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Abstract— With the wide deployment of flow monitoring in
IP networks, the analysis of the exported flow data has become
an important research area. It has been shown that flow data
can be used to detect traffic anomalies, DoS attacks, and the
propagation of worms. In practice, anomalies and attacks should
be detected as fast as possible in order to allow taking appropriate
countermeasures. We describe the necessary steps from the raw
flow data to the detection result in a systematic way. Furthermore,
we present TOPAS, a system and framework for real-time
analysis of flow data, that has been developed in order to
meet these requirements. Performance measurements and various
application examples point out the capabilities and benefits of our
approach.

Index Terms— network monitoring, flow analysis, anomaly and
attack detection

I. INTRODUCTION

The operation of a computer network is a challenging
task, especially if the network is connected to or part of
the Internet. One reason is the increasing complexity of the
Internet itself, which is characterized by the interconnection
of lots of different devices and device types operated in
multiple network domains and controlled by separate network
management authorities. Even though Internet protocols have
been designed to cope with such heterogeneous environments,
unpredicted failures and unintended misconfigurations as well
as deliberate attacks against the network infrastructure cause
frequent problems. On the other hand, a pure best-effort
service as provided in the early days of the Internet is neither
sufficient for many modern interactive or real-time applications
nor acceptable to the more and more discerning users. As a
consequence, operators need to monitor and supervise their
network permanently in order to guarantee proper functioning
and detect and mitigate network problems and quality-of-
service degradations rapidly.

As an important prerequisite for time-critical network oper-
ation tasks, many modern network devices support monitoring
functions that offer monitoring data with low latency. The
export of flow data is such a monitoring function that allows
retrieving information about the traffic currently observed at
a monitoring device, which may be a router or a stand-alone
network monitor. A flow is defined as a unidirectional stream
of IP packets that share a set of common properties; typi-
cally, the IP-five-tuple of protocol, source and destination IP
addresses, source and destination ports is used. The exported

flow data comprises statistics about the observed flows, such
as the number of octets and packets measured within a given
time interval. One well-known representative of this technique
is the Netflow technology developed by Cisco [1]. In order
to provide interoperability among different monitoring device
manufacturers, the IETF is currently standardizing the IPFIX
(IP Flow Information Export) protocol [2] which can be used
for the export of monitoring data.

While flow data is currently mainly evaluated for account-
ing purposes, it also carries valuable information for traffic
analysis. It allows examining the traffic composition and
drawing conclusions concerning the originating applications
and services. It also enables discovering periodical changes
and temporal trends. Furthermore, it can be used to detect
and analyze traffic anomalies caused by network problems
or illegitimate attack traffic. Especially in the latter case, it
is important that the examination of the flow data occurs
in a timely manner, enabling the network administrator to
evaluate the detection results and to decide on appropriate
countermeasures.

For this purpose, we designed and implemented a system
called TOPAS (Traffic flOw and Packet Analysis System).
TOPAS works as collector for flow data exported via Cisco
Netflow and/or IPFIX and provides a framework for user-
defined detection modules that simultaneously analyze the
received data in real-time. Similarly, packet data exported
via PSAMP [3] can be received and analyzed. We currently
deploy TOPAS in the demonstrator of Diadem Firewall1 to
detect various kinds of denial-of-service (DoS) and distributed
denial-of-service (DDoS) attacks. The main contributions of
this paper are as follows:

• We describe the generic procedure of analyzing flow data
for real-time anomaly and attack detection by decompos-
ing it into three principal steps. These steps represent a
generic model for all kinds of detection mechanisms, yet
their actual implementations have to be adapted to the
deployed detection algorithm (Section II).

• We present the functional properties of TOPAS and
describe its system design. Performance measurements
show that TOPAS is able to cope with high amounts

1Diadem Firewall is a European research project and partly funded by the
European Commission (FP6 IST-2002-002154).



of flow data as measured in enterprise and university
networks or even larger carrier networks (Section III).

• We explain how TOPAS is deployed in Diadem Firewall
to detect DoS and DDoS attacks and identify the entry
points of attack packets with spoofed source addresses.
In addition, we show that TOPAS can also be used for
analyzing packet-based monitoring data (Section IV).

With an overview on related work (Section V), we point out
that most existing systems are optimized for offline analysis of
flow data or offer only near real-time processing capabilities.
A conclusion summarizes the paper (Section VI).

II. REAL-TIME ANALYSIS OF FLOW DATA

Flow accounting has become a widely deployed monitoring
technique in IP networks. Flow data is composed of flow
records that contain statistics about individual flows. A flow
is defined as a unidirectional stream of IP packets that are
observed at an observation point in the network and that
share a set of common properties called flow keys in IPFIX
terminology [4]. Even though the IP-five-tuple is usually used
as flow keys, other distinguishing criteria are also possible.
For example, flow aggregates may be monitored instead of
individual flows [5]. Cisco’s Netflow is the most popular
representative of this technology. There are different versions
of Netflow. Netflow.v5 is mostly supported by routers in
use today. In our work, we focus on the latest version
Netflow.v9 [1] and the new IETF standard IPFIX [2] which
enable flexible structures for flow records by using a template
mechanism. Nevertheless, our considerations are also valid for
flow data received via Netflow.v5 or similar protocols.

The analysis of exported flow data for anomaly and attack
detection can be decomposed into three principal steps:

1) Flow data is received from the monitoring devices and
decoded.

2) The flow data is normalized and preprocessed in order
to provide appropriate input to the detection algorithm.
Only a subset of the received flow data may be selected
for the analysis, such as flows directed to or originating
from a specific network, or flows of a particular protocol
(e.g. TCP).

3) Finally, a detection algorithm is applied in order to
discover network anomalies or attacks.

In general, these steps can be regarded to be independent. Even
though the detection algorithm requires input in a specific
format, it can be used in combination with different variants
of step 2 as long as the correct format is provided.

As we are interested in analyzing flow data in real-time,
all the tasks mentioned above are time-critical. Especially
those tasks that are applied to each record in the flow data
must be simple enough to be performed at the rate of the
incoming records. Furthermore, it is necessary to reduce the
amount of data at an early stage since high data rates are not
only challenging with respect to real-time processing but also
with respect to memory requirements. In the following, we
elaborate on the three processing steps and explain how they
should be designed to be compatible for real-time deployment.

A. Receiving and Decoding Flow Data

Receiving and decoding flow data is the basic functionality
of a collector. It is possible to simultaneously receive flow data
from multiple monitoring devices. The collector functionality
mainly depends on the protocol in use (e.g. Cisco Netflow or
IPFIX).

The decoding of Netflow.v5 data is relatively simple as it
contains flow records of constant length and format. Decoding
Netflow.v9 and IPFIX data is more complex. Here, templates
define the record structures using semantic field types called
information elements in IPFIX terminology [6]. Before ex-
porting flow data with a new template, a monitoring device
sends the corresponding template information to the collector.
Thus, the collector is capable of decoding and interpreting the
received flow data correctly.

In order to optimize for real-time deployment, we can
restrict the decoding on the part of flow data that is actually
needed for the analysis. On the other hand, it is advantageous
to exploit the configuration capabilities of the monitoring
devices to adapt the exported data to the receiving capabilities
of the collector as well as to the requirements of the detection
algorithms. This adaptation can be achieved by

• activating packet filtering and/or sampling,
• deploying appropriate flow keys and/or flow aggrega-

tion [5],
• defining appropriate templates that contain the necessary

information,
• tuning the flow expiration parameters as suggested in the

following subsection.
Usually, such an optimized configuration also saves resources
at the monitoring device and in the network since it prevents
unneeded measurements and the export of useless or redundant
information.

B. Normalization and Preprocessing

Raw flow data usually requires some normalization and pre-
processing in order to become appropriate input for detection
algorithms. This subsection explains why such normalization
and preprocessing is required and how we can achieve this.

First of all, flows can be measured with different flow keys.
If flow records with different flow keys are to be analyzed
jointly, special care is necessary in order not to bias the
analysis results.

Another normalization issue concerns flow timestamps.
Flow statistics such as octet and packet counters are typically
exported in conjunction with the timestamps of the first
and the last counted packet. However, these timestamps do
not necessarily indicate the actual beginning and end of a
packet stream. They rather depend on the flow expiration and
export policy deployed by the monitoring device. Generally, a
flow is considered to be terminated if no more packets have
been observed for a given timeout. Yet, this assumption does
not hold for packet streams showing sporadic traffic only.
The monitor may also utilize transport header information
about the connection state (e.g. TCP FIN or RST flags) to
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Fig. 1. Relationship between packet, flows, records, and time-series

detect the termination of a flow, however this is not possible
for connection-less transport protocols. In order to keep the
number of flow states in the monitoring device at a reasonable
level, statistics of long-lasting flows are exported at a periodic
basis. Timeouts and export intervals are often configurable
parameters, i.e. they may vary from monitoring device to mon-
itoring device. As a consequence, observing identical traffic
results in different compositions of flow records, depending on
the type and configuration of the deployed monitoring device.

A common solution to achieve temporal normalization of
flow data is to calculate octet and packet counters for prede-
fined equally spaced time intervals. This results in a multivari-
ate time-series. Figure 1 illustrates the temporal normalization
of flow data for short-term, sporadic, and long-lasting flows.
As can be seen, the start and end timestamps of a flow record
do not necessarily fall into the same time interval used to
calculate a time-series value. The question is if such flow
records are accounted to only one interval, which causes a
certain inaccuracy, or if it can be partitioned to contribute
proportionally to all concerned intervals. However, this kind
of interpolation can only be a rough estimation of the traffic
that was actually observed at the monitoring device. Another
problem is that the existence of a flow is unknown to the flow
analyzer until it has been reported. In the example shown in
Figure 1, no record about the long-lasting flow is exported in
the second interval although packets are being observed. Thus,
if we wanted this flow to contribute to the time-series value in
the second interval, we would have to wait for the delayed
record. A practical way to achieve time-series values with
acceptable accuracy is to configure the monitoring devices
with short timeouts and to choose significantly larger values
for the time-series intervals. In this case, a flow record can
be accounted to an interval according to its end timestamp or
simply according to its arrival time at the collector without
causing to much deviation.

While the normalization of flow data is very similar for
different kinds of analysis, we need additional preprocessing to
adapt to the input requirements of the detection algorithm. As
an example, volume-based anomaly detection methods require
the total number of octets or packets of all flows or a specific

subset of the flows [7]. An additional informative measure
is the number of active flows or the number of flows with
identical source or destination address as used in [8] and [9]
respectively. More sophisticated algorithms rely on entropy
measures calculated for specific feature value distributions
such as port numbers and/or IP addresses [10], [11]. As already
mentioned, normalization and/or preprocessing may be applied
to a selection of the entire flow data only in order to restrict
the analysis to specific flows or kinds of traffic.

Flow records enter the normalization and preprocessing step
more or less at the same rate as they were exported by the
monitoring devices, i.e. we have to cope with large amounts
of data that arrive in short periods of time. This means that
the required computation complexity per flow record has to
be low in order to allow real-time deployment. Furthermore,
the normalization and preprocessing efforts have to aim at
data reduction. With a transformation into time-series, this is
usually fulfilled since all data received within one interval is
aggregate into a sample of constant size.

C. Detection Algorithm

Different flow-based anomaly and attack detection ap-
proaches have been presented in literature. We can classify
the most important ones into four categories:

• Threshold-based detection algorithms that rely on a priori
knowledge such as predefined or adaptive thresholds for
specific measures (e.g. [7], [12]).

• Principal component classifiers (PCC) that detect anoma-
lies in multivariate time-series [8], [10], [11].

• Outlier detection algorithms that determine the similarity
of a sample vector to the learned normal behavior [13].

• Rule learning algorithms that learn classification rules
from training data containing labeled normal and attack
data (e.g. [14]).

The computational complexity varies from very simple deci-
sions (thresholds, rules) to more complex distance calculations
(outlier detection) and linear transformations (PCC). Neverthe-
less, all of them are practicable solutions for real-time analysis
since we trigger the algorithms with the periodicity of the
incoming time-series only.

The result of the detection algorithms is used to raise an
alert when an attack or anomaly has been detected. Even
though some detection algorithms provide very good results,
they all suffer from false positives and false negatives. Hence,
deploying several algorithms in parallel and correlating the
alerts is an interesting approach to improve the detection rate
and to reduce the number of false positives.

III. SYSTEM DESIGN AND PERFORMANCE EVALUATION

Starting from the considerations in Section II, we designed
and developed TOPAS as a system and framework that fulfills
the specific requirements of real-time flow analysis. In the
scope of Diadem Firewall, TOPAS is to provide the function-
ality of the violation detection facility with the capability to
publish detected anomalies and attacks as alert notifications.
We decided to encode alerts in XML (Extensible Markup



Language) using the Intrusion Detection Message Exchange
Format (IDMEF) [15] which is also supported by many other
intrusion detection systems and thus enables interoperability.
The alerts serve as input to a policy-based system manager that
triggers appropriate response mechanisms such as inserting
firewall rules, rate limiting, rerouting etc. We will come back
to this application scenario later in Section IV.

The next subsection exposes the key features of the system.
Subsequently, we briefly describe the system architecture
and provide some information about its implementation. In
throughput measurements, TOPAS achieved excellent perfor-
mance results that we will discuss at the end of this section.

A. Key Features

The key features of TOPAS can be summarized as follows:
• TOPAS enables real-time analysis of exported flow data.

In contrast to existing systems, the reception and analysis
of new flow data are tightly coupled, i.e. newly received
flow data is directly forwarded to a detection module that
performs the necessary normalization and preprocessing
of the data and executes the detection algorithm.

• TOPAS supports parallel deployment of multiple detec-
tion algorithms on the same data. The detection algo-
rithms are implemented in separate detection modules
that can be started and stopped independently at arbitrary
instances in time without requiring a restart of the whole
system.

• TOPAS integrates a notification service that enables de-
tection modules to publish detection results as IDMEF
messages to an event system. IDMEF allows integration
with other intrusion detection systems (IDS). Further-
more, it eases the comparison and correlation of alerts
issued by different detection modules.

• TOPAS facilitates the implementation and integration of
new detection algorithms through its modular and object
oriented approach. Thus, authors of new detection mod-
ules can concentrate on the specific data preprocessing
functions and the detection algorithm.

B. Architecture and Implementation

The architecture of our system is depicted in Figure 2. As
can be seen, we adopted the functional separation into three
steps as described in Section II and realized them in different
processes and threads.

A collector process receives the flow data from the mon-
itoring devices supporting both Cisco Netflow.v9 and IPFIX
protocol. The received data is stored to a ring buffer located
in a memory block that is shared by the collector and the
detection modules. A module manager running in a second
thread is responsible for synchronization between the collector
and the detection modules. It notifies the detection modules
about newly arrived data and grants read access for a prede-
fined period of time. After timeout or after all modules have
signalized that they have read the data, the module manager
frees the corresponding buffer segment and proceeds with
the next block of data. Modules that have not read the data

before timeout are considered to be overloaded or hanging.
The module manager terminates these modules since they risk
to destabilize and slow down the whole system. This way it is
guaranteed that the collector and the well-behaving detection
modules keep synchronized. Optionally, terminated modules
can be automatically restarted to give them another try.

The detection modules are running in individual processes
with two threads. The first thread (container) listens for
notifications from the module manager, reads new flow data
from the ring buffer, normalizes and preprocesses it according
to the input requirements of the detection algorithm, and
buffers the result. The second thread empties the container at
regular intervals and triggers the detection algorithm with the
new input data. Optionally, the detection results can be sent
to an event system, e.g. for dissemination to post-processing
modules correlating the alerts of different detection modules.
Therefore, we integrated an API that allows publishing IDMEF
messages to the publish-subscribe system xmlBlaster [16].

Realizing the detection module as separate processes has
some performance drawbacks compared to a single process
solution with multiple threads, but it also has clear advantages
with respect to robustness and stability. As an example, it
is possible to dynamically start and stop individual detection
modules on demand during operation, and misbehaving detec-
tion modules can be easily stopped by killing the correspond-
ing processes.

TOPAS has been implemented as an open framework that
enables easy integration of new detection algorithms. The
base functionality of the container and the detection algorithm
thread are provided as abstract C++ classes. The author of a
new detection module needs to implement no more than the
virtual methods for the normalization and preprocessing of the
flow data and the detection algorithm itself. The collector also
offers a recorder function that saves flow data persistently on
RAM disk or harddisk. In replay mode, the saved flow data
can then be used to run detection modules offline, e.g. for
debugging and testing purposes.

C. Performance Measurements

We conducted performance measurements to evaluate the
maximum throughput in terms of the number of IPFIX packets
and flow records that can be processed. Of course, the achiev-
able performance depends on the computational complexity of
the detection algorithm including the normalization and pre-
processing of the flow data. Another factor is the characteristic
of the IPFIX packet stream. At the monitoring devices, the
data export is triggered by expiration and export timeouts,
which often results in short bursts of IPFIX packets sent to
the collector. As a consequence, the socket receive buffer at
the collector has to be large enough to prevent packet losses.

We tested TOPAS at constant IPFIX packet rates with
varying numbers of active detection modules. In these tests, we
employed detection modules that performed only very simple
operations on the flow records since we were mainly interested
in the performance of the framework itself, i.e. its capability



Fig. 2. TOPAS architecture

TABLE I
MEASUREMENT RESULTS

Packet rate 1 module 2 modules 4 modules

5,000/sec + + +

10,000/sec + + -

15,000/sec + + -

20,000/sec + - -

25,000/sec - - -

+ = passed - = failed

to receive flow data and forward it to the detection modules
in real-time. The test conditions were as follows:

• IPFIX packets were sent to the collector at different rates.
We used repeated sequences of 29 IPFIX packets, where
the first packet carried a template and the following 28
packets contained a corresponding set of 10 flow records
each. Even though real monitoring traffic would show
much more variation over time, this procedure allowed
us to achieve reproducible results.

• TOPAS was running on a dual-processor Linux PC2 with
one, two, and four detection modules.

The measurement results are shown in Table I. With four active
detection modules, TOPAS was capable of processing rates
up to 5,000 IPFIX packets per second, which corresponds to
more than 48,000 flow records per second. With only one or
two detection modules, 20,000 and 15,000 packets per second
could be processed, corresponding to more than 190,000 and
140,000 records per second respectively. At higher packet
rates, TOPAS terminated because the detection modules were
not able to read the flow data at the same average speed as it
was received by the collector.

Afterwards, TOPAS was tested with traces of flow records
that were originally exported by a router in the backbone
network of the University of Tuebingen. The network of the
University of Tuebingen is a class B network divided into
more than 150 smaller subnets. It is connected to the Internet
at a link speed of 2.4 Gbit per second. The backbone router
generates about 1.6 million Netflow.v5 flow records every
15 minutes, corresponding to 1,800 records per second on

2Dual Intel Xeon 2,8 GHz, 1 GB RAM, 32 MB shared memory

average. For this test, we used flow records exported by this
router in May 2006 and re-exported them as IPFIX packets.
The test conditions were as follows:

• We chose a flow trace lasting for 30 minutes and con-
taining 2,854,052 flow records. This corresponds to 1,585
records per second on average.

• The flow records were exported in the order of their end
timestamps. The difference between end timestamps was
used to determine the relative export times of the records.
As a result, the records were exported in burst, similarly
to how they were originally exported by the backbone
router. Every flow record was sent in an individual IPFIX
packet.

• TOPAS was running on the same PC as before. Three de-
tection modules implementing different threshold-based
detection schemes were activated.

With the standard socket buffer size (128 kilobytes), we
observed significant packet losses (40 percent) due to the
burstiness of the IPFIX packet stream. However, after increas-
ing the buffer size to two megabytes, TOPAS passed this test
successfully and no packet losses occurred. This shows that
TOPAS is capable of performing real-time flow analysis in
enterprise and university networks.

In order to estimate how TOPAS would perform in carrier
networks, we compare the measured values to the amount
of flow records that accumulates in the SWITCH network.
The SWITCH network [17] is the Swiss Academic And
Research Network carrying about 5% of all Swiss Internet
traffic in 2003. In this backbone network, 60 billion flows per
hour are measured, corresponding to almost 17,000 flows per
second on average. Under the realistic assumption that each
Netflow or IPFIX packet contains multiple records, this is still
below our measured maximum even though we do not know
whether special care is necessary if the data is received in
short bursts. A possible countermeasure against bursty Netflow
traffic is traffic shaping as applied in Thomas Dübendorfer’s
UPFrame [18].

IV. APPLICATION

The previous section has shown that TOPAS is a flexible
and powerful framework that allows easy integration of various
kinds of flow-based detection algorithms. In the following, we
present how TOPAS is actually deployed within the demon-
strator of Diadem Firewall. The second application example
gives an outlook to ongoing research in which we use TOPAS
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Fig. 3. DDoS attack detection and mitigation with Diadem Firewall

to analyze packet data exported by monitoring devices that
support the PSAMP protocol [19].

A. Diadem Firewall

Since January 2004, we have been contributing to the Euro-
pean project Diadem Firewall [20] which is jointly performed
by seven European partners under the leadership of France
Telecom. The goal of Diadem Firewall is to develop a system
that allows Internet service providers (ISPs) to protect their
network and their customers from DoS and DDoS attacks.
Diadem Firewall relies on distributed network monitoring and
real-time analysis of monitoring data for fast detection of
ongoing attacks. Based on predefined response policies, the
system autonomously takes appropriate counteractive mea-
sures such as traceback, rate-limiting, blocking, or rerouting
of attack traffic. Firewall devices, that are typically deployed
at the edges of the ISP network, enforce the selected counter-
measures. Figure 3 depicts the architecture of Diadem Firewall
and illustrates its deployment. As shown in the figure, we use
TOPAS as framework for the violation detection facility.

One premise of the system design was to allow easy integra-
tion into existing networks. Therefore, we decided to utilize
flow data exported via Cisco Netflow and/or IPFIX as input
to the violation detection. For the sake of advanced detection
possibilities, we implemented additional monitoring devices
with enhanced monitoring capabilities such as rule-based flow
accounting and aggregation, which as been proposed as an
extension to the IPFIX standard [21].

Diadem Firewall focuses on two types of attacks that
have been exemplarily chosen for demonstrating the system
capabilities: SYN flood attacks and web server overloading
attacks. In various test scenarios, we showed that both types of
attacks can be detected within the first minute after they have
started, which allows enforcing a first level of countermeasures

very quickly [22]. In the following, we present the detection
modules that are used to detect these attacks.

SYN Flood Detection Module: During a SYN flood attack,
attackers are sending a large number of TCP connection
requests (SYN packets) to a single open port at the victim
host. These packets have spoofed source addresses, so that the
returned SYN/ACK packets do not reach any valid connection
endpoint and thus remain unanswered in most cases. As a
result, the victim host has to cope with many half-open TCP
connections that are only released after a timeout. Hosts
without specific protection mechanisms can only handle a
limited number of half-open TCP connections, and if this limit
is reached, new TCP connection requests cannot be answered
any more.

In Diadem Firewall, SYN floods are detected with the SYN-
dog mechanism by Wang et al. [23], which is implemented
in a detection module. SYN-dog compares the numbers of
SYN and SYN/ACK packets that a host receives and re-
turns respectively. Under normal conditions, the two numbers
should be balanced since every SYN packet is answered by
a SYN/ACK packet, apart from some SYN packets that are
accidentally directed to a closed port. Consequently, a high
number of unanswered SYN packets is an indication of an
ongoing SYN flood attack. We use our flexible monitoring
probe Vermont [24] to measure the number of SYN and
SYN/ACK packets and export corresponding counters using
the IPFIX protocol.

Traceback Module: The purpose of traceback is to find
the ingress points where attack packets with spoofed source
addresses, as used in the SYN flood attack, enter the ISP
network. For Diadem Firewall, a non-intrusive traceback
mechanism has been developed that identifies these ingress
points with the help of regular flow records measured and
exported at the ingress points of the network. Under normal
conditions, the traceback module is in learning mode and is
building a white-list for each ingress point containing the
most recent source IP addresses observed in the incoming
traffic. After an attack with spoofed sources has been detected
by another detection module (e.g. the SYN flood detection
module), the traceback module switches to traceback mode
and determines the number of unknown source IP addresses
for each ingress points. The ingress points of the attack traffic
can be identified by a high number of unknown source IP
addresses observed in very short time.

Web Server Overloading Detection Module: Within Diadem
Firewall, Olivier Paul developed a method to infer the nature
of HTTP requests from passive traffic measurements based
on probabilistic models [25]. The resulting information is
used to trace the user behavior in an HTTP session and
detect anomalous or aggressive request patterns using EWMA
(Exponentially Weighted Moving Average) change detection
algorithm. The inference mechanism as well as the detection
algorithm have been implemented in a third detection mod-
ule [26]. Evaluations showed that the detection method is fast
and accurate in case of focused DoS attacks requesting a small
number of objects on the web server [27].



B. Analysis of Packet Data

While flow analysis is very useful to detect anomalous and
suspicious traffic, most detection methods suffer from a non-
negligible false-positive rate. Additional information about a
small number of individual packets selected from a given flow
can be very helpful to classify the flow as harmful or benign.
As an example, payload analysis has already been successfully
deployed for classifying flows by Karagiannis et al. who used
this method to verify a flow-based classification method [28].

As already mentioned in Section II, IPFIX makes use of
a flexible template mechanism that enables variable record
formats. Furthermore, the usage of IPFIX is not bound to
the export of flow data since new semantic field types can
be easily defined. Hence, IPFIX provides a very generic and
adaptable transport mechanism for any kind of monitoring
information. This was a strong argument for the PSAMP
(Packet Sampling) working group at the IETF to adopt the
IPFIX protocol for exporting packet-based monitoring data
such as header fields and parts of the payload [19]. The packet
selection at the monitoring device can be deterministic or
non-deterministic, applying filters and probabilistic and non-
probabilistic sampling [3].

Supporting IPFIX, TOPAS is inherently capable of receiving
and processing PSAMP records as well. This led us to the idea
of implementing a signature detection module that searches
packet data for known attack and worm patterns. However,
instead of writing a new signature detection engine, we utilize
the popular open-source IDS Snort [29] for this purpose and
integrate it with help of a wrapper detection module. We are
currently investigating the potentials of analyzing packet data
as an enhancement to flow-based detection methods.

V. RELATED WORK

In this section, we give an overview on existing flow
analysis systems that collect and analyze Netflow and/or IPFIX
data. Most of them have not been designed for real-time
analysis, instead they apply analysis functions to flow data
that has been previously saved in databases or files. Hence,
these systems provide valuable insight in past network traffic,
yet they are not suitable for real-time detection of anomalies
and attacks. We begin our overview with database-oriented
systems, proceed with systems using files, and terminate with
systems that process incoming flow data immediately.

A system that stores received flow data in a database
for later analysis is Netflow Monitor3 [30]. Configurable
aggregation schemes can be applied in order to reduce the
amount of monitoring data in the database. Netflow Monitor
allows displaying the flow data in different kinds of charts
and diagrams. In the scope of the History project [31], [32],
we developed a tool that follows a similar approach and
supports queries of flow data stored in multiple distributed
databases. Such database-oriented systems allow examining
historic as well as recently received monitoring data manually

3A commercial version is available as Caligare Flow Inspector
(http://www.caligare.com/netflow/).

and offline. However, these systems are not optimized for real-
time analysis since the usage of a database as intermediate
storage with concurrent write and read accesses introduces
non-negligible delay.

Ntop [33] stores flow data in a round-robin database (RRD)
that saves the data for a limited period of time before replacing
it with newly received data. This way, the size of the database
is not increasing over time. Ntop is conceived for examining
recently received flow data within a sliding time window.
However, as it also makes use of a database, the same
restriction as for the other database-oriented systems apply
also to this system.

The SiLK suite [34]–[36] is a set of command line tools for
collecting, storing, and analyzing large amounts of Netflow
data. SiLK stores flow data in hourly files using a compressed
binary file format. Organizing the files in a hierarchical di-
rectory tree facilitates the access to the files. The analysis
tools read the flow data from the saved files and generate
various types of statistics. SiLK is optimized for archiving
large amounts of flow data in an efficient way for offline
analysis. However, it has not been designed for real-time flow
analysis.

Mark Fullmer’s Flow-tools [37] are a similar tool suite with
the main difference that a simpler binary file format without
sophisticated compression is used. Files with 15 minutes of
flow data (default setting) are stored in a single directory.
An optional round-robin mechanism ensures that the directory
size does not exceed a certain volume or number of files
by replacing old files with new ones. Instead of storing the
received monitoring data into files, it can also be sent to
another process connected via a TCP socket. Flow-tools can
be used in conjunction with FlowScan [38] which produces
graph images with a continuous, near real-time view of the
network traffic.

A system for near real-time analysis of flow data is MINDS
(Minnesota Intrusion Detection System) [9]. A collector re-
ceives Netflow data and saves it in files covering consecutive
time windows of 10 minutes each. An analyzer module pro-
cesses the saved files and performs known attack detection
and anomaly detection algorithms. Because of the batch mode
processing of the files, it may last up to several minutes until
an attack or anomaly is detected, which is to late for fast
reaction.

An example of a system that was conceived for actual real-
time flow analysis is Panoptis [7]. Panoptis applies a simple
threshold-based anomaly detection algorithms to the number
of octets, packets, and flows observed in time intervals of
constant length in order to detect DoS and DDoS attacks.
It consists of a Netflow collector that delegates the received
flow data to an analyzer module. The system Open-Eye [12]
follows the same concept but applies the threshold algorithm to
different metrics. Both Panoptis and Open-Eye implement only
a single detection algorithm and do not provide the possibility
to run multiple detection modules simultaneously.

Real-time analysis of UDP payload can be accomplished
with UDFrame [18]. Thomas Dübendorfer and Arno Wagner



developed this framework in parallel to our work and used it
to process Netflow.v5 data. Although developed independently
and without knowledge of the other, the architecture of UD-
Frame and TOPAS resemble each other in many aspects, which
seems to be a strong indication that both our approaches are
sound. UDFrame supports multiple plugins that may analyze
the received flow data in parallel. The data exchange between
the collector and the plugins is based on a ring buffer of shared
memory segments. Nevertheless, UDFrame misses a couple of
features that TOPAS offers, such as the support of Netflow.v9
and IPFIX, including the necessary template management, and
the integrated event-based notification service. Furthermore,
UDFrame does not offer the possibility to record and replay
flow data, which is a very useful feature for testing and
debugging detection modules offline.

VI. CONCLUSION

Flow data as it is exported by many modern network
devices contains valuable information that allows discovering
different kinds of network anomalies and attacks. This paper
focused on real-time analysis of flow data and fast detection
of anomalies and attacks, so the detection results can be used
to timely trigger counteractive actions. We described the nec-
essary steps of data reception and decoding, normalization and
preprocessing, and the application of the detection algorithm.
Then, we presented TOPAS, a system and framework for real-
time analysis of Netflow, IPFIX, and PSAMP data. TOPAS
enables easy integration of new detection algorithms through
its modular approach. Our performance measurements show
that TOPAS is able to cope with large amounts of monitoring
data on a standard PC. TOPAS is publicly available as an
open-source package [20].

TOPAS is deployed in the demonstrator of Diadem Firewall
for detecting SYN flood attacks and web server overloading
attacks and for tracing back attack packets with spoofed source
addresses. We state that the detection opportunities can be
increased if monitoring and detection are well adjusted. An
example is the export of counters for SYN and SYN/ACK
packets as required by the SYN flood detection module.
As the IPFIX protocol has been chosen for PSAMP export,
TOPAS can also be used for real-time inspection of packet
data. Our current research interests concentrate on developing
new detection schemes that make use of both flow-based
and packet-based network monitoring in order to reduce the
number of false positives.

ACKNOWLEDGMENTS

We gratefully acknowledge support from the European
project Diadem Firewall and thank our partners for their
valuable feedback and advice. Special thank goes to Lothar
Braun who contributed to the design of TOPAS and was doing
most of the implementation work.

REFERENCES

[1] B. Claise, “Cisco Systems NetFlow Services Export Version
9,” RFC 3954 (Informational), Oct. 2004. [Online]. Available:
http://www.ietf.org/rfc/rfc3954.txt

[2] B. Claise, S. Bryant, G. Sadasivan, S. Leinen, and T. Dietz, “IPFIX
Protocol Specifications,” Internet-Draft, draft-ietf-ipfix-protocol-24, Nov.
2006.

[3] N. Duffield, D. Chiou, B. Claise, A. Greenberg, M. Grossglauser,
P. Marimuthu, J. Rexford, and G. Sadasivan, “A Framework for Packet
Selection and Reporting,” Internet-Draft, work in progress, draft-ietf-
psamp-framework-10, Jan. 2005.

[4] J. Quittek, T. Zseby, B. Claise, and S. Zander, “Requirements for IP
Flow Information Export (IPFIX),” RFC 3917 (Informational), Oct.
2004. [Online]. Available: http://www.ietf.org/rfc/rfc3917.txt

[5] F. Dressler and G. Münz, “Flexible flow aggregation for adaptive
network monitoring,” in Proc. of IEEE LCN Workshop on Network
Measurements 2006, Tampa, Florida, USA, Nov. 2006.

[6] J. Quittek, S. Bryant, B. Claise, and J. Meyer, “Information Model for
IP Flow Information Export,” Internet-Draft, work in progress, draft-
ietf-ipfix-info-14.txt, Oct. 2006.

[7] C. Kotsokalis, D. Kalogeras, and B. Maglaris, “Router-based Detection
of DoS and DDoS Attacks,” in Proc. of HP Openview University
Association (HP-OVUA) 8th Annual Workshop, Berlin, Germany, June
2001.

[8] A. Lakhina, M. Crovella, and C. Diot, “Characterization of Network-
Wide Anomalies in Traffic Flows,” in Proc. of 4th ACM SIGCOMM
Conference on Internet Measurement. Taormina, Sicily, Italy: ACM
Press, Oct. 2004, pp. 201–206.
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