
Distributed Network Analysis Using TOPAS and
Wireshark

Gerhard Münz, Georg Carle
Computer Networks and Internet

Wilhelm Schickard Institute for Computer Science, University of Tuebingen, Germany
Email: {muenz|carle}@informatik.uni-tuebingen.de

Abstract—Distributed network analysis deals with the inspec-
tion of traffic observed at various locations in the network.
The conventional approach is to deploy a full-fledged network
analyzer at every observation point, which allows exhaustive
examinations, but at the same time is a very costly solution.
In this paper, we present an alternative approach using packet
data exported by PSAMP and Flexible Netflow devices, such
as routers, switches, and monitoring probes. Exported packet
records are received by the real-time network analysis framework
TOPAS and examined by the open-source network analyzer
Wireshark. Monitoring devices are configured with a Monitor
Manager in order to export only data needed to achieve the
analysis goal. Apart from an architectural description, this paper
contains the results of experimental performance evaluations and
a discussion on the advantages and limitations of our approach.

I. INTRODUCTION

Network monitoring is an important means for network
administrators for supervision and fault diagnosis. In some
cases, simple traffic statistics are insufficient, and deep packet
inspection is necessary to trace and understand a certain
occurrence or behavior. Network monitoring and analysis on
packet level is also deployed by protocol and system engineers
in order to test and debug new protocol implementations.

Wireshark [1], formely known as Ethereal is probably the
most popular open-source network analyzer tool. Since the
project was started by Gerald Combs in 1998, more than 500
authors have contributed their own pieces of code extending
Wireshark’s packet and protocol inspection capabilities. For
real-time packet capturing, Wireshark makes use of the pcap
library (libpcap) [2]. The analysis functions comprise stream
reassembly, decoding and dissection of hundreds of protocols,
as well as collecting traffic and protocol statistics.

When used for real-time traffic analysis, Wireshark suffers
from the limitation that it has to run on the same machine
that also performs the packet capturing to supply the data
via the libpcap interface. For example, Wireshark can be
deployed on a machine that is connected to the monitoring
port of a switch or router, yet this configuration requires
physical access and proximity to the observation point. On
the other hand, Wireshark cannot be used to analyze traffic
at remote observation points without any technical gimmicks,
such as traffic redirection or the experimental remote capture
functionality of WinPcap [3].

In this paper, we present a solution to this problem based
on the real-time Traffic flOw and Packet Analysis System

(TOPAS) [4]. TOPAS integrates a collector which receives
monitoring data exported by routers, switches and monitoring
probes using Cisco Netflow [5], IPFIX (IP Flow Information
eXport) [6] or PSAMP (Packet SAMPling) [7] protocol.
Furthermore, TOPAS provides a framework for modules that
process and analyze the received monitoring data in real-time.
In order to provide an interface to Wireshark, we implemented
a module which transforms packet data received from PSAMP
and Flexible Netflow [8] exporters into a stream of frames in
pcap format. Wireshark is able to read this pcap stream from
a Unix pipe and to perform continuous packet inspection and
protocol analysis just as if the program was running directly
at the observation point.

Capturing and exporting per-packet information cause a
significant processing load at the monitoring devices. Also,
the resulting amount of packet data must not exceed possible
bandwidth limitations on the path to the collector. Appropriate
filters can be installed at the monitoring devices to export
no more than the data actually needed for the analysis. For
this purpose, we developed a Monitor Manager offering a
comfortable user interface for creating, editing and deploying
configuration data and applying it to the remote monitoring
devices using the Netconf protocol [9].

In the next section, we start with a brief overview on the
state of the art in distributed network monitoring. Section III
gives an introduction to PSAMP and Flexible Netflow and
describes the architecture and implementation of TOPAS, the
pcap writer module, and the Monitor Manager. Section IV
presents the results of our performance evaluation, before we
discuss benefits and limitations of our concept in Section V.
Section VI concludes this paper.

II. STATE OF THE ART

For the examination of local problems in a small network,
monitoring at a single observation point may be sufficient.
In these cases, we can use a network analyzer, such as a
machine running Wireshark, which is directly connected to the
network segment or the monitoring port of a switch or router.
In larger networks, it is often necessary to perform simulta-
neous monitoring at multiple observation points. Therefore,
distributed network analysis solutions have been developed,
consisting of multiple distributed network analyzers that send
their analysis results to a centralized management consol.
Examples for high-end commercial products are ClearSight



Distributed [10] and WildPackets OmniAnalysis Platform [11].
These systems are very powerful with respect to the offered
analysis capabilities, but they are very costly as well since
a full-fledged network analyzer has to be deployed at every
observation point.

The Remote Network Monitoring (RMON) Management
Information Base (MIB) [12] enables distributed network
analysis using monitoring devices of different manufacturers
in a standardized way. Switches and routers supporting RMON
generate traffic statistics that can be queried using SNMP
(Simple Network Management Protocol). Fully instrumented
RMON devices are able to capture packets matching a given
filter as well. A remote analyzer can access the corresponding
packet data from a MIB group and use it for deep packet
inspection or protocol dissection. Thus, distributed network
analysis is possible at reasonable costs thanks to the separation
of monitoring and analysis. However, RMON is not adapted
for real-time network analysis because of the restricted real-
time capabilities of SNMP.

In contrast to these state of the art methods, our approach
is based on the novel packet monitoring capabilities offered
by PSAMP and Flexible Netflow which are introduced in the
next section.

III. ANALYZING PACKET RECORDS WITH WIRESHARK

In this section, we give a brief introduction to PSAMP
and Flexible Netflow before presenting the architecture and
implementation of our distributed network analysis system.

A. PSAMP and Flexible Netflow

The PSAMP working group at the IETF has been de-
veloping techniques for selecting individual packets at an
observation point and exporting packet data to a remote
analyzer [13]. Several filters and sampling mechanisms have
been standardized [14] enabling deterministic as well as prob-
abilistic packet selections. For targeted packet inspection or
protocol dissection, packet filters based on packet header fields
can be applied, for example in the case that only packets
directed to a specific destination or with a specific port number
are of interest.

PSAMP [7] makes use of the IPFIX protocol [6] to export
packet records including header and payload information of
the selected packets. Similar to flow records, a packet record
contains a time stamp that indicates when the packet was
observed, and a set of packet header fields. In addition, a
packet record may include continuous sections of packet data
of variable length, e.g. the first 100 octets of IP payload or
even the entire packet. As the record structure can be defined
in a flexible way using templates, it is possible to only export
those parts of a packet which are needed for the analysis.

Depending on the transport protocol (UDP, TCP, or SCTP),
TLS (Transport Layer Security) [15] or DTLS (Datagram
Transport Layer Security) [16] can be deployed to authenticate
and encrypt the exported packet data. This is an important
property since it prevents data manipulation and eavesdropping

Fig. 1. TOPAS framework and Wireshark

between the exporter and the analyzer, and enables secure
transport of packet data through an untrusted network.

The newest version of Cisco Netflow, called Flexible Net-
flow [8], implements some of the PSAMP concepts and
enables the export of packet records. At the moment, Flexible
Netflow only supports a limited number of packet selection
options and deploys Netflow.v9 [5] instead of IPFIX protocol
for exporting packet records. However, we expect that Cisco
will support IPFIX and PSAMP specifications as soon as the
standardization has been finished.

B. Running Wireshark in the TOPAS Framework

TOPAS [4] was originally developed in the European project
Diadem Firewall [17] where it has been deployed for real-
time attack and anomaly detection based on flow records. To
do so, a collecting process is receiving monitoring data from
IPFIX and Netflow.v9 exporters and passing it to one or more
detection modules which perform different kinds of attack and
anomaly detection algorithms.

In order to run Wireshark within TOPAS, we extended the
collector to receive and process packet data. As mentioned,
PSAMP and Flexible Netflow use the IPFIX and Netflow.v9
protocols respectively, thus no changes had to be made to
the protocol stack. Yet, we developed a pcap writer module
for TOPAS that transforms packet records into frames in
pcap format [2]. The module prepends a layer 2 header, as
layer 2 information is usually not included in the exported
data, as well as the mandatory pcap header which contains the
observation time stamp from the packet record. The assembled
pcap frame is then passed to Wireshark through a Unix pipe.
Figure 1 illustrates the architecture of the system.

Processing the pcap stream from the pipe, Wireshark shows
the decoded packet and protocol information just as if it
was running at the observation point. Note that an inevitable
but small delay is introduced by the data transport from the
exporter to the collector, yet the displayed timing information
corresponds to the observation time as included in the packet
record. Furthermore, packet losses may occur due to insuf-
ficient bandwidth between the exporter and the collector, or
limited processing resources of the analyzer machine running



Fig. 2. Deployment example

TOPAS and Wireshark. Yet, such packet losses are recognized
by the collector thanks to message sequence numbers, which
inhibits misinterpretations of the analysis results.

C. Monitor Manager for IPFIX/PSAMP Devices

Packet inspection and protocol dissection are usually de-
ployed on specific packet streams or connections, for example,
on those directed to a particular server or established between
two given end-points. If deployed locally, Wireshark performs
the corresponding packet classification and filtering itself or
with help of the filtering capabilities of the pcap library.
When analyzing exported packet records, packet filtering can
already take place at the monitoring device in order to reduce
the amount of data sent to the collector. Apart from saving
bandwidth, early filtering also reduces the processing load at
the exporter and collector. These two aspects are of particular
importance in high-speed networks, where unfiltered packet
monitoring would require enormous resources or result in
numerous packet losses.

In [18], we presented a solution for remote configuration of
IPFIX and PSAMP monitoring devices based on the Netconf
protocol [9]. As a frontend, we have now implemented a
Monitor Manager which offers a comfortable user interface
to create, edit, and deploy configurations on distributed moni-
toring devices. As illustrated in Figure 2, the Monitor Manager
complements TOPAS and Wireshark with the capability to
configure the capturing and export of packet information
according to the requirements of the network analysis.

Currently, our software monitoring probe Vermont [19]
is the only PSAMP implementation that supports remote
configuration with Netconf. The Netconf agent running on the

probe is based on the EnSuite framework [20] which provides
the Netconf protocol functionalities. A broader deployment of
our monitor management and configuration concept requires
that Netconf is supported by more IPFIX/PSAMP and Netflow
exporters. In addition, a device-independent data model is
needed for configuring devices of different manufacturers in
a unified way. Therefore, we are currently working on the
standardization of a configuration data model for IPFIX and
PSAMP devices [21] within the IETF.

IV. PERFORMANCE EVALUATION

In [4], we evaluated the performance of TOPAS with
respect to the maximum number of IPFIX packets and flow
records that can be processed without losses, depending on the
number of active detection modules. With one active module,
we successfully tested rates of 20,000 IPFIX packets and
190,000 records per second. For evaluating the performance
of the TOPAS/Wireshark setup presented in this paper, we
conducted additional experiments using PSAMP data. In the
test setup, Vermont captured traffic from a monitoring port
of a Gigabit Ethernet switch and exported packet records
containing a variable length field with the first 128 bytes of
each captured packet (or less if the packet was shorter), and
a timestamp indicating when the packet was observed. An
exported PSAMP packet included a maximum of 10 packet
records in order to avoid IP fragmentation (transport protocol
was UDP). Vermont and TOPAS were running on two dual-
processor Linux PCs.

The monitored traffic was generated by replaying pcap trace
files from two different public repositories: the repository
of the Enterprise Tracing Project of the Lawrence Berkeley
National Laboratory (LBNL) and the International Computer
Science Institute (ICSI) [22], and the Traffic Measurement
Data Repository of the University of Twente [23]. The first
repository contains anonymized packet header traces (up to
transport header) captured at the LBNL from which we
selected a trace file recorded on a weekday between 8am
and 9am. The average packet rate was about 880 packets
per second with a maximum of 1,556 packets per second.
As expected, this quite low packet rate did not represent a
real challenge for our implementation; TOPAS and Wireshark
were able to process all packet records without any losses.

From the second repository, we chose a trace file captured
on a weekday at 5pm at a Gigabit link connecting a college
with more than 1,000 students and staff members to the Dutch
academic and research network. The average packet rate was
3,850 packets per second with a maximum of 4,981 packets
per second. In multiple tries, the ratio of lost packets stayed
below 0.05 percent. This is acceptable since in practice, one
would not be interested in applying deep packet inspection to
the entire traffic, but only specific packet streams. By config-
uring appropriate filters at the monitoring device, TOPAS and
Wireshark would be operating at a packet lower rate without
any losses.



V. DISCUSSION

Our approach allows profiting from Wireshark’s extensive
packet inspection and protocol dissection capabilities for
distributed network analysis, which represents an interesting
alternative to the deployment of multiple distributed network
analyzers as done by the commercial products presented in
Section II. In comparison, our approach is supposed to be
less expensive since it partly builds on existing network
devices, such as routers and switches supporting PSAMP or
Flexible Netflow. If necessary, additional monitoring probes
can be installed, yet at much lower costs than full-fledged
network analyzers. The fact that we draw on existing and
upcoming standards is another advantage with regard to cost-
effective deployment. Hence, our approach represents a useful
and economic solution for large network operators running
millions of Internet access lines.

The major drawback of our solution is that in high-speed
networks, we need to restrict the traffic analysis to specific
packet streams. Otherwise, the amount of monitoring data risks
exceeding the available bandwidth between the exporter and
the collector, resulting in packet losses or unacceptable high
delays. In this respect, distributed network analyzers have the
advantage that they only export reports with analysis results
which can be much smaller than the examined packet data.

Apart from limiting the number of exported packet records,
we can also reduce the size of each record to decrease the
overall data volume. This can be achieved by exporting only
selected header fields and payload sections. Thus, fields which
are not required for the analysis can be omitted. Moreover,
reduced size encoding as specified in [6] can be applied to
encode small integer and float values with fewer octets than
the original field length. For example, low port numbers (0 to
255) can be encoded within a single octet instead of two.

Concluding the discussion, let us denote that the proposed
architecture and implementation is not limited or specific to
the utilization of Wireshark. There are many other programs
and tools which are able to receive and process pcap data
generated by the pcap writer module. For example, we have
successfully deployed Snort IDS within the TOPAS framework
in order to perform signature detection on packet records [24].

VI. CONCLUSION

We presented an architecture and implementation that en-
ables using the popular network analyzer Wireshark to inspect
packet data exported by routers, switches, and monitoring
probes. We described the system components and their re-
alization, evaluated the system performance with pcap trace
files captured in two different networks, and discussed the
advantages and limitations of our approach compared to con-
ventional distributed network analysis systems.

Our solution broadens the field of application of Wireshark
and overcomes its conceptual limitation of only being able
to inspect local traffic. As PSAMP is in the final phase of
standardization, and as Flexible Netflow is already available
on the market, we expect capturing and exporting packet
information to become a commonplace functional extension

of devices used for flow information export today. If this
assumption becomes true, using the new capabilities for
distributed network analysis will be a straightforward and
inexpensive alternative to conventional systems consisting of
multiple distributed and full-fledged network analyzers.

ACKNOWLEDGMENTS

We gratefully thank our students Lothar Braun, Nico Weber,
and Maximilian Hütter for contributing to the design and
implementation of TOPAS and the Monitor Manager.

REFERENCES

[1] Wireshark Homepage, http://www.wireshark.org, 2008.
[2] Libpcap Homepage, http://www.tcpdump.org, 2008.
[3] WinPcap Homepage, http://www.winpcap.org/, 2008.
[4] G. Münz and G. Carle, “Real-time Analysis of Flow Data for Network

Attack Detection,” in Proc. of IFIP/IEEE Symposium on Integrated
Management (IM 2007), Munich, Germany, May 2007.

[5] B. Claise, G. Sadasivan, V. Valluri, and M. Djernaes, “Cisco Systems
NetFlow Services Export Version 9,” RFC 3954 (Informational), Oct.
2004.

[6] B. Claise, S. Bryant, G. Sadasivan, S. Leinen, T. Dietz, and B. H.
Trammell, “Specification of the IP Flow Information Export (IPFIX)
Protocol for the Exchange of IP Traffic Flow Information,” RFC 5101
(Proposed Standard), Jan. 2008.

[7] B. Claise, J. Quittek, and A. Johnson, “Packet Sampling (PSAMP)
Protocol Specifications,” Internet-Draft, work in progress, draft-ietf-
psamp-protocol-09, Dec. 2007.

[8] Cisco Systems, “Introduction to Cisco IOS Flexible NetFlow,” White
Paper, Jun. 2008. [Online]. Available: http://www.cisco.com

[9] R. Enns, A. Bierman, K. Crozier, T. Goddard, E. Lear, P. Shafer, S. Wald-
busser, and M. Wasserman, “NETCONF Configuration Protocol,” RFC
4741 (Standards Track), Dec. 2006.

[10] ClearSight Networks, Inc. Homepage, http://www.clearsightnet.com,
2008.

[11] WildPackets, Inc. Homepage, http://www.wildpackets.com, 2008.
[12] S. Waldbusser, “Remote Network Monitoring Management Information

Base,” RFC 2819 (Standard), May 2000.
[13] N. Duffield, D. Chiou, B. Claise, A. Greenberg, M. Grossglauser,

P. Marimuthu, J. Rexford, and G. Sadasivan, “A Framework for Packet
Selection and Reporting,” Internet-Draft, work in progress, draft-ietf-
psamp-framework-12, Jun. 2007.

[14] T. Zseby, M. Molina, N. Duffield, S. Niccolini, and F. Raspall, “Sam-
pling and Filtering Techniques for IP Packet Selection,” Internet-Draft,
work in progress, draft-ietf-psamp-sample-tech-10, Jun. 2007.

[15] T. Dierks and E. Rescorla, “The Transport Layer Security (TLS) Protocol
Version 1.1,” RFC 4346 (Proposed Standard), Apr. 2006.

[16] E. Rescorla and N. Modadugu, “Datagram Transport Layer Security,”
RFC 4347 (Proposed Standard), Apr. 2006.

[17] Diadem Firewall Homepage, http://www.diadem-firewall.org, 2007.
[18] G. Münz, A. Antony, F. Dressler, and G. Carle, “Using Netconf

for Configuring Monitoring Probes,” in Proc. of IEEE/IFIP Network
Operations & Management Symposium (NOMS 2006), Poster Session,
Vancouver, Canada, Apr. 2006.

[19] R. T. Lampert, C. Sommer, G. Münz, and F. Dressler, “Vermont -
A Versatile Monitoring Toolkit for IPFIX and PSAMP,” in Proc. of
IEEE/IST Workshop on Monitoring, Attack Detection and Mitigation
(MonAM 2006), Tuebingen, Germany, Sep. 2006.

[20] EnSuite Homepage, http://ensuite.sourceforge.net, 2008.
[21] G. Münz and B. Claise, “Configuration Data Model for IPFIX

and PSAMP,” Internet-Draft, work in progress, draft-muenz-ipfix-
configuration-04.txt, Feb. 2008.

[22] LBNL/ICSI Enterprise Tracing Project, http://www.icir.org/enterprise-
tracing/Overview.html, 2008.

[23] R. van de Meent, “M2C Measurement Data Repository,” University of
Twente, Enschede, The Netherlands, M2C Deliverable D1.5, Dec. 2003.

[24] G. Münz, N. Weber, and G. Carle, “Signature Detection in Sampled
Packets,” in Proc. of IEEE Workshop on Monitoring, Attack Detection
and Mitigation (MonAM 2007), Toulouse, France, Nov. 2007.


