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APPLICATION OF FORECASTING TECHNIQUES AND CONTROL CHARTS FOR
TRAFFIC ANOMALY DETECTION

In this paper, we evaluate the capability to detect traffic anomalies with Shewhart, CUSUM, and EWMA
control charts. In order to cope with seasonal variation and serial correlation, control charts are
not applied to traffic measurement time-series directly, but to the prediction errors of exponential
smoothing and Holt-Winters forecasting. The evaluation relies on flow data collected in an ISP back-
bone network and shows that good detection results can be achieved with an appropriate choice and
parametrization of the forecasting method and the control chart. On the other hand, the relevance of
the detected anomalies for the network operator mainly depends on the monitored metrics and the
selected parts of traffic.

1. INTRODUCTION

In control engineering, monitoring mechanisms are deplag®bserve the properties or behav-
ior of a system and raise an alarm if an important parameter out of the range of sound operation.
One monitoring goal is the detection of unexpected changelaracteristic properties of the system
because such changes may be indications of failures, nttilins and wearout. The detection must
be fast to enable manual intervention, recalibration, @harge of erroneous system components
before severe consequences happen. Network monitorimgigsisimilar objectives. One aspect is
the identification of anomalous traffic behavior which caralsggn of network failures or abuses, for
example due to worm or attack traffic.

Change detection methods consider time-series of measatreaiaes and search for points in
time at which statistical properties of the measuremenamgé abruptly, i.e. “instantaneously or at
least very fast with respect to the sampling period of thesueaments” [2]. Before and after the
change, the monitored statistical properties are assumsdaw no or only little variation. Under
these conditions, even small changes can be detected githphobability if they persist for a long
duration.

In general, the more a priori knowledge is available, theegdtsis to detect changes with high
accuracy. For example, parametric methods have more pbaerrion-parametric methods, which
means that they allow us to detect more true anomalies aathe false alarm level (i.e., probability
of an alarm in absence of any significant change). Howeveheifmodel assumption is incorrect,
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parametric methods lose their decisive power and may leadldog decisions. In the case of traffic
anomaly detection, we cannot assume that the monitoreablasi follow a specific distribution, thus

the detection should be non-parametric, or at least rolgahst non-normality. Moreover, changes
should be detected very quickly (i.e., online) without reqg any a priori knowledge about their

magnitude since such information is usually not availabier.

A practical solution to statistical online change detatiwe control charts [16]. In a control
chart, mean and variability of a monitored variable are ab@rized by a centerline (CL), an upper
control limit (UCL), and a lower control limit (LCL). A changes idetected if the measured value
exceeds one of the control limits. This decision can be ftm®d as a hypothesis test with null
hypothesisH, assuming no significant change and alternative hypotli&ssiggesting the opposite.

In this paper, we evaluate the applicability of control ¢bdo the problem of traffic anomaly
detection. More precisely, we analyze time-series of bgsgket, and flow counts which can be
easily obtained from routers via SNMP (Simple Network Mastagnt Protocol), IPFIX [8], or Cisco
NetFlow [9]. These measurement time-series are subjegstermatic changes, in particular seasonal
variation. In addition, dependencies may exist betweeseament observations, noticeable as serial
correlation. Both, systematic changes as well as seria¢lation, need to be accounted for because
most control charts are designed for independent and @igiytdistributed observations. Useful tools
are forecasting techniques which predict future valuesdas what has been observed in the past.
In the optimal case, the prediction errors are small, randord uncorrelated as long as the behavior
of the monitored variable does not change. Hence, we catifiglehanges in the original variable by
applying control charts to the prediction errors.

The main contribution of this work consists of a comparisbiinoee different control charts and
two different forecasting techniques. The consideredrobeharts are the Shewhart control chart,
the CUSUM (cumulative sum) control chart, and the EWMA (expiadly weighted moving aver-
age) control chart, which are commonly used in process mong. With respect to forecasting, we
choose exponential smoothing and Holt-Winters forecgstiwo self-adaptive and robust forecast-
ing techniques which are suitable for our purposes. In eshtto many existing publications, our
evaluation is not based on synthetically generated anemalinstead, we apply our methods to real
flow data collected in the backbone network of an InternetiSeProvider (ISP) and assess the rele-
vance of the detected anomalies by examining their causesevaluation shows that a combination
of Shewhart control chart and exponential smoothing esatped detection results under various
conditions.

Sections 2 and 3 provide the theoretical background of tipdogled control charts and fore-
casting techniques. Subsequently, in Section 4, we eeathatcapability to detect traffic anomalies
with the described methods. Section 5 surveys related appes of using control charts for traffic
anomaly detection before Section 6 concludes this paper.

2. CONTROL CHARTS

A typical control charts contains a center line (CL) repréisgnthe average value of the mon-
itored random variabl&” under normal conditions. Above and below the center line,upper and
lower control limit (UCL, LCL) define the range of normal var@t or in-control state. The decision
function detects a change (or out-of-control state) if treasured valug lies outside this range.

The statistical properties of control charts can be dedfroed the theory of sequential prob-
ability ratio tests (SPRT). If the distribution before aniteathe change are known, the decision



function can be converted into a condition for the log-likebd ratio of the observation
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wherepg(y) is the probability density function df with paramete©. ©, and©, are the parameter
values before and after the change.s(lf) is positive, the monitored random variable more likely
conforms to the distribution after change than to the distron before change. Hence, we can define
a threshold: for s(y) to reject the null hypothesiH, : © = ©, and accept the alternative hypothesis
H, : © = ©, ata given level of significance. The level of significanceresponds to the probability
of a false alarm.

If Y is normally distributed with constant varianeé and means:, and ., before and after

changes(y) becomes:
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If 1 > po, s(y) > his equivalent to the decision function:
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In this equation, the correspondence to the control chativgous: . is the center line and, + Lo
the upper control limit.

As the variance of a single observation is quite high, chatedection methods often consider
a sequence of observatiofig|t = a, ..., b} to increase the power of the hypothesis test. Under the
condition that the observations are independent, theikadjHood ratio of the sequence is:

$(Yar- - yp) = log ——

A hypothesis test based ofty,, ..., y,) corresponds to a control chart for a test statistic that is
calculated fromy,,...y,. An example is the average valge which has an important property:
regardless of the distribution af,  is approximately normally distributed if calculated fronlaage
number of observations, thanks to the central limit theorem

In the following subsections, we introduce three differeoitrol charts, namely the Shewhart
control chart, the CUSUM control chart, and the EWMA contraithFor more detailed information,
we refer to the text books of Montgomery [16] and Basseville [2

2.1. SHEWHART CONTROL CHART

The Shewhart control chart [26] defines UCL, CL, and LCL for aistiatcalculated fromV
observationg/_1)n+1, - - -, yinv- An example statistic is the average vajewhich is appropriate for
detecting changes in the mean:
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If the observations are independent and identically disteéd with mean., and variancer?, 7; is
an unbiased estimator gf, with variances?/N. Hence, the upper and lower control limits can be



defined in the formu, 4+ Lo /+/N with tuning parametef.. An alarm is raised ifj, passes one of
the control limits. As already mentioneg, is approximately normally distributed for largé, thus
the control limits for a given false alarm probabilityare 1o + ®(1 — a/2)o/+/N. However, this
approximation does not hold for sma\l or if the observations are serially correlated.

A special case iV = 1, the so-called Shewhart control chart of individuals. Té¢hart com-
pares individual observations against the control lim@bviously, the central limit theorem does not
apply, thus the distribution af needs to be known exactly in order to define precise limitafgiven
false alarm probability.

2.2. CUSUM CONTROL CHART

The CUSUM control chart (also called CUSUM algorithm) [18] esskbd on the fact theff, =
s(y1,...,y:) has a negative drift under normal conditions and a positiif¢ after a change. The
CUSUM decision functiony; compares the increase 8f with respect to its minimum to a threshold
h:

g = S — min S; = max (0, 5(ye) + gr-1) = [gr-1 + ()" = h 3 90=0

An alarm is raised ifj; exceeds the threshold To restart the algorithny, must be reset to zero.
From the view of hypothesis testing, the CUSUM control chepeatedly performs an SPRT
where each decision considers as many consecutive olises/als needed to accept eithiés or
H,. The CUSUM control chart implicitly starts a new run of SPRTH§ has been accepted, and
stops with an alarm in the case &f. The threshold: allows trading off the mean detection delay
and the mean time between false alarms. If the distributidn i unknown, the log-likelihood ratio
s(y;) must be replaced by a statisti€y;) with comparable properties: the expectation value (g
must be negative undéf, and positive undek; This variant is often called non-parametric CUSUM
algorithm.
An appropriate statistic for detecting positive shifts e tmean isu™(y) = y — (uo + K).
K is called reference value. In order to detect negative skt well, we need a second statistic
u” (y) = (uo — K) — y. As a result, we get two decision functions:

gj:[gttl—i-yt—(,uo—i-[()rzh ; 9;:[9;1+(N0—K)_ytr2h

Typical settings aréd = o/2 andh = 40 or h = 50, whereo is the standard deviation &f [16].

Compared to the Shewhart control chart, CUSUM detects smalpénsistent changes with
higher probability because little effects accumulate divee. Brodsky and Darkhovsky [5] studied
the properties of the non-parametric CUSUM algorithm for ecdjc family of exponential distribu-
tions ofu(y). For this distribution family, the detection delay reackies theoretic minimum if the
mean time between false alarms goes to infinity. As we wiltuks in Section 5, several existing
publications refer to this proof of optimality although tepecific requirements are not fulfilled in
general.

2.3. EWMA CONTROL CHART

The EWMA control chart (c.f. [23,24]) relies on exponentiaaothing of observations. Given
the smoothing constant(0 < A < 1),
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is a weighted average of all observations up to tim&he initial value is the expected mean under
Hy: 2 = po. If the observations are independent and identically ibisted with variancer?, the
variance ofz; approache%a2 for t — oo, which allows the definition of control limits for;:

[
+ Loy ——
Ko o 5\

A and L are design parameters of the EWMA control chart. Popularcglsoare2.6 < L < 3 and
0.05 < X\ < 0.25, where smallei allow detecting smaller shifts [16].

The EWMA control chart has some interesting properties [18]can be tuned to achieve
approximately equivalent results as the CUSUM control cl&etondly, it is quite robust against non-
normal distributions of”, especially for small values of (e.g.,A = 0.05). Finally, after adjusting the
control limits, the EWMA control chart still performs well e presence of low to moderate levels
of serial correlation iry;.

3. RESIDUAL GENERATION BY FORECASTING

Common to all the control charts presented in Section 2 isgheraption that the observations
are independent and identically distributed under norroatitions. This corresponds to the output
of a stationary random process that generates uncorrelabeels. Such a process is also called pure
random process.

There are various reasons why traffic measurement dataexg@mificant deviation from the
output of a pure random process. Non-stationarities résuit trends as well as dependencies on the
time of day, the day of the week etc. Serial correlation isseduby internal network states which
cannot change arbitrarily from one instant in time to thetnErr example, the number of packets in
the network evolves according to a birth-death processribpg on the arrival times and processing
times.

We can identify systematic changes in the mean or varianeeshglly inspecting the measured
values over time. Systematic changes as well as seriallaborealso have an impact on the sample
autocorrelation, which is calculated as follows:

?;T (v — U) (Yesr — Ut)
T, = ~ —
> ic1 (?Jt - ?Jt)

In the above equationy is the number of observations andhe lag between two instances of time.
If r, is not decreasing with increasing or if it shows periodic oscillation, the observations dd no
resemble the output of a stationary random process. In e ala pure random process, the 95%
confidence interval of, is [-1/N — 2/v/N; —1/N + 2/+/N] for all 7. Hence, if a non-negligible
number ofr,’s lie outside this range, the process is not purely random.

Time-series analysis allows modeling and removing systiershanges and serial correlation
with help of the Box-Jenkins approach [4] . However, fittingaoturate ARIMA (autoregressive
integrated moving average) model is difficult and requirksg series of anomaly-free observations.
Therefore, robust forecasting methods based on expoheni@othing are preferred [7], especially
for online applications. Forecasting relies on the assignghat the temporal behavior observed in
past observations persists in the near future. Hence, auaty large prediction error is an indicator
of a change in the monitored random variable. The predi&roors are also called residuals because
they represent the variability not explained by the foréngsmodel.




In the following subsections, we present two popular foséog techniques that we will use
in Section 4 for residual generation: exponential smogflaind Holt-Winters forecasting. In order
to define appropriate limits for the control charts, we needdtimate the standard deviation of the
residuals under normal conditions. How this can be achievegplained in Section 3.3.

3.1. EXPONENTIAL SMOOTHING

Exponential smoothing allows predicting future values byedgghted sum of past observations:

(1— O‘)tiiyi + (1 — O‘)tilyl = oy, + (1 — )y,
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This is the same exponentially weighted moving average @d usthe EWMA control chart. The
distribution of the weights is geometric and gives more \weig recent observations. Forecasting
according to the above equation is optimal for an infinitdeotMA (moving average) process, which
is equivalent to an ARIMA(0,1,1) process [7]. Yet, exponahsmoothing is very robust and also
provides good forecasts for other trendless and non-sekisme-series. The optimal value farcan
be approximated by trying different values and choosingathe with the smallest residual sum of
squares.

3.2. HOLT-WINTERS FORECASTING

Holt-Winters forecasting combines a baseline comporgntith a trend componerit; and a
seasonal componefit
U1 = Ly + T, + I

Ly, T;, andl, are recursively updated according to the following equnetio
Li=o(yy — L1—s) + (1 — a)(Ly—1 + T}—1)

Ty =B(Ly — L) + (1 = B) Ty
I =9(ye — L) + (1 =)L

a, 3, andy are smoothing parameters which have to be set to appropsahtes in the rang@, 1). s

is the length of one season counted in time intervals. Theeadguations include an additive seasonal
component. Alternatively, the seasonal component cantesaodeled in a multiplicative way. For
more details, we refer to [7] and the references therein.

3.3. CONTROL LIMITS AND STANDARD DEVIATION ESTIMATORS

As we have seen in Section 2, control limits are usually ddfiedatively to the standard de-
viation o of the monitored random variable. If we apply control chaasesidual time-series of
prediction errors; = y, — v, the standard deviation has to be estimated. We could eadctile sam-
ple variance from a finite set of past residuals. Howeves, ¢lstimation is very sensitive to outliers
and does not reflect dynamic changes in the variance. Thierefe make use of a moving estimator
which is based on exponential smoothing. For a given meaihe exponentially weighted mean
square error (EWMS) is a variance estimator:

67 = ple — p)* + (1 = p)o7,



Since the mean of the residuals is approximately zero unai@nal conditions, we can sgt= 0 in
the above equation.

4. EVALUATION

We evaluated the capability to detect traffic anomalies Wélp of the forecasting techniques
and the control charts presented in the previous sections. e@luation is based on traffic mea-
surement data collected in the Gigabit backbone network refggonal ISP between September 7
and October 25, 2006. The operation area of the ISP covets gfg8aarland, Rhineland-Palatinate,
Hesse (all federal states in Germany), Luxembourg, and BalgAt measurement time, the offered
services ranged from server hosting and colocation to VRiXisraodem, ISDN, and DSL dial-in
service. Customers were corporate clients, local carneening providers, and small and medium
enterprises. The measurements were performed at a roungrwssampled Cisco Netflow.v5 with
active and idle flow timeouts set to 150 seconds. The roufeoréad the resulting flow records to a
collector which stored them in a database after anonymibiedP addresses.

Our evaluation is not based on individual flows but on timeeseof the number of bytes,
packets, and flows counted in equally spaced time intertzsh flow record was associated with the
time interval in which the first packet passed the router. ifkerval length was set to 300 seconds
(i.e., twice the flow timeout) in order to reduce possiblegdatisons in the byte and packet counts
that may result from long-lasting high-volume flows whicle aeported at the period of the active
timeout. The flow count was determined as the number of distif+five-tuples (i.e., cardinality of
combinations of protocol, source and destination IP adgeéieand port numbers) to prevent manifold
counting of flows reported in more than one records per timerval.

We implemented the forecasting techniques and controtsiaiGNU Octave [11]. This ap-
proach enabled us to analyze the time-series data withreliffeorecasting methods and control
charts. For online traffic analysis, the detection mechmasisan be integrated into a real-time system,
for example as a detection module of our traffic analysis &aork TOPAS [17]. We determined the
reason for the detected anomalies by identifying the resptanflows. Furthermore, we assessed the
importance and relevance of the alarms for the network opera

In the following subsections, we present the results foetsaries of overall IP traffic, ICMP
traffic, and SMB (Server Message Block) traffic. The objeciiv® answer the following questions:

e Which forecasting method is the most appropriate to geneeatdual time-series?
e Which control chart provides the best detection results vepptied to these residuals?
¢ In which part of the traffic and in which metric do we find the miogeresting anomalies?

We do not aim at finding the optimal solution, which is diffictégarding the numerous degrees of
freedom. Also, the result would be limited to the specificifeneasurement data. Instead, we are
interested in recommendations that allow achieving gosdltge under various conditions.

4.1. ANOMALY DETECTION IN OVERALL IP TRAFFIC

Figure 1 depicts the time-series of the total number of hypaskets, and flows in the mea-
surement period. All three metrics show a daily cycle of Ialues at nighttime and high values at
daytime. Furthermore, we observe a weekly cycle with higredfic on weekdays and lower traffic
at weekends. October 3 is a public holiday in Germany, whesults in slightly decreased traffic
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Fig. 1: Measurement time-series of total traffic

volume on this day as well. The regular run of the curves srmpted by isolated peaks which are
obvious traffic anomalies. Most of the time, a peak in one imewincides with a peak in another
metric. Yet, we rarely observe extreme values in all thre&ioggesimultaneously.

In order to cope with the seasonal variation, we apply exptalesmoothing and Holt-Winters
forecasting and use the prediction errors as residual senes. Given the measurement time-series
y:, We initialize the Holt-Winters components as follows:

LSZO ) TSZO y [l:yz forizl,...,s

The seasonal period is set4o= 288 or s = 2016 to account for daily or weekly seasonality. With
exponential smoothing, we obtain the first prediction vdared residual) in the second time interval
(t = 2). In contrast, Holt-Winters forecasting requires the firgalues for initialization, thus the first
residual is generated at= s + 1. To get comparable results, we only count the alarms raifed a
time intervalt = s.

Figure 2 shows the residual time-series of byte counts feethlifferent configurations of ex-
ponential smoothinga{ = 1, o = 0.5, anda = 0.1) and one setup of Holt-Winters forecasting with
additive seasonal component £ 288, o = 0.1, = 0.001, v = 0.25). In the case ov = 1,
the residuals are simply the differences of consecutivesoreaent time-series values. Except for
exponential smoothing withr = 0.1, the seasonal variation of the mean is successfully removed
However, the variability of the residuals still depends ba time of day. Regarding the different
settings for exponential smoothing,= 0.5 provides the best results: obvious anomalies in the orig-
inal data appear as peaks, whereas the variability duringaldraffic is relatively low. This visual
impression is confirmed by the mean squared prediction,evtoch is the smallest for this setting.

Similar to our examinations of exponential smoothing, wstdd various parameterizations of
Holt-Winters forecasting with different smoothing comgt seasonal periods of one day and one
week, additive and multiplicative seasonal componentse Jétting shown in Figure 2 effectively
reduces the seasonal variation and exposes various aesnialthe measurement data. Yet, the
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Fig. 2: Residual time-series (prediction errors) of bytarus

additional complexity of Holt-Winters forecasting doed seem to ensure better results than simple
exponential smoothing: the residual time-series of thertvedhods turned out to be quite similar. A
possible explanation is that the seasonal period is very (288 or 2016 intervals), hence the effect
of the seasonal variation on consecutive values is verylsmal

Figure 3 shows the sample autocorrelation of the originé lopunt time-series and the cor-
responding residuals. As expected, the seasonality of rilggnal measurements reappears in the
autocorrelation plot. On the other hand, the serial catimian the residual time-series attenuates
quite quickly.

We applied the Shewhart control chart of individuals, the-sidded CUSUM control chart, and
the EWMA control chart to the residual time-series. Contnalits were defined as multiples 6f
which was estimated by EWMS (see Section 3.3). The smoottongtantp controls how quickly
the limits adapt to variability changes in the predictioroes. For our purposeg,= 0.01 turned out
to be a good setting.

Figure 4 shows the measurement time-series of byte countspoand three control charts
applied to the residuals of exponential smoothing belove parameters of the control charts are as
follows:

e ShewhartUCL = —LCL = 66
e CUSUM:K =6; h =66
e EWMA: A\ = 0.25; UCL = —LCL = 56/ 5

The Shewhart control chart shows the residual time-sendslee corresponding control limits. The
CUSUM control chart depicts the maximum of the two CUSUM stiatis;,” andg, as well as the
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Table 1: Byte Anomalies Detected in All Control Charts

Day Cause

08/09
24/09
29/09
06/10
11/10
18/10
21/10

FTP download (640 MBytes at 1 MByte/s on average)
RSF-1 data transfer (approx. 310 MBytes)

HTTP download (approx. 160 MBytes)

High SMTP traffic during 3 hours in the night

HTTP download (peak of 355 MBytes in one interval)
HTTP download (peak of 195 MBytes in one interval)
HTTP download (peak of 524 MBytes in one interval)

thresholdh. The EWMA chatrt finally shows the exponentially smootheddeslsz; and the control
limits.

The dotted vertical lines in Figure 4 mark the intervals inichhthe corresponding value is
beyond the control limits. We obtained 11, 15, and 11 alaiwnsShewhart, CUSUM, and EWMA,
respectively. Some of them are so close to each other thatcdre hardly be distinguished in the
figure. Table 1 lists the set of anomalies that are detectedl three charts. For each anomaly, we
identified the responsible flows and found that most of thenadavere caused by large downloads
from web or file servers. What we describe as RSF-1 data traindfee table is a large flow to UDP
port 1195, which has been registered by High-Availabilityn [13] for a high-availability and cluster
middleware application. Very probably, these downloagsasent legitimate traffic. However, we
detected anomalous high SMTP traffic on October 6 lastingéweral hours, which is a sign of a
mailbomb triggered by spammers or a worm propagating viai-riviost of the remaining alarms
not mentioned in the table could be explained by the sameskiidHTTP, FTP, and RSF-1 traffic.
Though, some of the alarms trigged by the CUSUM and EWMA couwtratts could not be associated
to any unusual pattern in the flow records.

Some of the detected anomalies also appear as extreme wathe®riginal measurement data.
Hence, they could be detected with a threshold applied tdoyie counts directly. Others, such as
the mailbomb, do not cause extraordinarily high byte couirgs they can only be detected in the
residuals.

We applied the same control charts to the Holt-Winters tedgland obtained similar results
as for exponential smoothing. Furthermore, we examineaifenmteresting anomalies can be found
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Fig. 4: Control charts applied to ES residuals=€ 0.5) of byte counts

in the packet and flow counts or in any ratio of the three bagtrios, such as the average number
of bytes per flow. Packet and byte counts triggered the saarenal A couple of new anomalies
were found in the flow counts. One of these alarms is the redudtlarge number of short SSH
connections from one client to multiple servers, a patteat inay be caused by a massive password
guessing attempt. Another alarm coincides with a time watlein which the traffic abruptly breaks
down, possibly due to a network failure. Regarding the anm®dbund in the ratios, we did not
notice any improvements compared to the basic metrics esbyackets, and flows.

As a result, we conclude that residual generation usingrexpiial smoothing techniques and
change detection with the Shewhart control chart of indiaid enables the detection of traffic anoma-
lies with relatively low computational complexity. The CUBUand EWMA control chart did not
provide better detection results but raised additionainadathat could not be linked to anomalous
traffic behavior. In the EWMA control chart, the moving avegdlattens short peaks in the residuals
and thus hampers their detection. However, such peakd fesul abrupt changes in the original
measurement data, which are events we definitively wanttecte

An appropriate level of the control limits needs to be deteed by experimentation in order to
focus on the most significant anomalies. Among the detectenhalies in the overall traffic, the mail-
bomb, the password guessing attempt, and the networkdaal@ the most interesting events for the
network operator. However, the majority of the alarms issealby legitimate traffic, independently
of the considered metric.
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Fig. 5: Measurement time-series of ICMP traffic

4.2. ANALYZING ICMP TRAFFIC

As part of the Internet protocol suite, the Internet Contr@dglage Protocol (ICMP) is mainly
used for exchanging error messages, for example, if a ndntast cannot be reached due to link or
routing problems. ICMP is also used for network testing armidging purposes (e.g., using ping and
traceroute commands) and self configuration in local IP agts: As ICMP is not directly involved
in the transport of user and application data, we expect almhtime-invariant level of ICMP traffic
under normal conditions. Indeed, we can observe this behavithe byte and packet time-series
shown in Figure 5. In contrast, the number of flows shows dailyation, yet less pronounced than
in the overall traffic.

We adopted the most promising approach from Section 4.1elyatme Shewhart control chart
applied to the residuals of exponential smoothing= 0.5), to detect anomalies in the ICMP traffic.
Control limits at+64, as used before, generated a very large number of alarmyte®iahd packet
counts. Therefore, we increased the control limitst&> in order to focus on the most significant
anomalies.

The anomalies found in the byte and packet time-series stellin Table 2. Many alarms are
triggered by both metrics, especially those caused by pafGa (ICMP echo requests and replies).
Sporadic occurrences of ping traffic at moderate rate aresugpicious, hence the corresponding
alarms are not of much interest. The extremely high imputs&eptember 14 is the result of one
host pinging another host at very high rate, which can be msigan attack. Though, as the ping
is very short, we think that it was executed for debuggingppses. Apart from ping traffic, many
traffic anomalies are caused by destination unreachablsages, most of them reporting that a large
packet could not be fragmented due to the ‘don’t fragmentirbthe IP header. The corresponding
ICMP messages are quite large because they include a settiendyopped packet. Therefore, these
anomalies are mainly detected in the number of bytes.

As can be seen in Table 3, the flow count residuals exceed titeotdimits only six times.



Table 2: Shewhart Alarms for ICMP Traffic: Bytes and Packets

Time Bytes alarm  Packets alarm  Cause
11/09 09:00 X Echo replies from/to one host
12/09 15:15 X Ping (moderate rate)
14/09 13:50 X X Ping flood (very high rate)
14/09 14:25 X Ping flood (very high rate)
14/09 14:40 X Ping flood (very high rate)
19/09 14:00 X X Echo replies from/to one host
21/09 15:30 X X Destination unreachable (fragmentationired)
24/09 08:25 X Destination unreachable (fragmentationiredu
29/09 10:40 X X Ping (moderate rate)
29/09 11:15 X Ping (moderate rate)
29/09 11:30 X Ping (moderate rate)
05/10 16:35 X Destination unreachable (fragmentationiredu
06/10 18:00 X Destination unreachable (fragmentationiredu
10/10 10:00 X X Time exceeded from one host
13/10 07:50 X Destination port unreachable
16/10 16:45 X Destination unreachable (fragmentationiredu
17/10 09:55 X X Ping (moderate rate)
19/10 09:30 X X Ping (moderate rate)
21/10 23:00 X Destination unreachable (fragmentationiredu
25/10 15:35 X Ping (moderate rate)
Table 3: Shewhart Alarms for ICMP Traffic: Flows
Time Cause

13/09 14:45 Destination port unreachable from many sourcese host

15/09 19:40 ICMP scan followed by TCP connections to portE338BT)

30/09 11:05 ICMP scan followed by TCP connections to por31438S SQL)

19/1012:20 ICMP scan followed by TCP connections to por&933VBT) and 1433 (MS SQL)
24/10 13:20 Ping at moderate rate to five hosts

25/10 05:40 ICMP scan followed by TCP connections to portar@gd3128 (HTTP proxies)

None of these alarms coincides with any of the byte and pad&ens. Examining the flow records,
four of the alarms can be explained by ICMP echo requests gentlyidual hosts to a few hundred
IP addresses. Echo replies are returned from a small piopat the scanned IP addresses only. To
these destinations, the scanning host then tries to estabP connections on ports 3389, 1433, 80,
or 3128 which are used by Microsoft remote desktop (Windbased Terminal, WBT), Microsoft
SQL server, and HTTP proxies, respectively. ICMP scans guiedily performed with help of auto-
mated network scanners in order to detect active hostsdiffisult to assess if the observed traffic is
harmful or not. Maybe the scans served testing and debuggirmpses. This assumption is fortified
by our experience that malware and worms usually try to &sta®CP connection directly without
preceding ICMP scans. However, it has been recently reptreadCMP scans are more and more
frequently deployed in advance of an infection attempt gjvell.

Having a look at Figure 5, we see that the number of flows i®E®ed between October 5 and
October 10. After decreasing the Shewhart control limitt@, this anomaly is also detected in
the flow count residuals. We examined the flow records anddesed that the increase is caused



by ICMP destination unreachable messages sent from diffemmrces to one specific host. Two
different error codes are reported: host unreachable amdncmication administratively prohibited.
The second one is returned by routers or firewalls if a packeliscarded because of a blocked
destination IP address or port number. The host receivirigede messages thus had to be emitting a
lot of packets to non-existing or blocked destinations ek} we found a lot of outgoing connection
requests from this IP address to TCP ports 445 (Microsoftdn#)139 (Netbios) during five days. On
Microsoft Windows systems, these ports are well-known fangnvulnerabilities which are exploited
by worms.

All'in all, anomalies found in the ICMP traffic give the netwookerator valuable insights in
the current state of the network. An anomalous increaseeohtimber of destination unreachable
messages indicates a network failure or the occurrence @fadar UDP scan performed by worms
or hackers. Large numbers of ICMP flows are mostly caused by I€84Rs which do not represent
an instantaneous security threat but often reveal oth@i@ass traffic, such as connection attempts
to specific TCP ports following a scan.

4.3. ANALYZING SMB TRAFFIC

Motivated by the findings in the ICMP traffic, we analyzed TCHfizego and from port 445.
Since Windows 2000, this port is used by Microsoft for file gmihter sharing in local area networks
via the SMB (Server Message Block) protocol. However, vidbéities in this service are also being
exploited by worms to infect unprotected computers in thisvagk. A prominent example is the
Sasser Worm which has been spreading over the Internet20ze

For our analysis, we consider the difference of TCP traffictd &tom port 445. The plots
in Figure 6 show the corresponding time-series for the nurobbytes, packets, and flows. As can
be seen, all metrics have small values close to zero mosedirtite and do not show any seasonal
variation. Between October 5 and 9, we observe longer peobldsge positive values, which means
that many more bytes, packets, and flows are directed to gbrtivan returned. During this time, we
also observed an increased number of ICMP destination umebcmessages. Indeed, the anomalies
in the ICMP and SMB traffic are related to each other: the emitt¢he SMB traffic is the receiver
of the ICMP traffic. As mentioned in Section 4.2, the host i/y@obably infected by a worm trying
to connect to randomly chosen destinations.

As before, we applied Shewhart control charts to the priedierrors of exponential smoothing.
We set the control limits tac104 in order to get a reasonably small number of alarms. We obdain
23 alarms for the byte count residuals, 12 alarms for the gtambunt residuals, and 13 alarms for
the flow count residuals. While many of the byte and packetredaare caused by non-suspicious
SMB traffic (e.g., data transfers between two hosts), alhefftow alarms are triggered by scanning
activities. Four of the flow alarms are related to the worfeéted host already mentioned, the
remaining alarms are caused by short scans originating thffierent IP addresses. These scans
probably belong to worm traffic generated in distant netwptikus only parts of it are observed by
the router.

4.4, DISCUSSION OF RESULTS
Our evaluation demonstrates the applicability of foraogstechniques and control charts for

detecting traffic anomalies in time-series of byte, pac&at flow counts. The prediction error of
exponential smoothing with smoothing constant 0.5 turned out to be a robust residual generation
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Fig. 6: Measurement time-series of SMB traffic

method which provides good results for various traffic nestrAmong the examined change detection
mechanisms, the Shewhart control chart of individuals wdirke despite of its simplicity. The lack
of knowledge of the residuals’ distribution under normahaitions inhibits the calculation of exact
control limits for a given false alarm level. Yet, the sendy of the detection can be very easily
adjusted by defining empirical control limits as multipldghe estimated standard deviation.

From a theoretical point of view, CUSUM and EWMA control chaate better in detecting
small sustained shifts in the mean. However, the foreqgdtased residual generation is character-
ized by a differentiation effect: abrupt changes in the messent time-series result in short impulses
in the prediction errors. Therefore, sustained shiftslyasecur in the residual time-series monitored
in the control charts.

The relevance of the detected anomalies depends very muttieamalyzed traffic and the
considered metrics. Most byte and packet anomalies detéctéhe overall traffic as well as in
the SMB traffic were caused by large data transfers. Amonsgtliinteresting alarms, events of
actual importance risk to go unnoticed. Therefore, it isisalle to monitor traffic metrics that are
less influenced by unpredictable but legitimate behaviarsefrs and applications. Examples are the
numbers of ICMP and SMB flows as well as the number of ICMP detstimanreachable messages.
where most anomalies are caused by suspicious traffic.

In our approach, control limits are calculated relativelytte EWMS estimation of the standard
deviation. The benefit of this approach is that the limitsaiyically adapt to changes in the residuals.
However, we do not stop the update of the limits if an anomslgiatected. Therefore, the control
limits are often increased to very high values after an alasncan be observed in Figure 4. This
problem could be solved by temporarily suspending the @wdathe EWMS estimator after the
detection of an anomaly.



5. RELATED WORK

Hood and Ji [14] convert MIB variables into a measuremeneisaries, eliminate serial cor-
relation by fitting an AR(2) model, and detect network faikine the AR parameters. Hellerstein et
al. use the GLR (generalized likelihood ratio) algorithmditect anomalies in the number of web
server requests per five minutes interval [12]. System#idnges are eliminated by estimating daily
and weekly variations as well as monthly trend from a setahing data. In addition, an AR(2)
model is fitted to remove the remaining serial correlatiorutBy [6] employs Holt-Winters forecast-
ing to model baseline, trend, and daily variation in the oirg traffic of a web server. Barford et
al. [1] apply Holt-Winters forecasting to time-series otckat, byte, and flow counts as a reference
anomaly detection approach for their own detection medmamiased on wavelets. The evaluation
yields similar detection performance for the two approache

Ye et al. use EWMA control charts to detect anomalies in cosmpauidit data [32]. The results
are compared to those obtained with a Shewhart individuaisral chart applied to the prediction
errors of exponential smoothing_ike in our work, the control limits depend on the EWMS estiena
of the standard deviation. Paul [19] adopts this method ébecting denial-of-service attacks against
web servers.

The optimality of the CUSUM algorithm [5] is frequently brauigup to justify its usage for
traffic anomaly detection. For example, Wang et al. depley@uUSUM algorithm to detect SYN
flooding attacks. The considered metrics are calculaten ftee number of TCP SYN, FIN, and
SYN/ACK packets [30, 31]. Peng et al. [20] apply the CUSUM aiidpon to the number of RST
packets returned in response to SYN/ACK packets in order tiectieeflector attacks. In [21], the
same authors count the number of new source IP addresseseti distributed denial-of-service
attacks. Siris and Papagalou [27] use exponential smaptioirgenerate prediction errors for the
number of SYN packets. The residuals serve as input to CUSUMdar to detect SYN flooding
attacks. Similarly, Rebahi and Sisalem [22] use the numbeBIBf (Session Initiation Protocol)
INVITE messages to detect denial-of-service attacks agy@ihP servers. In order to be optimal,
the CUSUM algorithm must be applied to a time-series of inddpat observations belonging to a
specific family of probability distributions. However, n@of these works shows that these conditions
are fulfilled, hence it is unsure if the CUSUM algorithm acly# the best choice.

The research group of Tartakovsky has proposed severalagpes to apply the CUSUM con-
trol chart to multivariate data. In [3] and [29], they calatd a chi-square statistic as input for CUSUM
in order to detect denial-of-service attacks. For the sampgse, the multichart CUSUM algorithm
proposed in [15] and [28] performs separate tests on eacpaoemt of the multivariate data. Salem
et al. apply the multichart CUSUM algorithm to the entries afaaunt-min sketch to detect SYN
flooding attacks and scans [25]. Common to these multivamegthods is the assumption that the
components in the multivariate data are mutually indepetidehich is usually not fulfilled in the
case of traffic measurement data. Tartakovsky at al. alsmplay the prerequisite of uncorrelated
observations arguing that the false alarm rate decays expiafly fast for increasing thresholds [28]
under conditions that are to be usually satisfied. Yet, tloeyat verify if these conditions are fulfilled
by the data used in their evaluation.

TThe authors misleadingly call this approach “EWMA controhdhfor autocorrelated data” although it actually is a
Shewhart control chart.



6. CONCLUSION

We evaluated the applicability of control charts for detegttraffic anomalies. A necessary
requirement is the removal of systematic changes and senigdlation from the measurement time-
series. We showed that both, seasonal variation and serralation can be effectively reduced with
robust forecasting techniques based on exponential smgotlfComparing three different control
charts, we determined that CUSUM, although favored by mafgte@ works, does not perform
better than the simpler Shewhart control chart of individwehen applied to time-series of prediction
errors.

Our evaluation based on traffic measurement data collectad ISP backbone network shows
that many anomalies are provoked by legitimate traffic. Twaase or decrease the total number of
alarms, it suffices to adjust the control limits. Yet, acaogdto our experience, the proportion of
alarms that are relevant for the network operator mainlyeddp on the monitored metrics and the
parts of traffic analyzed.

In order to validate our findings, we will conduct similar expnents with measurement data
obtained in other networks. Moreover, it will be interegtito examine if dependencies between
different metrics can be exploited in a multivariate residgeneration process. We observed strong
correlation of the number of bytes, packets, and flows inrdié¢ measurement data, so the detection
of changes in the correlation structure may allow us to discanomalies which cannot be detected
In a single metric.
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