection al-
though the packet position strongly influences the payload length distribution
and the occurrence probability of the PUSH flag. In this paper, we present a
new variant of the Markov classifier which is based on left-right Markov mod-
els instead of ergodic Markov Models. Hence, we are able to incorporate the
dependency of transition probabilities on the packet’s position within the TCP
connection. The next section explains this approach in more detail.

3 TCP Traffic Classification Using Markov Models

Just like other statistical traffic classification approaches, we assume that the
communication behavior of an application influences the resulting traffic. Hence,
by observing characteristic traffic properties, it should be possible to distinguish
applications with different behaviors. One such characteristic property is the
sequence of packet lengths observed within a flow or connection, which serves as
input to many existing traffic classification methods [1, 3, 4].

We use observable Markov models to describe the dependencies between sub-
sequent packets of a TCP connection. The considered packet attributes are pay-
load lengths (equaling the TCP segment size), packet direction, and packet po-
sition within the connection. Considering the TCP payload length instead of the
IP packet length has the advantage that the value is independent of any IP and
TCP options. Similar to several existing approaches (e.g., [1, 4]), we only take
into account packets carrying payload. We call these packets “data packets” in
the following. The reason for ignoring empty packets is that these are either part
of the three-way handshake, which is common to all TCP connections, or they
represent acknowledgments. In both cases, the packet transmission is mainly
controlled by the transport layer and not by the application. The packet direc-
tion denotes whether the packet is sent from the client to the server or vice versa.
As client, we always consider the host which initiates a TCP connection.

In contrast to our previous work [7], we do not consider any TCP flags
although the occurrence of the PUSH flag may be influenced by how the appli-
cation passes data to the transport layer. However, an experimental evaluation
and comparison of TCP implementations showed that the usage of the PUSH
flag varies a lot between different operating systems. Hence, slight improvements
of the classification results which can be achieved by considering the PUSH flag
might not be reproducible if other operating systems are deployed. As another
difference to our previous work, we take into account the packet position within
the TCP connection. This leads to better models since the probability distribu-
tion of payload length and direction typically depends on the packet position,

especially in the case of the first packets of the connection. Moreover, the clas-
sification accuracy can be increased because payload length and direction at
specific packet positions are often very characteristic for an application. For ex-
ample, the majority of HTTP connections start with a small request packet sent
from the client to the server, followed by a longer series of long packets from the
server to the client. In Section 4.1, we empirically confirm these assumptions by
looking at TCP connections of different applications.

In general, a Markov model consists of n distinct states Σ = {σ1, . . . , σn},
a vector of initial state probabilities Π = (π1, . . . , πn), and an n × n transition
matrix A = {aσi,σj

}. In our case, each state represents a distinct combination
of payload length, packet direction, and packet position within the TCP con-
nection. The initial state reflects the properties of the first packet within the
TCP connection. A transition from one state to the next state corresponds to
the arrival of a new packet. The next state then describes the properties of the
new packet.

To obtain a reasonably small number of states, the payload lengths are dis-
cretized into a few intervals. We evaluated different interval definitions and found
that good classification results can be obtained with a rather small number of
intervals. The evaluation results presented in Section 4 are based on the fol-
lowing four intervals: [1,99], [100,299], [300, MSS-1], [MSS]. The value of the
maximum sequence size (MSS) is often exchanged in a TCP option during the
TCP three-way handshake. Alternatively, MSS can be deduced from the maxi-
mum observed payload length unless the connection does not contain any packet
of maximum payload length. A fallback option is to set MSS to a reasonable de-
fault value. Another measure to keep the number of states small is to limit the
Markov model to a maximum of l data packets per TCP connection. Hence, if
a connection contains more than l data packets, we only consider the first l of
them. In order to find a good value for l, we evaluated different settings and
show the classification results for l = 3, . . . , 7 in Section 4.

The initial state and transition probabilities are estimated from training data
using the following equations:

πσi
=

F0(σi)
∑n

m=1 F0(σm)
; aσi,σj

=
F (σi, σj)

∑n

m=1 F (σi, σm)
(1)

F0(σi) is the number of initial packets matching the state σi. F (σi, σj) is the
frequency of transitions from packets described by state σi to packets described
by state σj . Since the packet position is reflected in the state definitions, we
obtain a left-right Markov model with l stages corresponding to the l first data
packets in the TCP connection. In our case, every stage comprises eight states
representing four payload length intervals and two directions. An example of
such a Markov model with l = 4 stages is given in Figure 1. L = 1, . . . , 4 denote
the different payload length intervals, C ⇒ S and S ⇒ C the two directions
from client to server and server to client.

Only transitions from one stage to the next (left to right) may occur, which
means that at most 82(l − 1) out of (8l)2 transition matrix elements are non-
zero. Apart from the packet position, the states within each of the stages describe

Fig. 1. Left-right Markov model

the same set of packet properties. Therefore, we may alternatively interpret the
model as a Markov model with eight states and a time-variant 8 × 8 transition
matrix At, t = 1, . . . , (l − 1). This interpretation enables a much more memory
efficient storage of the transition probabilities than one large 8l × 8l matrix.

For every application k, we determine a separate Markov model M (k). For
this purpose, the training data must be labeled, which means that every con-
nection must be assigned to one of the applications. In order to obtain reliable
estimates of the initial and transition probabilities, the training data must con-
tain a sufficiently large number of TCP connections for each application. On
the other hand, it is not necessary that all connections contain at least l data
packets since the estimation does not require a constant number of observations
for every transition. Instead of individual applications, we may also use a single
Markov model for a whole class of applications. This approach is useful if mul-
tiple applications are expected to show a similar communication behavior, for
example because they use the same protocol.

Figure 2 illustrates how the resulting Markov models are used to classify
new TCP connections. Given the first l packets of a TCP connection O =
{o1, o2, . . . , ol}, the log-likelihood for this observation is calculated for all Markov

models M (k) with Π(k) = (π
(k)
1 , . . . , π

(k)
n) and A(k) = {a

(k)
σi,σj} using the following

equation:

log Pr
(

O|M (k)
)

= log

(

π(k)
o1

l−1
∏

i=1

a(k)
oi,oi+1

)

= log π(k)
o1

+

l−1
∑

i=1

log a(k)
oi,oi+1

(2)

Fig. 2. Traffic classification using Markov models

The maximum likelihood classifier then selects the application for which the log-
likelihood is the largest. If a connection contains less than l data packets, the
log-likelihood is calculated for the available number of transitions only.

It is possible that a TCP connection to be classified contains an initial state

for which π
(k)
o1

= 0, or a transition for which a
(k)
oi,oi+1

= 0. This means that such
an initial state or transition has not been observed in the training data. Thus,
the connection does not fit to the corresponding Markov model. Furthermore,
if an unknown initial state or transition occurs in every model, the connection
cannot be assigned to any application. This approach, however, may lead to
unwanted disqualifications if the training data does not cover all possible traffic,
including very rare transitions.

As the completeness of the training data usually cannot be guaranteed, we
tolerate a certain amount of non-conformance but punish it with a very low like-

lihood. For this purpose, we replace all π
(k)
σi = 0 and all a

(k)
σi,σj = 0 by a positive

value ǫ which is much smaller than any of the estimated non-zero probabilities.

Then, we reduce the remaining probabilities to ensure
∑

i π
(k)
σi =

∑

j a
(k)
σi,σj = 1.

In the evaluation in Section 4, we use ǫ = 10−5 = 0.001%, which is very small
compared to the smallest possible estimated probability of 1

300 = 0.33% (300 is
the number of connections per application in the training data).

Despite of the uncertainty regarding the completeness of the training data, we
want to limit the number of tolerated ǫ-states and ǫ-transitions per connection.
This is achieved by setting a lower threshold of 3 log ǫ for the log-likelihood, which
corresponds to three unknown transitions, or an unknown initial state plus two
unknown transitions. Connections with a log-likelihood below this threshold are
considered unclassifiable.

4 Evaluation

4.1 Training and Test Data

We evaluated the presented traffic classification approach using TCP traffic
traces captured in our department network. The traces comprise four classi-
cal client-server applications (HTTP, IMAP, SMTP, and SSH) and three peer-
to-peer (P2P) applications (eDonkey, BitTorrent, and Gnutella). An accurate
assignment of each TCP connection to one of the applications is possible as the
HTTP, IMAP, SMTP, and SSH traffic involved our own servers. The P2P traffic,
on the other hand, originated or terminated at hosts on which we had installed
the corresponding peer-to-peer software; no other network service was running.

The training data consists of 300 TCP connections of each application. The
evaluation of the classification approach is based on test data containing 500 con-
nections for each application. In order to enable a comparison with the cluster-
based classification approach by Bernaille [1], we only consider connections with
at least four data packets. In principle, our approach also works for connections
with a smaller number of data packets, yet the classification accuracy is likely
to decreases in this case.

Using boxplots, Figure 3 illustrates the payload length distribution of the first
seven data packets in the TCP connections contained in the training data. The
packet direction is encoded in the sign: payload lengths of packets sent by the
server are accounted with a negative sign. In addition to the seven applications
used for classification, there is another boxplot for HTTP connections carrying
Adobe Flash video content which will be discussed later in Section 4.5. The
upper and lower end of the boxes correspond to the 25% and 75% quantiles, the
horizontal lines in the boxes indicate the medians. The length of the whiskers is
1.5 times the distance between 25% and 75% quantile. Crosses mark outliers.

As can be seen, two groups of protocols can be distinguished by looking at
the first data packet. In the case of SMTP and SSH, the server sends the first
data packet, in all other cases, it is the client. Protocols, such as IMAP or SMTP,
which specify a dialog in which client and server negotiate certain parameters,
are characterized by alternating packet directions. In contrast, the majority of
the HTTP connections follow a simple scheme of one short client request followed
by a series of large packets returned by the server.

4.2 Evaluation Metrics

As evaluation metrics, we calculate recall and precision for every application k:

recallk =
number of connections correctly classified as application k

number of connections of application k in the test data

precisionk =
number of connections correctly classified as application k

total number of connections classified as application k

These two metrics are frequently used for evaluating statistical classifiers. A
perfect classifier achieves 100% recall and precision for all applications. Recall is

1 2 3 4 5 6 7
−1500

−1000

−500

0

500

1000

1500
p
a
yl

o
a
d
 le

n
g
th

HTTP

data packet
1 2 3 4 5 6 7

−1500

−1000

−500

0

500

1000

1500

p
a
yl

o
a
d
 le

n
g
th

IMAP

data packet

1 2 3 4 5 6 7
−1500

−1000

−500

0

500

1000

1500

p
a
yl

o
a
d
 le

n
g
th

SMTP

data packet
1 2 3 4 5 6 7

−1500

−1000

−500

0

500

1000

1500

p
a
yl

o
a
d
 le

n
g
th

SSH

data packet

1 2 3 4 5 6 7
−1500

−1000

−500

0

500

1000

1500

p
a
yl

o
a
d
 le

n
g
th

eDonkey

data packet
1 2 3 4 5 6 7

−1500

−1000

−500

0

500

1000

1500

p
a
yl

o
a
d
 le

n
g
th

BitTorrent

data packet

1 2 3 4 5 6 7
−1500

−1000

−500

0

500

1000

1500

p
a
yl

o
a
d
 le

n
g
th

Gnutella

data packet
1 2 3 4 5 6 7

−1500

−1000

−500

0

500

1000

1500

p
a
yl

o
a
d
 le

n
g
th

Flash video over HTTP

data packet

Fig. 3. Payload lengths of first data packets

Table 1. Classification results of Markov classifier

3 stages 4 stages 5 stages
Recall Prec. Uncl. Recall Prec. Uncl. Recall Prec. Uncl.

HTTP 96.00% 97.17% 0.00% 98.80% 95.92% 0.00% 97.20% 97.59% 0.00%
IMAP 94.60% 75.20% 0.00% 94.80% 97.33% 0.00% 95.00% 97.94% 0.20%
SMTP 99.60% 94.86% 0.00% 99.80% 95.23% 0.00% 99.80% 95.23% 0.00%
SSH 99.00% 99.80% 0.00% 99.20% 99.60% 0.00% 99.20% 99.80% 0.20%
eDonkey 55.00% 99.28% 0.00% 87.20% 99.09% 0.00% 89.00% 99.55% 0.00%
BitTorrent 98.80% 86.67% 0.00% 98.80% 89.98% 0.00% 99.40% 91.03% 0.00%
Gnutella 97.20% 95.48% 0.00% 95.40% 97.95% 0.00% 97.20% 97.01% 0.00%

Average 91.46% 92.64% 0.00% 96.29% 96.44% 0.00% 96.69% 96.88% 0.06%

6 stages 7 stages
Recall Prec. Uncl. Recall Prec. Uncl.

HTTP 97.20% 97.79% 0.20% 97.20% 98.38% 0.20%
IMAP 94.80% 99.79% 0.40% 94.80% 99.79% 0.40%
SMTP 99.60% 95.40% 0.20% 99.60% 95.40% 0.20%
SSH 99.40% 99.40% 0.20% 99.40% 100% 0.40%
eDonkey 93.80% 99.79% 0.00% 97.40% 99.19% 0.00%
BitTorrent 98.40% 93.18% 0.20% 98.40% 96.85% 0.20%
Gnutella 96.60% 96.60% 0.40% 96.80% 96.61% 1.00%
Average 97.11% 97.42% 0.23% 97.66% 98.03% 0.34%

independent of the traffic composition, which means that it does not matter how
many connections of the test data belong to application k. In contrast, precision
depends on the traffic composition in the test data since the denominator usually
increases for larger numbers of connections not belonging to application k. Using
test data which contains an equal number of connections for every application,
we ensure that the calculated precision values are unbiased.

In order to compare different classifiers with a single value, we calculate the
overall accuracy, which is usually defined as the number of correctly classified
connections divided by the total number of connections in the test data. Since
the number of connections per application is constant in our case, the overall ac-
curacy is identical to the average recall. Note that the accuracy values mentioned
in this document cannot be directly compared to accuracies mentioned in many
related publications which are usually based the unbalanced traffic compositions
observed in real networks.

4.3 Classification Results

Table 1 shows the classification results for different numbers of stages l. In addi-
tion to recall and precision, the table indicates the percentage of unclassifiable
connections for every application. These connections could not be assigned to
any application because the maximum log-likelihood is smaller than the lower

threshold 3 log 10−5 = −15. As explained in Section 3, we apply this threshold
to sort out connections which differ very much from all Markov models.

As can be seen in the table, the recall values of most applications increase
or do not change much if the Markov models contain more stages, which means
that more transitions between data packets are considered. Stage l = 4 is an
exception because HTTP reaches a much higher and Gnutella a much lower
recall value than for the other setups. We inspected this special case and saw
that 11 to 13 Gnutella connections are usually misclassified as HTTP traffic
and vice versa. If the Markov models contain four stages, however, 21 Gnutella
connections are misclassified as HTTP, and only four HTTP connections are
misclassified as Gnutella, which leads to unusual recall (and precision) values.

Except for Markov models with seven stages, eDonkey is the application
with the largest number of misclassified connections. In fact, a large number
of eDonkey connections are misclassified as BitTorrent and IMAP traffic. For
example, in the case of four stages, 53 eDonkey connections are assigned to
BitTorrent, another 11 eDonkey connections to IMAP. These numbers decrease
with larger numbers of stages. The example of eDonkey nicely illustrates the
relationship between a low recall value for one application and low precision
values for other applications: low recall values of eDonkey coincide with low
precision values of BitTorrent and IMAP. The recall value of IMAP stays below
95% because 24 IMAP connections are classified as SMTP in all setups.

The precision values show little variation and increase gradually with larger
numbers of stages. Finally, the number of unclassifiable connections increases
for larger numbers of stages. The reason is that more transitions are evaluated,
which also increases the probability of transitions which did not appear in the
training data. Although we account unknown initial states and transitions with
ǫ-probability, connections with three or more of these probabilities are sorted out
by the given threshold. Obviously, the number of unclassifiable connections could
be reduced by tolerating a larger number of unknown transitions. Alternatively,
we could increase the number of connections in the training data in order to
cover a larger number of rare transitions.

The average recall, which is equal to the overall accuracy, jumps from 91.46%
to 96.29% when the number of stages is increased from three to four. At the same
time, the average precision increases from 92.64% to 96.44%. Thereafter, both
averages increase gradually with every additional stage. Hence, at least four data
packets should be considered in the Markov models to obtain good results.

4.4 Comparison with Bernaille’s Approach

Bernaille [1] proposed a traffic classification method which uses clustering al-
gorithms to find connections with similar payload lengths and directions in the
first data packets. The Matlab code of this method can be downloaded from a
website [8]. Bernailles’s approach requires that all connections in the test and
training data have at least as many data packets as analyzed by the classifica-
tion method. Furthermore, the results of his work show that best results can
be achieved with three or four data packets. As mentioned in Section 4.1, we

Table 2. Classification results of Bernaille’s classifier

3 data packets,
27 clusters

4 data packets,
34 clusters

3 data packets,
28 clusters

3 data packets,
29 clusters

Recall Prec. Recall Prec. Recall Prec. Recall Prec.

HTTP 88.60% 96.30% 99.60% 86.16% 88.00% 94.62% 90.20% 95.35%
IMAP 91.00% 96.19% 93.20% 99.79% 92.60% 83.88% 87.80% 90.89%
SMTP 98.80% 95.18% 97.40% 95.49% 90.20% 100% 98.80% 95.37%
SSH 97.20% 98.98% 95.40% 99.58% 97.40% 100% 97.80% 98.79%
eDonkey 95.80% 87.09% 98.80% 98.80% 91.00% 92.11% 100% 89.61%
BitTorrent 88.80% 100% 93.60% 100% 96.80% 95.09% 97.20% 100%
Gnutella 96.40% 85.61% 92.00% 92.37% 96.20% 88.75% 95.20% 97.74%

Average 93.80% 94.19% 95.71% 96.03% 93.17% 93.49% 95.29% 95.39%

prepared our datasets for a comparison with Bernaille by including connections
with at least four data packets only.

The learning phase of Bernaille’s classifier is nondeterministic and depends
on random initialization of the cluster centroids. Furthermore, the number of
clusters as well as the number of data packets needs to be given as input pa-
rameters to the training algorithm. The documentation of Bernaille’s Matlab
code recommends 30 to 40 clusters and three to four data packets as a good
start point. At the end of the clustering, the algorithm automatically removes
clusters which are assigned less then three connections of the training data. A
calibration method performs the training of the classifier with different numbers
of clusters and data packets and returns the model which achieves the highest
classification accuracy with respect to the training data.

As recommended by Bernaille, we ran the calibration method to cluster the
connections in the training data with 30, 35, and 40 initial cluster centroids
and three and four data packets. The best classifier was then used to classify
the test data by assigning each of the connections to the nearest cluster. Further
improvements, which Bernaille achieved by considering port numbers in addition
to cluster assignments [1], were not considered since our approach does not
evaluate port numbers either.

Table 2 shows the classification results for four different runs of the calibration
method. As can be seen, the average recall and precision values do not reach the
same level as the Markov classifier. A possible explanation is that Bernaille’s
approach does not consider any correlation between subsequent packets. The
classification results vary a lot between different runs of the calibration method.
Interestingly, we obtain very different results in the third and forth run although
both classifiers use three data packets and a very similar number of clusters. The
range of the recall values obtained for an individual application can be very wide.
The most extreme example is HTTP with recall values ranging from 88.6% to
99.6%. In general, we observed that the classification results depend very much
on the initialization values of the cluster centroids and not so much on the
remaining parameters, such as the number of clusters and data packets.

Table 3. Classification of Flash over HTTP traffic

tolerant classifier intolerant classifier
HTTP Gnutella Uncl. HTTP Gnutella Uncl.

4 stages 68.0% 17.4% 14.6% 60.0% 11.0% 29.0%
5 stages 63.8% 16.6% 19.6% 44.6% 14.4% 41.0%
6 stages 60.8% 17.0% 22.2% 43.8% 11.6% 44.6%
7 stages 61.2% 16.0% 22.8% 39.6% 11.6% 48.8%

In contrast to Bernaille’s approach, the training of the Markov classifier al-
ways yields deterministic models which do not depend on any random initializa-
tion. Hence, we do not need to run the training method several times, which is
an advantage regarding the practical deployment.

4.5 Change of Application Usage

HTTP has become a universal protocol for various kinds of data transports.
Many websites now include multimedia contents, such as animated pictures or
videos. There are many sites delivering such contents, with www.youtube.com be-
ing one of the most popular. A large proportion of these embedded multimedia
contents are based on Adobe Flash. Flash typically transfers data in stream-
ing mode, which means that after a short prefetching delay the user can start
watching the video without having to wait until the download is finished.

In order to assess how our classification approach behaves if the usage of an
application changes, we applied the classifier to 500 HTTP connections carrying
Flash video content. These connections were captured in our university network
and identified by the HTTP content type “video/x-flv”. The boxplots at the
bottom right of Figure 3 show the payload length distribution. Compared to the
previously analyzed HTTP connections, which did not include any Flash video
downloads, the variance in the first four packets is much larger. The request
packets sent from the client to the server tend to contain more payload than in
the case of other HTTP traffic whereas the second and third packets are often
smaller.

Traffic classification should be robust against such changes of application
usage. In the optimal case, the classifier still classifies the corresponding connec-
tions correctly as HTTP traffic. Apart from that, it is also acceptable to label
the connections as unclassifiable. On the other hand, the connections should not
be assigned to wrong applications.

Table 3 shows how the HTTP connections containing Flash video content are
classified in dependence of the number of stages in the Markov models. Apart
from tolerant classification with ǫ = 10−5 and log-likelihood threshold −15, we
tested an intolerant classifier which disqualifies all connections with unknown
initial state or transition. The tolerant classifier assigns 60% of the connections
to HTTP and around 17% to Gnutella. Hence again, similarities between HTTP
and Gnutella traffic cause a certain number of misclassified connections. The

remaining connections remain unclassified because the maximum log-likelihood
is smaller than 3 log 10−5. With the intolerant classifier, twice as many connec-
tions remain unclassified, mainly account of connections previously assigned to
HTTP. This shows that tolerance of non-conforming connections increases the
robustness of the classifier against usage changes.

Although the tolerant classifier still classifies most of the connections as
HTTP traffic, the classification accuracy is degraded. To solve this problem,
it suffices to re-estimate the Markov model of HTTP with training data cover-
ing the new kind of HTTP traffic. Alternatively, we can add a Markov model
which explicitly models Flash over HTTP.

4.6 Complexity

The estimation of initial state and transition probabilities using equations (1)
requires counting the frequency of initial packet properties and transitions. If
the training data contains C connections of an application, estimating the pa-
rameters of the corresponding Markov model with l stages requires at most C · l
counter increments plus 7 + 56(l − 1) additions and 8l divisions.

In order to classify a connection, the log-likelihood needs to be calculated
for every Markov model using equation (2). This calculation requires (N − 1)
additions, N being the number of analyzed data packets in the connection. The
number of stages l is an upper bound for N . The maximum log-likelihood of
all Markov models needs to be determined and checked against the given lower
threshold. Hence, for K different applications, we have at most K(l−1) additions
and K comparisons.

Other statistical traffic classification approaches typically require more com-
plex calculations. This is particularily true for HMMs where emission proba-
bilities have to be considered in addition to transition probabilities. Regarding
Bernaille’s approach, the clustering algorithm determines the assignment proba-
bility of every connection in the training data to every cluster. After recalculating
the cluster centroids, the procedure is repeated in another iteration. Just one
of these iterations is more complex than estimating the Markov models. The
classification of a connection requires calculating the assignment probabilities
for every cluster. If Gaussian mixture models (GMMs) are used as in Bernaille’s
Matlab code, the probabilities are determined under the assumption of multi-
variate normal distributions, which is more costly than calculating the Markov
likelihoods.

5 Conclusion

We presented a novel traffic classification approach based on observable Markov
models and evaluated the classification accuracy with help of TCP traffic traces
of different applications. The results show that our approach yields slightly better
results than Bernaille’s cluster-based classification method [1]. Furthermore, it
provides a certain level of robustness with respect to the changed usage of an

application. After all, the complexity of our approach is low compared to other
statistical traffic classification methods.

The classification accuracy depends on the number of stages per Markov
model, which corresponds to the maximum number of data packets considered
per TCP connection. Based on our evaluation, we recommend Markov models
with at least four stages, corresponding to 32 states. Every additional stage
gradually improves the accuracy. As an important property, connections whose
number of data packets is smaller than the number of stages can still be classified.
Hence, the only drawback of maintaining more stages is that more transition
probabilities need to be estimated, saved, and evaluated per application.

In order to better assess the performance of our classification approach, we
intend to apply it to other traffic traces captured in different networks. Beyond
that, it will be interesting to consider additional applications since the set of
applications regarded in our evaluation is very limited, of course. Finally, we
think of extending the approach to the classification of UDP traffic, which is
mainly used for real-time applications.

Acknowledgments

We gratefully acknowledge support from the German Research Foundation (DFG)
funding the LUPUS project in which this research work as been conducted.

References

1. Bernaille, L., Teixeira, R., Salamatian, K.: Early application identification. In:
Proc. of ACM International Conference on Emerging Networking Experiments and
Technologies (CoNEXT) 2006, Lisboa, Portugal (2006)

2. Nguyen, T.T.T., Armitage, G.: A survey of techniques for internet traffic classifica-
tion using machine learning. IEEE Communications Surveys & Tutorials 10 (2008)
56–76

3. Wright, C., Monrose, F., Masson, G.: HMM profiles for network traffic classification
(extended abstract). In: Proc. of Workshop on Visualization and Data Mining for
Computer Security (VizSEC/DMSEC), Fairfax, VA, USA (2004) 9–15

4. Dainotti, A., de Donato, W., Pescapè, A., Rossi, P.S.: Classification of network
traffic via packet-level hidden markov models. In: Proc. of IEEE Global Telecom-
munications Conference (GLOBECOM) 2008, New Orleans, LA, USA (2008)

5. Rabiner, L.R.: A tutorial on hidden markov models and selected applications in
speech recognition. Proceedings of IEEE 77 (1989) 257–286

6. Estevez-Tapiador, J.M., Garcia-Teodoro, P., Diaz-Verdejo, J.E.: Stochastic proto-
col modeling for anomaly based network intrusion detection. In: Proc. of IEEE
International Workshop on Information Assurance (IWIA). (2003)

7. Dai, H., Münz, G., Braun, L., Carle, G.: TCP-Verkehrsklassifizierung mit Markov-
Modellen. In: Leistungs-, Zuverlässigkeits- und Verlässlichkeitsbewertung von Kom-
munikationsnetzen und Verteilten Systemen, 5. GI/ITG-Workshop MMBnet 2009,
Hamburg, Germany (2009)

8. Bernaille, L.: Homepage of early application identification. http://www-rp.lip6.

fr/~teixeira/bernaill/earlyclassif.html (2009)

