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APPLICATION OF FORECASTING TECHNIQUES AND CONTROL CHARTS FOR

TRAFFIC ANOMALY DETECTION

In this paper, we evaluate the capability to detect traffic anomalies with Shewhart, CUSUM, and EWMA
control charts. In order to cope with seasonal variation and serial correlation, control charts are
not applied to traffic measurement time-series directly, but to the prediction errors of exponential
smoothing and Holt-Winters forecasting. The evaluation relies on flow data collected in an ISP back-
bone network and shows that good detection results can be achieved with an appropriate choice and
parametrization of the forecasting method and the control chart. On the other hand, the relevance of
the detected anomalies for the network operator mainly depends on the monitored metrics and the
selected parts of traffic.

1. INTRODUCTION

In control engineering, monitoring mechanisms are deployed to observe the properties or behav-
ior of a system and raise an alarm if an important parameter runs out of the range of sound operation.
One monitoring goal is the detection of unexpected changes in characteristic properties of the system
because such changes may be indications of failures, malfunctions and wearout. The detection must
be fast to enable manual intervention, recalibration, or exchange of erroneous system components
before severe consequences happen. Network monitoring pursues similar objectives. One aspect is
the identification of anomalous traffic behavior which can bea sign of network failures or abuses, for
example due to worm or attack traffic.

Change detection methods consider time-series of measurement values and search for points in
time at which statistical properties of the measurements change abruptly, i.e. “instantaneously or at
least very fast with respect to the sampling period of the measurements” [2]. Before and after the
change, the monitored statistical properties are assumed to show no or only little variation. Under
these conditions, even small changes can be detected with high probability if they persist for a long
duration.

In general, the more a priori knowledge is available, the easier it is to detect changes with high
accuracy. For example, parametric methods have more power than non-parametric methods, which
means that they allow us to detect more true anomalies at the same false alarm level (i.e., probability
of an alarm in absence of any significant change). However, ifthe model assumption is incorrect,
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parametric methods lose their decisive power and may lead towrong decisions. In the case of traffic
anomaly detection, we cannot assume that the monitored variables follow a specific distribution, thus
the detection should be non-parametric, or at least robust against non-normality. Moreover, changes
should be detected very quickly (i.e., online) without requiring any a priori knowledge about their
magnitude since such information is usually not available,either.

A practical solution to statistical online change detection are control charts [16]. In a control
chart, mean and variability of a monitored variable are characterized by a centerline (CL), an upper
control limit (UCL), and a lower control limit (LCL). A change is detected if the measured value
exceeds one of the control limits. This decision can be formalized as a hypothesis test with null
hypothesisH0 assuming no significant change and alternative hypothesisH1 suggesting the opposite.

In this paper, we evaluate the applicability of control charts to the problem of traffic anomaly
detection. More precisely, we analyze time-series of byte,packet, and flow counts which can be
easily obtained from routers via SNMP (Simple Network Management Protocol), IPFIX [8], or Cisco
NetFlow [9]. These measurement time-series are subject to systematic changes, in particular seasonal
variation. In addition, dependencies may exist between subsequent observations, noticeable as serial
correlation. Both, systematic changes as well as serial correlation, need to be accounted for because
most control charts are designed for independent and identically distributed observations. Useful tools
are forecasting techniques which predict future values based on what has been observed in the past.
In the optimal case, the prediction errors are small, random, and uncorrelated as long as the behavior
of the monitored variable does not change. Hence, we can identify changes in the original variable by
applying control charts to the prediction errors.

The main contribution of this work consists of a comparison of three different control charts and
two different forecasting techniques. The considered control charts are the Shewhart control chart,
the CUSUM (cumulative sum) control chart, and the EWMA (exponentially weighted moving aver-
age) control chart, which are commonly used in process monitoring. With respect to forecasting, we
choose exponential smoothing and Holt-Winters forecasting, two self-adaptive and robust forecast-
ing techniques which are suitable for our purposes. In contrast to many existing publications, our
evaluation is not based on synthetically generated anomalies. Instead, we apply our methods to real
flow data collected in the backbone network of an Internet Service Provider (ISP) and assess the rele-
vance of the detected anomalies by examining their causes. The evaluation shows that a combination
of Shewhart control chart and exponential smoothing enables good detection results under various
conditions.

Sections 2 and 3 provide the theoretical background of the deployed control charts and fore-
casting techniques. Subsequently, in Section 4, we evaluate the capability to detect traffic anomalies
with the described methods. Section 5 surveys related approaches of using control charts for traffic
anomaly detection before Section 6 concludes this paper.

2. CONTROL CHARTS

A typical control charts contains a center line (CL) representing the average value of the mon-
itored random variableY under normal conditions. Above and below the center line, the upper and
lower control limit (UCL, LCL) define the range of normal variation or in-control state. The decision
function detects a change (or out-of-control state) if the measured valuey lies outside this range.

The statistical properties of control charts can be deducedfrom the theory of sequential prob-
ability ratio tests (SPRT). If the distribution before and after the change are known, the decision



function can be converted into a condition for the log-likelihood ratio of the observationy:

s(y) = log
pΘ1

(y)

pΘ0
(y)

wherepΘ(y) is the probability density function ofY with parameterΘ. Θ0 andΘ1 are the parameter
values before and after the change. Ifs(y) is positive, the monitored random variable more likely
conforms to the distribution after change than to the distribution before change. Hence, we can define
a thresholdh for s(y) to reject the null hypothesisH0 : Θ = Θ0 and accept the alternative hypothesis
H1 : Θ = Θ1 at a given level of significance. The level of significance corresponds to the probability
of a false alarm.

If Y is normally distributed with constant varianceσ2 and meansµ0 andµ1 before and after
change,s(y) becomes:

s(y) =
µ1 − µ0

σ2

(

y − µ1 + µ0

2

)

If µ1 > µ0, s(y) > h is equivalent to the decision function:

y > µ0 + Lσ with L =
hσ

µ1 − µ0

+
µ1 − µ0

2σ

In this equation, the correspondence to the control chart isobvious:µ0 is the center line andµ0 + Lσ
the upper control limit.

As the variance of a single observation is quite high, changedetection methods often consider
a sequence of observations{yt|t = a, . . . , b} to increase the power of the hypothesis test. Under the
condition that the observations are independent, the log-likelihood ratio of the sequence is:

s(ya, . . . , yb) = log

∏

b

t=a
pΘ1

(yt)
∏

b

t=a
pΘ0

(yt)
=

b
∑

t=a

s(yt)

A hypothesis test based ons(ya, . . . , yb) corresponds to a control chart for a test statistic that is
calculated fromya, . . . yb. An example is the average valuēy, which has an important property:
regardless of the distribution ofY , ȳ is approximately normally distributed if calculated from alarge
number of observations, thanks to the central limit theorem.

In the following subsections, we introduce three differentcontrol charts, namely the Shewhart
control chart, the CUSUM control chart, and the EWMA control chart. For more detailed information,
we refer to the text books of Montgomery [16] and Basseville [2].

2.1. SHEWHART CONTROL CHART

The Shewhart control chart [26] defines UCL, CL, and LCL for a statistic calculated fromN
observationsy(l−1)N+1, . . . , ylN . An example statistic is the average valueȳl, which is appropriate for
detecting changes in the mean:

ȳl =
1

N

lN
∑

t=(l−1)N+1

yt where l = 1, 2, . . .

If the observations are independent and identically distributed with meanµ0 and varianceσ2, ȳl is
an unbiased estimator ofµ0 with varianceσ2/N . Hence, the upper and lower control limits can be



defined in the formµ0 ± Lσ/
√

N with tuning parameterL. An alarm is raised if̄yl passes one of
the control limits. As already mentioned,ȳl is approximately normally distributed for largeN , thus
the control limits for a given false alarm probabilityα areµ0 ± Φ(1 − α/2)σ/

√
N . However, this

approximation does not hold for smallN or if the observations are serially correlated.
A special case isN = 1, the so-called Shewhart control chart of individuals. Thischart com-

pares individual observations against the control limits.Obviously, the central limit theorem does not
apply, thus the distribution ofY needs to be known exactly in order to define precise limits fora given
false alarm probability.

2.2. CUSUM CONTROL CHART

The CUSUM control chart (also called CUSUM algorithm) [18] is based on the fact thatSt =
s(y1, . . . , yt) has a negative drift under normal conditions and a positive drift after a change. The
CUSUM decision functiongt compares the increase ofSt with respect to its minimum to a threshold
h:

gt = St − min
1≤i≤t

Si = max (0, s(yt) + gt−1) = [gt−1 + s(yt)]
+ ≥ h ; g0 = 0

An alarm is raised ifgt exceeds the thresholdh. To restart the algorithm,gt must be reset to zero.
From the view of hypothesis testing, the CUSUM control chart repeatedly performs an SPRT

where each decision considers as many consecutive observations as needed to accept eitherH0 or
H1. The CUSUM control chart implicitly starts a new run of SPRT ifH0 has been accepted, and
stops with an alarm in the case ofH1. The thresholdh allows trading off the mean detection delay
and the mean time between false alarms. If the distribution of Y is unknown, the log-likelihood ratio
s(yt) must be replaced by a statisticu(yt) with comparable properties: the expectation value ofu(y)
must be negative underH0 and positive underH1 This variant is often called non-parametric CUSUM
algorithm.

An appropriate statistic for detecting positive shifts in the mean isu+(y) = y − (µ0 + K).
K is called reference value. In order to detect negative shifts as well, we need a second statistic
u−(y) = (µ0 − K) − y. As a result, we get two decision functions:

g+
t

=
[

g+
t−1 + yt − (µ0 + K)

]+ ≥ h ; g−
t

=
[

g−
t−1 + (µ0 − K) − yt

]+ ≥ h

Typical settings areK = σ/2 andh = 4σ or h = 5σ, whereσ is the standard deviation ofYt [16].
Compared to the Shewhart control chart, CUSUM detects small but persistent changes with

higher probability because little effects accumulate overtime. Brodsky and Darkhovsky [5] studied
the properties of the non-parametric CUSUM algorithm for a specific family of exponential distribu-
tions ofu(y). For this distribution family, the detection delay reachesthe theoretic minimum if the
mean time between false alarms goes to infinity. As we will discuss in Section 5, several existing
publications refer to this proof of optimality although thespecific requirements are not fulfilled in
general.

2.3. EWMA CONTROL CHART

The EWMA control chart (c.f. [23,24]) relies on exponential smoothing of observations. Given
the smoothing constantλ (0 < λ < 1),

zt = λyt + (1 − λ)zt−1 = λ
t−1
∑

i=0

(1 − λ)iyt−i + (1 − λ)tz0



is a weighted average of all observations up to timet. The initial value is the expected mean under
H0: z0 = µ0. If the observations are independent and identically distributed with varianceσ2, the
variance ofzt approachesλ

2−λ
σ2 for t → ∞, which allows the definition of control limits forzt:

µ0 ± Lσ

√

λ

2 − λ

λ andL are design parameters of the EWMA control chart. Popular choices are2.6 ≤ L ≤ 3 and
0.05 < λ < 0.25, where smallerλ allow detecting smaller shifts [16].

The EWMA control chart has some interesting properties [16].It can be tuned to achieve
approximately equivalent results as the CUSUM control chart. Secondly, it is quite robust against non-
normal distributions ofY , especially for small values ofλ (e.g.,λ = 0.05). Finally, after adjusting the
control limits, the EWMA control chart still performs well inthe presence of low to moderate levels
of serial correlation inYt.

3. RESIDUAL GENERATION BY FORECASTING

Common to all the control charts presented in Section 2 is the assumption that the observations
are independent and identically distributed under normal conditions. This corresponds to the output
of a stationary random process that generates uncorrelatedvalues. Such a process is also called pure
random process.

There are various reasons why traffic measurement data exposes significant deviation from the
output of a pure random process. Non-stationarities resultfrom trends as well as dependencies on the
time of day, the day of the week etc. Serial correlation is caused by internal network states which
cannot change arbitrarily from one instant in time to the next. For example, the number of packets in
the network evolves according to a birth-death process depending on the arrival times and processing
times.

We can identify systematic changes in the mean or variance byvisually inspecting the measured
values over time. Systematic changes as well as serial correlation also have an impact on the sample
autocorrelation, which is calculated as follows:

rτ =

∑

N−τ

i=1 (yt − ȳt)(yt+τ − ȳt)
∑

N

i=1 (yt − ȳt)2

In the above equation,N is the number of observations andτ the lag between two instances of time.
If rτ is not decreasing with increasingτ , or if it shows periodic oscillation, the observations do not
resemble the output of a stationary random process. In the case of a pure random process, the 95%
confidence interval ofrτ is [−1/N − 2/

√
N ;−1/N + 2/

√
N ] for all τ . Hence, if a non-negligible

number ofrτ ’s lie outside this range, the process is not purely random.
Time-series analysis allows modeling and removing systematic changes and serial correlation

with help of the Box-Jenkins approach [4] . However, fitting anaccurate ARIMA (autoregressive
integrated moving average) model is difficult and requires along series of anomaly-free observations.
Therefore, robust forecasting methods based on exponential smoothing are preferred [7], especially
for online applications. Forecasting relies on the assumption that the temporal behavior observed in
past observations persists in the near future. Hence, an unusually large prediction error is an indicator
of a change in the monitored random variable. The predictionerrors are also called residuals because
they represent the variability not explained by the forecasting model.



In the following subsections, we present two popular forecasting techniques that we will use
in Section 4 for residual generation: exponential smoothing and Holt-Winters forecasting. In order
to define appropriate limits for the control charts, we need to estimate the standard deviation of the
residuals under normal conditions. How this can be achievedis explained in Section 3.3.

3.1. EXPONENTIAL SMOOTHING

Exponential smoothing allows predicting future values by aweighted sum of past observations:

ŷt+1 = α
t

∑

i=2

(1 − α)t−iyi + (1 − α)t−1y1 = αyt + (1 − α)ŷt

This is the same exponentially weighted moving average as used in the EWMA control chart. The
distribution of the weights is geometric and gives more weight to recent observations. Forecasting
according to the above equation is optimal for an infinite-order MA (moving average) process, which
is equivalent to an ARIMA(0,1,1) process [7]. Yet, exponential smoothing is very robust and also
provides good forecasts for other trendless and non-seasonal time-series. The optimal value forα can
be approximated by trying different values and choosing theone with the smallest residual sum of
squares.

3.2. HOLT-WINTERS FORECASTING

Holt-Winters forecasting combines a baseline componentLi with a trend componentTi and a
seasonal componentIt:

ŷt+1 = Lt + Tt + It

Lt, Tt, andIt are recursively updated according to the following equations:

Lt = α(yt − It−s) + (1 − α)(Lt−1 + Tt−1)

Tt = β(Lt − Lt−1) + (1 − β)Tt−1

It = γ(yt − Lt) + (1 − γ)It−s

α, β, andγ are smoothing parameters which have to be set to appropriatevalues in the range(0, 1). s
is the length of one season counted in time intervals. The above equations include an additive seasonal
component. Alternatively, the seasonal component can alsobe modeled in a multiplicative way. For
more details, we refer to [7] and the references therein.

3.3. CONTROL LIMITS AND STANDARD DEVIATION ESTIMATORS

As we have seen in Section 2, control limits are usually defined relatively to the standard de-
viation σ of the monitored random variable. If we apply control chartsto residual time-series of
prediction errorsεt = yt − ŷt, the standard deviation has to be estimated. We could calculate the sam-
ple variance from a finite set of past residuals. However, this estimation is very sensitive to outliers
and does not reflect dynamic changes in the variance. Therefore, we make use of a moving estimator
which is based on exponential smoothing. For a given meanµ, the exponentially weighted mean
square error (EWMS) is a variance estimator:

σ̂2
t

= ρ(εt − µ)2 + (1 − ρ)σ̂2
t−1



Since the mean of the residuals is approximately zero under normal conditions, we can setµ = 0 in
the above equation.

4. EVALUATION

We evaluated the capability to detect traffic anomalies withhelp of the forecasting techniques
and the control charts presented in the previous sections. Our evaluation is based on traffic mea-
surement data collected in the Gigabit backbone network of aregional ISP between September 7
and October 25, 2006. The operation area of the ISP covers parts of Saarland, Rhineland-Palatinate,
Hesse (all federal states in Germany), Luxembourg, and Belgium. At measurement time, the offered
services ranged from server hosting and colocation to VPNs and modem, ISDN, and DSL dial-in
service. Customers were corporate clients, local carriers,roaming providers, and small and medium
enterprises. The measurements were performed at a router using unsampled Cisco Netflow.v5 with
active and idle flow timeouts set to 150 seconds. The router exported the resulting flow records to a
collector which stored them in a database after anonymizingthe IP addresses.

Our evaluation is not based on individual flows but on time-series of the number of bytes,
packets, and flows counted in equally spaced time intervals.Each flow record was associated with the
time interval in which the first packet passed the router. Theinterval length was set to 300 seconds
(i.e., twice the flow timeout) in order to reduce possible distortions in the byte and packet counts
that may result from long-lasting high-volume flows which are reported at the period of the active
timeout. The flow count was determined as the number of distinct IP-five-tuples (i.e., cardinality of
combinations of protocol, source and destination IP addresses and port numbers) to prevent manifold
counting of flows reported in more than one records per time-interval.

We implemented the forecasting techniques and control charts in GNU Octave [11]. This ap-
proach enabled us to analyze the time-series data with different forecasting methods and control
charts. For online traffic analysis, the detection mechanisms can be integrated into a real-time system,
for example as a detection module of our traffic analysis framework TOPAS [17]. We determined the
reason for the detected anomalies by identifying the responsible flows. Furthermore, we assessed the
importance and relevance of the alarms for the network operator.

In the following subsections, we present the results for time-series of overall IP traffic, ICMP
traffic, and SMB (Server Message Block) traffic. The objectiveis to answer the following questions:

• Which forecasting method is the most appropriate to generateresidual time-series?
• Which control chart provides the best detection results whenapplied to these residuals?
• In which part of the traffic and in which metric do we find the most interesting anomalies?

We do not aim at finding the optimal solution, which is difficult regarding the numerous degrees of
freedom. Also, the result would be limited to the specific setof measurement data. Instead, we are
interested in recommendations that allow achieving good results under various conditions.

4.1. ANOMALY DETECTION IN OVERALL IP TRAFFIC

Figure 1 depicts the time-series of the total number of bytes, packets, and flows in the mea-
surement period. All three metrics show a daily cycle of low values at nighttime and high values at
daytime. Furthermore, we observe a weekly cycle with highertraffic on weekdays and lower traffic
at weekends. October 3 is a public holiday in Germany, which results in slightly decreased traffic
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Fig. 1: Measurement time-series of total traffic

volume on this day as well. The regular run of the curves is interrupted by isolated peaks which are
obvious traffic anomalies. Most of the time, a peak in one metric coincides with a peak in another
metric. Yet, we rarely observe extreme values in all three metrics simultaneously.

In order to cope with the seasonal variation, we apply exponential smoothing and Holt-Winters
forecasting and use the prediction errors as residual time-series. Given the measurement time-series
yt, we initialize the Holt-Winters components as follows:

Ls = 0 ; Ts = 0 ; Ii = yi for i = 1, . . . , s

The seasonal period is set tos = 288 or s = 2016 to account for daily or weekly seasonality. With
exponential smoothing, we obtain the first prediction value(and residual) in the second time interval
(t = 2). In contrast, Holt-Winters forecasting requires the firsts values for initialization, thus the first
residual is generated att = s + 1. To get comparable results, we only count the alarms raised after
time intervalt = s.

Figure 2 shows the residual time-series of byte counts for three different configurations of ex-
ponential smoothing (α = 1, α = 0.5, andα = 0.1) and one setup of Holt-Winters forecasting with
additive seasonal component (s = 288, α = 0.1, β = 0.001, γ = 0.25). In the case ofα = 1,
the residuals are simply the differences of consecutive measurement time-series values. Except for
exponential smoothing withα = 0.1, the seasonal variation of the mean is successfully removed.
However, the variability of the residuals still depends on the time of day. Regarding the different
settings for exponential smoothing,α = 0.5 provides the best results: obvious anomalies in the orig-
inal data appear as peaks, whereas the variability during normal traffic is relatively low. This visual
impression is confirmed by the mean squared prediction error, which is the smallest for this setting.

Similar to our examinations of exponential smoothing, we tested various parameterizations of
Holt-Winters forecasting with different smoothing constants, seasonal periods of one day and one
week, additive and multiplicative seasonal components. The setting shown in Figure 2 effectively
reduces the seasonal variation and exposes various anomalies in the measurement data. Yet, the
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Fig. 2: Residual time-series (prediction errors) of byte counts

additional complexity of Holt-Winters forecasting does not seem to ensure better results than simple
exponential smoothing: the residual time-series of the twomethods turned out to be quite similar. A
possible explanation is that the seasonal period is very long (288 or 2016 intervals), hence the effect
of the seasonal variation on consecutive values is very small.

Figure 3 shows the sample autocorrelation of the original byte count time-series and the cor-
responding residuals. As expected, the seasonality of the original measurements reappears in the
autocorrelation plot. On the other hand, the serial correlation in the residual time-series attenuates
quite quickly.

We applied the Shewhart control chart of individuals, the two-sided CUSUM control chart, and
the EWMA control chart to the residual time-series. Control limits were defined as multiples ofσ̂
which was estimated by EWMS (see Section 3.3). The smoothing constantρ controls how quickly
the limits adapt to variability changes in the prediction errors. For our purposes,ρ = 0.01 turned out
to be a good setting.

Figure 4 shows the measurement time-series of byte counts ontop and three control charts
applied to the residuals of exponential smoothing below. The parameters of the control charts are as
follows:

• Shewhart:UCL = −LCL = 6σ̂
• CUSUM:K = σ̂; h = 6σ̂
• EWMA: λ = 0.25; UCL = −LCL = 5σ̂

√

λ

2−λ

The Shewhart control chart shows the residual time-series and the corresponding control limits. The
CUSUM control chart depicts the maximum of the two CUSUM statistics g+

t andg−
t as well as the
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Table 1: Byte Anomalies Detected in All Control Charts

Day Cause
08/09 FTP download (640 MBytes at 1 MByte/s on average)
24/09 RSF-1 data transfer (approx. 310 MBytes)
29/09 HTTP download (approx. 160 MBytes)
06/10 High SMTP traffic during 3 hours in the night
11/10 HTTP download (peak of 355 MBytes in one interval)
18/10 HTTP download (peak of 195 MBytes in one interval)
21/10 HTTP download (peak of 524 MBytes in one interval)

thresholdh. The EWMA chart finally shows the exponentially smoothed residualszt and the control
limits.

The dotted vertical lines in Figure 4 mark the intervals in which the corresponding value is
beyond the control limits. We obtained 11, 15, and 11 alarms for Shewhart, CUSUM, and EWMA,
respectively. Some of them are so close to each other that they can hardly be distinguished in the
figure. Table 1 lists the set of anomalies that are detected inall three charts. For each anomaly, we
identified the responsible flows and found that most of the alarms were caused by large downloads
from web or file servers. What we describe as RSF-1 data transferin the table is a large flow to UDP
port 1195, which has been registered by High-Availability.Com [13] for a high-availability and cluster
middleware application. Very probably, these downloads represent legitimate traffic. However, we
detected anomalous high SMTP traffic on October 6 lasting forseveral hours, which is a sign of a
mailbomb triggered by spammers or a worm propagating via e-mail. Most of the remaining alarms
not mentioned in the table could be explained by the same kinds of HTTP, FTP, and RSF-1 traffic.
Though, some of the alarms trigged by the CUSUM and EWMA controlcharts could not be associated
to any unusual pattern in the flow records.

Some of the detected anomalies also appear as extreme valuesin the original measurement data.
Hence, they could be detected with a threshold applied to thebyte counts directly. Others, such as
the mailbomb, do not cause extraordinarily high byte counts, i.e. they can only be detected in the
residuals.

We applied the same control charts to the Holt-Winters residuals and obtained similar results
as for exponential smoothing. Furthermore, we examined if more interesting anomalies can be found
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Fig. 4: Control charts applied to ES residuals (α = 0.5) of byte counts

in the packet and flow counts or in any ratio of the three basic metrics, such as the average number
of bytes per flow. Packet and byte counts triggered the same alarms. A couple of new anomalies
were found in the flow counts. One of these alarms is the resultof a large number of short SSH
connections from one client to multiple servers, a pattern that may be caused by a massive password
guessing attempt. Another alarm coincides with a time interval in which the traffic abruptly breaks
down, possibly due to a network failure. Regarding the anomalies found in the ratios, we did not
notice any improvements compared to the basic metrics of bytes, packets, and flows.

As a result, we conclude that residual generation using exponential smoothing techniques and
change detection with the Shewhart control chart of individuals enables the detection of traffic anoma-
lies with relatively low computational complexity. The CUSUM and EWMA control chart did not
provide better detection results but raised additional alarms that could not be linked to anomalous
traffic behavior. In the EWMA control chart, the moving average flattens short peaks in the residuals
and thus hampers their detection. However, such peaks result from abrupt changes in the original
measurement data, which are events we definitively want to detect.

An appropriate level of the control limits needs to be determined by experimentation in order to
focus on the most significant anomalies. Among the detected anomalies in the overall traffic, the mail-
bomb, the password guessing attempt, and the network failure are the most interesting events for the
network operator. However, the majority of the alarms is caused by legitimate traffic, independently
of the considered metric.
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Fig. 5: Measurement time-series of ICMP traffic

4.2. ANALYZING ICMP TRAFFIC

As part of the Internet protocol suite, the Internet Control Message Protocol (ICMP) is mainly
used for exchanging error messages, for example, if a certain host cannot be reached due to link or
routing problems. ICMP is also used for network testing and debugging purposes (e.g., using ping and
traceroute commands) and self configuration in local IP networks. As ICMP is not directly involved
in the transport of user and application data, we expect a lowand time-invariant level of ICMP traffic
under normal conditions. Indeed, we can observe this behavior in the byte and packet time-series
shown in Figure 5. In contrast, the number of flows shows dailyvariation, yet less pronounced than
in the overall traffic.

We adopted the most promising approach from Section 4.1, namely the Shewhart control chart
applied to the residuals of exponential smoothing (α = 0.5), to detect anomalies in the ICMP traffic.
Control limits at±6σ̂, as used before, generated a very large number of alarms for byte and packet
counts. Therefore, we increased the control limits to±8σ̂ in order to focus on the most significant
anomalies.

The anomalies found in the byte and packet time-series are listed in Table 2. Many alarms are
triggered by both metrics, especially those caused by ping traffic (ICMP echo requests and replies).
Sporadic occurrences of ping traffic at moderate rate are notsuspicious, hence the corresponding
alarms are not of much interest. The extremely high impulse on September 14 is the result of one
host pinging another host at very high rate, which can be a sign of an attack. Though, as the ping
is very short, we think that it was executed for debugging purposes. Apart from ping traffic, many
traffic anomalies are caused by destination unreachable messages, most of them reporting that a large
packet could not be fragmented due to the ‘don’t fragment’ bit in the IP header. The corresponding
ICMP messages are quite large because they include a section of the dropped packet. Therefore, these
anomalies are mainly detected in the number of bytes.

As can be seen in Table 3, the flow count residuals exceed the control limits only six times.



Table 2: Shewhart Alarms for ICMP Traffic: Bytes and Packets

Time Bytes alarm Packets alarm Cause
11/09 09:00 x Echo replies from/to one host
12/09 15:15 x Ping (moderate rate)
14/09 13:50 x x Ping flood (very high rate)
14/09 14:25 x Ping flood (very high rate)
14/09 14:40 x Ping flood (very high rate)
19/09 14:00 x x Echo replies from/to one host
21/09 15:30 x x Destination unreachable (fragmentation required)
24/09 08:25 x Destination unreachable (fragmentation required)
29/09 10:40 x x Ping (moderate rate)
29/09 11:15 x Ping (moderate rate)
29/09 11:30 x Ping (moderate rate)
05/10 16:35 x Destination unreachable (fragmentation required)
06/10 18:00 x Destination unreachable (fragmentation required)
10/10 10:00 x x Time exceeded from one host
13/10 07:50 x Destination port unreachable
16/10 16:45 x Destination unreachable (fragmentation required)
17/10 09:55 x x Ping (moderate rate)
19/10 09:30 x x Ping (moderate rate)
21/10 23:00 x Destination unreachable (fragmentation required)
25/10 15:35 x Ping (moderate rate)

Table 3: Shewhart Alarms for ICMP Traffic: Flows

Time Cause
13/09 14:45 Destination port unreachable from many sourcesto one host
15/09 19:40 ICMP scan followed by TCP connections to port 3389 (WBT)
30/09 11:05 ICMP scan followed by TCP connections to port 1433 (MS SQL)
19/10 12:20 ICMP scan followed by TCP connections to ports 3389 (WBT) and 1433 (MS SQL)
24/10 13:20 Ping at moderate rate to five hosts
25/10 05:40 ICMP scan followed by TCP connections to ports 80and 3128 (HTTP proxies)

None of these alarms coincides with any of the byte and packetalarms. Examining the flow records,
four of the alarms can be explained by ICMP echo requests sent by individual hosts to a few hundred
IP addresses. Echo replies are returned from a small proportion of the scanned IP addresses only. To
these destinations, the scanning host then tries to establish TCP connections on ports 3389, 1433, 80,
or 3128 which are used by Microsoft remote desktop (Windows-based Terminal, WBT), Microsoft
SQL server, and HTTP proxies, respectively. ICMP scans are typically performed with help of auto-
mated network scanners in order to detect active hosts. It isdifficult to assess if the observed traffic is
harmful or not. Maybe the scans served testing and debuggingpurposes. This assumption is fortified
by our experience that malware and worms usually try to establish TCP connection directly without
preceding ICMP scans. However, it has been recently reportedthat ICMP scans are more and more
frequently deployed in advance of an infection attempt [10]as well.

Having a look at Figure 5, we see that the number of flows is increased between October 5 and
October 10. After decreasing the Shewhart control limits to±5σ̂, this anomaly is also detected in
the flow count residuals. We examined the flow records and discovered that the increase is caused



by ICMP destination unreachable messages sent from different sources to one specific host. Two
different error codes are reported: host unreachable and communication administratively prohibited.
The second one is returned by routers or firewalls if a packet is discarded because of a blocked
destination IP address or port number. The host receiving all these messages thus had to be emitting a
lot of packets to non-existing or blocked destinations. Indeed, we found a lot of outgoing connection
requests from this IP address to TCP ports 445 (Microsoft-DS)and 139 (Netbios) during five days. On
Microsoft Windows systems, these ports are well-known for many vulnerabilities which are exploited
by worms.

All in all, anomalies found in the ICMP traffic give the networkoperator valuable insights in
the current state of the network. An anomalous increase of the number of destination unreachable
messages indicates a network failure or the occurrence of a TCP or UDP scan performed by worms
or hackers. Large numbers of ICMP flows are mostly caused by ICMPscans which do not represent
an instantaneous security threat but often reveal other suspicious traffic, such as connection attempts
to specific TCP ports following a scan.

4.3. ANALYZING SMB TRAFFIC

Motivated by the findings in the ICMP traffic, we analyzed TCP traffic to and from port 445.
Since Windows 2000, this port is used by Microsoft for file andprinter sharing in local area networks
via the SMB (Server Message Block) protocol. However, vulnerabilities in this service are also being
exploited by worms to infect unprotected computers in the network. A prominent example is the
Sasser Worm which has been spreading over the Internet since2004.

For our analysis, we consider the difference of TCP traffic to and from port 445. The plots
in Figure 6 show the corresponding time-series for the number of bytes, packets, and flows. As can
be seen, all metrics have small values close to zero most of the time and do not show any seasonal
variation. Between October 5 and 9, we observe longer periodsof large positive values, which means
that many more bytes, packets, and flows are directed to port 445 than returned. During this time, we
also observed an increased number of ICMP destination unreachable messages. Indeed, the anomalies
in the ICMP and SMB traffic are related to each other: the emitter of the SMB traffic is the receiver
of the ICMP traffic. As mentioned in Section 4.2, the host is very probably infected by a worm trying
to connect to randomly chosen destinations.

As before, we applied Shewhart control charts to the prediction errors of exponential smoothing.
We set the control limits to±10σ̂ in order to get a reasonably small number of alarms. We obtained
23 alarms for the byte count residuals, 12 alarms for the packet count residuals, and 13 alarms for
the flow count residuals. While many of the byte and packet alarms are caused by non-suspicious
SMB traffic (e.g., data transfers between two hosts), all of the flow alarms are triggered by scanning
activities. Four of the flow alarms are related to the worm-infected host already mentioned, the
remaining alarms are caused by short scans originating fromdifferent IP addresses. These scans
probably belong to worm traffic generated in distant networks, thus only parts of it are observed by
the router.

4.4. DISCUSSION OF RESULTS

Our evaluation demonstrates the applicability of forecasting techniques and control charts for
detecting traffic anomalies in time-series of byte, packet,and flow counts. The prediction error of
exponential smoothing with smoothing constantα = 0.5 turned out to be a robust residual generation
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Fig. 6: Measurement time-series of SMB traffic

method which provides good results for various traffic metrics. Among the examined change detection
mechanisms, the Shewhart control chart of individuals works fine despite of its simplicity. The lack
of knowledge of the residuals’ distribution under normal conditions inhibits the calculation of exact
control limits for a given false alarm level. Yet, the sensitivity of the detection can be very easily
adjusted by defining empirical control limits as multiples of the estimated standard deviation.

From a theoretical point of view, CUSUM and EWMA control chartsare better in detecting
small sustained shifts in the mean. However, the forecasting-based residual generation is character-
ized by a differentiation effect: abrupt changes in the measurement time-series result in short impulses
in the prediction errors. Therefore, sustained shifts rarely occur in the residual time-series monitored
in the control charts.

The relevance of the detected anomalies depends very much onthe analyzed traffic and the
considered metrics. Most byte and packet anomalies detected in the overall traffic as well as in
the SMB traffic were caused by large data transfers. Among these uninteresting alarms, events of
actual importance risk to go unnoticed. Therefore, it is advisable to monitor traffic metrics that are
less influenced by unpredictable but legitimate behavior ofusers and applications. Examples are the
numbers of ICMP and SMB flows as well as the number of ICMP destination unreachable messages.
where most anomalies are caused by suspicious traffic.

In our approach, control limits are calculated relatively to the EWMS estimation of the standard
deviation. The benefit of this approach is that the limits dynamically adapt to changes in the residuals.
However, we do not stop the update of the limits if an anomaly is detected. Therefore, the control
limits are often increased to very high values after an alarm, as can be observed in Figure 4. This
problem could be solved by temporarily suspending the update of the EWMS estimator after the
detection of an anomaly.



5. RELATED WORK

Hood and Ji [14] convert MIB variables into a measurement time-series, eliminate serial cor-
relation by fitting an AR(2) model, and detect network failures in the AR parameters. Hellerstein et
al. use the GLR (generalized likelihood ratio) algorithm todetect anomalies in the number of web
server requests per five minutes interval [12]. Systematic changes are eliminated by estimating daily
and weekly variations as well as monthly trend from a set of training data. In addition, an AR(2)
model is fitted to remove the remaining serial correlation. Brutlag [6] employs Holt-Winters forecast-
ing to model baseline, trend, and daily variation in the outgoing traffic of a web server. Barford et
al. [1] apply Holt-Winters forecasting to time-series of packet, byte, and flow counts as a reference
anomaly detection approach for their own detection mechanism based on wavelets. The evaluation
yields similar detection performance for the two approaches.

Ye et al. use EWMA control charts to detect anomalies in computer audit data [32]. The results
are compared to those obtained with a Shewhart individuals control chart applied to the prediction
errors of exponential smoothing†. Like in our work, the control limits depend on the EWMS estimate
of the standard deviation. Paul [19] adopts this method for detecting denial-of-service attacks against
web servers.

The optimality of the CUSUM algorithm [5] is frequently brought up to justify its usage for
traffic anomaly detection. For example, Wang et al. deploy the CUSUM algorithm to detect SYN
flooding attacks. The considered metrics are calculated from the number of TCP SYN, FIN, and
SYN/ACK packets [30, 31]. Peng et al. [20] apply the CUSUM algorithm to the number of RST
packets returned in response to SYN/ACK packets in order to detect reflector attacks. In [21], the
same authors count the number of new source IP addresses to detect distributed denial-of-service
attacks. Siris and Papagalou [27] use exponential smoothing to generate prediction errors for the
number of SYN packets. The residuals serve as input to CUSUM inorder to detect SYN flooding
attacks. Similarly, Rebahi and Sisalem [22] use the number ofSIP (Session Initiation Protocol)
INVITE messages to detect denial-of-service attacks against SIP servers. In order to be optimal,
the CUSUM algorithm must be applied to a time-series of independent observations belonging to a
specific family of probability distributions. However, none of these works shows that these conditions
are fulfilled, hence it is unsure if the CUSUM algorithm actually is the best choice.

The research group of Tartakovsky has proposed several approaches to apply the CUSUM con-
trol chart to multivariate data. In [3] and [29], they calculate a chi-square statistic as input for CUSUM
in order to detect denial-of-service attacks. For the same purpose, the multichart CUSUM algorithm
proposed in [15] and [28] performs separate tests on each component of the multivariate data. Salem
et al. apply the multichart CUSUM algorithm to the entries of acount-min sketch to detect SYN
flooding attacks and scans [25]. Common to these multivariatemethods is the assumption that the
components in the multivariate data are mutually independent, which is usually not fulfilled in the
case of traffic measurement data. Tartakovsky at al. also downplay the prerequisite of uncorrelated
observations arguing that the false alarm rate decays exponentially fast for increasing thresholds [28]
under conditions that are to be usually satisfied. Yet, they do not verify if these conditions are fulfilled
by the data used in their evaluation.

†The authors misleadingly call this approach “EWMA control chart for autocorrelated data” although it actually is a
Shewhart control chart.



6. CONCLUSION

We evaluated the applicability of control charts for detecting traffic anomalies. A necessary
requirement is the removal of systematic changes and serialcorrelation from the measurement time-
series. We showed that both, seasonal variation and serial correlation can be effectively reduced with
robust forecasting techniques based on exponential smoothing. Comparing three different control
charts, we determined that CUSUM, although favored by many related works, does not perform
better than the simpler Shewhart control chart of individuals when applied to time-series of prediction
errors.

Our evaluation based on traffic measurement data collected in an ISP backbone network shows
that many anomalies are provoked by legitimate traffic. To increase or decrease the total number of
alarms, it suffices to adjust the control limits. Yet, according to our experience, the proportion of
alarms that are relevant for the network operator mainly depends on the monitored metrics and the
parts of traffic analyzed.

In order to validate our findings, we will conduct similar experiments with measurement data
obtained in other networks. Moreover, it will be interesting to examine if dependencies between
different metrics can be exploited in a multivariate residual generation process. We observed strong
correlation of the number of bytes, packets, and flows in the traffic measurement data, so the detection
of changes in the correlation structure may allow us to discover anomalies which cannot be detected
in a single metric.
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