
Trading Structure for Randomness in Wireless
Opportunistic Routing

Szymon Chachulski Michael Jennings Sachin Katti Dina Katabi
MIT CSAIL

{szym,mvj,skatti,dk}@mit.edu

ABSTRACT
Opportunistic routing is a recent technique that achieves high
throughput in the face of lossy wireless links. The current oppor-
tunistic routing protocol, ExOR, ties the MAC with routing, impos-
ing a strict schedule on routers’ access to the medium. Although
the scheduler delivers opportunistic gains, it misses some of the in-
herent features of the 802.11 MAC. For example, it prevents spatial
reuse and thus may underutilize the wireless medium. It also elimi-
nates the layering abstraction, making the protocol less amenable to
extensions to alternate traffic types such as multicast.

This paper presents MORE, a MAC-independent opportunistic
routing protocol. MORE randomly mixes packets before forwarding
them. This randomness ensures that routers that hear the same trans-
mission do not forward the same packets. Thus, MORE needs no
special scheduler to coordinate routers and can run directly on top of
802.11. Experimental results from a 20-node wireless testbed show
that MORE’s median unicast throughput is 22% higher than ExOR,
and the gains rise to 45% over ExOR when there is a chance of spa-
tial reuse. For multicast, MORE’s gains increase with the number of
destinations, and are 35-200% greater than ExOR.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network Protocols

General Terms
Algorithms, Design, Performance

Keywords
Network Coding, Wireless Networks

1. INTRODUCTION
Wireless mesh networks are used increasingly for providing

cheap Internet access everywhere [4, 1, 34]. City-wide WiFi net-
works, however, need to deal with poor link quality caused by urban
structures and the many interferers including local WLANs. For ex-
ample, half of the operational links in Roofnet [1] have a loss prob-
ability higher than 30%. Opportunistic routing has recently emerged
as a mechanism for obtaining high throughput even when links are

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’07, August 27–31, 2007, Kyoto, Japan.
Copyright 2007 ACM 978-1-59593-713-1/07/0008 ...$5.00.

lossy [7]. Traditional routing chooses the nexthop before transmit-
ting a packet; but, when link quality is poor, the probability the cho-
sen nexthop receives the packet is low. In contrast, opportunistic
routing allows any node that overhears the transmission and is closer
to the destination to participate in forwarding the packet. Biswas and
Morris have demonstrated that this more relaxed choice of nexthop
significantly increases the throughput, and have proposed the ExOR
protocol as a means to achieve these gains [7].

Opportunistic routing, however, introduces a difficult challenge.
Multiple nodes may hear a packet broadcast and unnecessarily for-
ward the same packet. ExOR deals with this issue by tying the MAC
to the routing, imposing a strict scheduler on routers’ access to the
medium. The scheduler goes in rounds. Forwarders transmit in or-
der, and only one forwarder is allowed to transmit at any given time.
The others listen to learn which packets were overheard by each
node. Although the medium access scheduler delivers opportunistic
throughput gains, it does so at the cost of losing some of the desir-
able features of the current 802.11 MAC. In particular, the scheduler
prevents the forwarders from exploiting spatial reuse, even when
multiple packets can be simultaneously received by their corre-
sponding receivers. Additionally, this highly structured approach to
medium access makes the protocol hard to extend to alternate traffic
types, particularly multicast, which is becoming increasing common
with content distribution applications [9] and video broadcast [33,
12].

In contrast to ExOR’s highly structured scheduler, this paper ad-
dresses the above challenge with randomness. We introduce MORE,
MAC-independent Opportunistic Routing & Encoding. MORE ran-
domly mixes packets before forwarding them. This ensures that
routers that hear the same transmission do not forward the same
packet. Indeed, the probability that such randomly coded packets
are the same is proven to be exponentially low [15]. As a result,
MORE does not need a special scheduler; it runs directly on top of
802.11.

We evaluate MORE in a 20-node indoor wireless testbed. Our
implementation is in Linux and uses the Click toolkit [25] and the
Roofnet software package [1]. Our results reveal the following find-
ings.

• In our testbed, MORE’s median unicast throughput is 22% higher
than ExOR. For 4-hop flows where the last hop can exploit spa-
tial reuse, MORE’s throughput is 45% higher than ExOR’s. For
multicast traffic, MORE’s gains increase with the number of des-
tinations, and is 35-200% higher than ExOR’s.

• In comparison with traditional routing, the median gain in the
throughput of a MORE flow is 95%, and the maximum through-
put gain exceeds 10x.

• Finally, coding is not a deployment hurdle for mesh wireless net-
works. Our implementation can sustain a throughput of 44 Mb/s
on low-end machines with Celeron 800MHz CPU and 128KiB of
cache.

Figure 1: Unicast Example. The source sends 2 packets. The destination
overhears p1, while R receives both. R needs to forward just one packet but,
without node-coordination, it may forward p1, which is already known to
the destination. With network coding, however, R does not need to know
which packet the destination misses. R just sends the sum of the 2 packets
p1 + p2. This coded packet allows the destination to retrieve the packet it
misses independently of its identity. Once the destination receives the whole
transfer (p1 and p2), it acks the transfer causing R to stop transmitting.

The contribution of this work is twofold.

• MORE delivers opportunistic routing gains while maintaining
clean architectural abstraction between the routing and MAC lay-
ers. This allows it to exploit the spatial reuse available with 802.11
and be easily extensible to multicast traffic.

• MORE also presents a low-complexity distributed algorithm for
intra-flow network coding for wireless unicast, whereas prior
work requires solving a convex optimization with constraints that
grow exponentially with the number of nodes reached by a broad-
cast [27, 28]. Further, MORE presents the first implementation of
wireless intra-flow network coding, demonstrating the practical
benefits of mixing packets within a single flow.1

2. MOTIVATING EXAMPLES
MORE’s design builds on the theory of network coding [2, 26,

15]. In this section, we use two toy examples to explain the intuition
underlying our approach and illustrate the synergy between oppor-
tunistic routing and network coding.

The Unicast Case: Consider the scenario in Fig. 1. Traditional rout-
ing predetermines the path before transmission. It sends traffic along
the path “src→R→dest”, which has the highest delivery probability.
However, wireless is a broadcast medium. When a node transmits,
there is always a chance that a node closer than the chosen nexthop
to the destination overhears the packet. For example, assume the
source sends 2 packets, p1 and p2. The nexthop, R, receives both,
and the destination happens to overhear p1. It would be a waste to
have node R forward p1 again to the destination. This observation
has been noted in [7] and used to develop ExOR, an opportunistic
routing protocol for mesh wireless networks.

ExOR, however, requires node coordination, which is more diffi-
cult in larger networks. Consider again the example in the previous
paragraph. R should forward only packet p2 because the first packet
has already been received by the destination; but, without consulting
with the destination, R has no way of knowing which packet to trans-
mit. The problem becomes harder in larger networks, where many
nodes hear a transmitted packet. Opportunistic routing allows these
nodes to participate in forwarding the heard packets. Without co-
ordination, however, multiple nodes may unnecessarily forward the
same packets, creating spurious transmissions. To deal with this is-
sue, ExOR imposes a special scheduler on top of 802.11. The sched-
uler goes in rounds and reserves the medium for a single forwarder
at any one time. The rest of the nodes listen to learn the packets
overheard by each node. Due to this strict schedule, nodes farther

1In contrast, COPE [23] is the first implementation that demon-
strates practical benefits for inter-flow wireless network coding.

Figure 2: Multicast Example. Instead of retransmitting all four packets,
the source can transmit two linear combinations, e.g., p1 + p2 + p3 + p4 and
p1 + 2p2 + 3p3 + 4p4. These two coded packets allow all three destinations
to retrieve the four original packets, saving the source 2 transmissions.

away from the destination (which could potentially have transmit-
ted at the same time as nodes close to the destination due to spatial
reuse), cannot, since they have to wait for the nodes close to the
destination to finish transmitting. Hence the scheduler has the side
effect of preventing a flow from exploiting spatial reuse.

Network coding offers an elegant solution to the above problem.
In our example, the destination has overheard one of the transmitted
packets, p1, but node R is unaware of this fortunate reception. With
network coding, node R naturally forwards linear combinations of
the received packets. For example, R can send the sum p1 + p2.
The destination retrieves the packet p2 it misses by subtracting from
the sum and acks the whole transfer. Thus, R need not know which
packet the destination has overheard.

Indeed, the above works if R sends any random linear combina-
tion of the two packets instead of the sum. Thus, one can general-
ize the above approach. The source broadcasts its packets. Routers
create random linear combinations of the packets they hear (i.e.,
c1p1 + . . . + cnpn, where ci is a random coefficient). The destina-
tion sends an ack along the reverse path once it receives the whole
transfer. This approach does not require node coordination and pre-
serves spatial reuse.

The Multicast Case: Our second example illustrates the synergy
between network coding and multicast. In Fig. 2, the source multi-
casts 4 packets to three destinations. Wireless receptions at different
nodes are known to be highly independent [32, 30]. Assume that
each destination receives the packets indicated in the figure–i.e., the
first destination receives p1 and p2, the second destination receives
p2 and p3, and the last destination receives p3 and p4. Note that each
of the four packets is lost by some destination.

Without coding, the sender has to retransmit the union of all
lost packets, i.e., the sender needs to retransmit all four packets.
In contrast, with network coding, it is sufficient to transmit 2 ran-
domly coded packets. For example, the sender may send p′

1 =
p1 + p2 + p3 + p4 and p′

2 = p1 + 2p2 + 3p3 + 4p4. Despite the fact
that they lost different packets, all three destinations can retrieve the
four original packets using these two coded packets. For example,
the first destination, which has received p′

1, p′
2 and p1, p2, retrieves

all four original packets by inverting the matrix of coefficients, and
multiplying it with the packets it received, as follows:

0
BB@

p1

p2

p3

p4

1
CCA =

0
BB@

1 1 1 1
1 2 3 4
1 0 0 0
0 1 0 0

1
CCA

−1 0
BB@

p′
1

p′
2

p1

p2

1
CCA .

Thus, in this simple example, network coding has reduced the
needed retransmissions from 4 packets to 2, improving the overall
throughput.

The Challenges: To build a practical protocol that delivers the
above benefits, we need to address a few challenges.
(a) How Many Packets Should Each Node Send? In traditional best
path routing, a node keeps sending a packet until the nexthop re-
ceives it or until it gives up. With opportunistic routing however,
there is no particular nexthop; all nodes closer to the destination
than the current transmitter can participate in forwarding the packet.
How many transmissions are sufficient to ensure that at least one
node closer to the destination has received the packet?
(b) When Should a Node Stop and Purge? With network coding,
routers send linear combinations of the packets. Once the destina-
tion has heard enough such coded packets, it decodes and retrieves
the file. We need to stop the sender as soon as the destination has
received the transfer and purge the related data from the forwarders.
(c) How Can a Node Code Efficiently? Network coding optimizes
for better utilization of the wireless medium, but coding requires the
routers to multiply and add the data bytes in the packets. We need ef-
ficient coding and decoding strategies to prevent routers’ CPU from
becoming a bottleneck.

3. RELATED WORK
We begin with a brief survey of prior work on opportunistic rout-

ing and a summary of network coding.

3.1 Opportunistic Routing & Wireless Diversity
Opportunistic routing has been introduced by Biswas and Mor-

ris, whose paper explains the potential throughput increase and pro-
poses the ExOR protocol as a means to achieve it [7]. Opportunistic
routing belongs to a general class of wireless algorithms that ex-
ploit multi-user diversity. These techniques use receptions at mul-
tiple nodes to increase wireless throughput. They either optimize
the choice of forwarder from those nodes that received a transmis-
sion [7], or combine the bits received at different nodes to correct
for wireless errors [30], or allow all nodes that overheard a transmis-
sion to simultaneously forward the signal acting as a multi-antenna
system [16]. Our work builds on this foundation but adopts a fun-
damentally different approach; it combines random network coding
with opportunistic routing to address its current limitations. The re-
sulting protocol is practical, allows spatial reuse, and supports both
unicast and multicast traffic.

3.2 Network Coding
Work on network coding started with a pioneering paper by

Ahlswede et al. that established the value of coding in the routers
and provided theoretical bounds on the capacity of such net-
works [2]. The combination of [26, 24, 18] shows that, for multicast
traffic, linear codes achieve the maximum capacity bounds, and cod-
ing and decoding can be done in polynomial time. Additionally, Ho
et al. show that the above is true even when the routers pick random
coefficients [15]. Researchers have extended the above results to a
variety of areas including content distribution [14], secrecy [8, 17],
and distributed storage [19].

Of particular relevance is prior work on wireless network cod-
ing [27, 22, 23]. This work can be divided into three classes. The
first is theoretical; it extends some of the known information the-
ory bounds from wired to wireless networks [27, 17]. The second
is simulation-based; it designs and evaluates network coding proto-
cols using simulations [31, 35]. The third is implementation-based;
it uses implementation and testbed experiments to demonstrate
achievable throughput gains for sensors and mesh networks [23, 21].
This paper belongs to the third category. It builds on prior work,
but differs from it in two ways. First, it introduces a practical low-
complexity algorithm for intra-flow wireless network coding. Sec-

Term Definition
Native Packet Uncoded packet
Coded Packet Random linear combination of native or coded pack-

ets
Code Vector of
a Coded Packet

The vector of co-efficients that describes how to
derive the coded packet from the native packets.
For a coded packet p′j =

P
cjipi, where the pi’s

are the native packets, the code vector is �cj =
(cj1, cj2, . . . , cjK).

Innovative
Packet

A packet is innovative to a node if it is linearly inde-
pendent from its previously received packets.

Closer to desti-
nation

Node X is closer than node Y to the destination, if
the best path from X to the destination has a lower
ETX metric than that from Y .

Table 1: Definitions used in the paper.

ond, it presents experimental results that compare ExOR to a net-
work coding approach to opportunistic routing and demonstrate the
practical benefits of having the routers mix packets from the same
wireless flow.

4. MORE IN A NUTSHELL
MORE is a routing protocol for stationary wireless meshes, such

as Roofnet [1] and community wireless networks [34, 3]. Nodes in
these networks are PCs with ample CPU and memory.

MORE sits below the IP layer and above the 802.11 MAC. It
provides reliable file transfer. It is particularly suitable for deliv-
ering files of medium to large size (i.e., 8 or more packets). For
shorter files or control packets, we use standard best path routing
(e.g., Srcr [6]), with which MORE benignly co-exists.

Table 1 defines the terms used in the rest of the paper.

4.1 Source
The source breaks up the file into batches of K packets, where K

may vary from one batch to another. These K uncoded packets are
called native packets. When the 802.11 MAC is ready to send, the
source creates a random linear combination of the K native pack-
ets in the current batch and broadcasts the coded packet. In MORE,
data packets are always coded. A coded packet is p′

j =
P

i cjipi,
where the cji’s are random coefficients picked by the node, and
the pi’s are native packets from the same batch. We call �cj =
(cj1, . . . , cji, . . . , cjK) the code vector of packet p′

j . Thus, the code
vector describes how to generate the coded packet from the native
packets.

The sender attaches a MORE header to each data packet. The
header reports the packet’s code vector (which will be used in de-
coding), the batch ID, the source and destination IP addresses, and
the list of nodes that could participate in forwarding the packet
(Fig. 3). To compute the forwarder list, we leverage the ETX cal-
culations [11]. Specifically, nodes periodically ping each other and
estimate the delivery probability on each link. They use these prob-
abilities to compute the ETX distance to the destination, which is
the expected number of transmissions to deliver a packet from each
node to the destination. The sender includes in the forwarder list
nodes that are closer (in ETX metric) to the destination than itself,
ordered according to their proximity to the destination.

The sender keeps transmitting coded packets from the current
batch until the batch is acked by the destination, at which time, the
sender proceeds to the next batch.

4.2 Forwarders
Nodes listen to all transmissions. When a node hears a packet, it

checks whether it is in the packet’s forwarder list. If so, the node

checks whether the packet contains new information, in which case
it is called an innovative packet. Technically speaking, a packet is
innovative if it is linearly independent from the packets the node has
previously received from this batch. Checking for independence can
be done using simple algebra (Gaussian Elimination [24]). The node
ignores non-innovative packets, and stores the innovative packets it
receives from the current batch.

If the node is in the forwarder list, the arrival of this new packet
triggers the node to broadcast a coded packet. To do so the node cre-
ates a random linear combination of the coded packets it has heard
from the same batch and broadcasts it. Note that a linear combina-
tion of coded packets is also a linear combination of the correspond-
ing native packets. In particular, assume that the forwarder has heard
coded packets of the form p′

j =
P

i cjipi, where pi is a native packet.
It linearly combines these coded packets to create more coded pack-
ets as follows: p′′ =

P
j rjp′

j , where rj’s are random numbers. The
resulting coded packet p′′ can be expressed in terms of the native
packets as follows p′′ =

P
j(rj

P
i cjipi) =

P
i(

P
j rjcji)pi; thus, it

is a linear combination of the native packets themselves.

4.3 Destination
For each packet it receives, the destination checks whether the

packet is innovative, i.e., it is linearly independent from previously
received packets. The destination discards non-innovative packets
because they do not contain new information. Once the destination
receives K innovative packets, it decodes the whole batch (i.e., it
obtains the native packets) using simple matrix inversion:

0
B@

p1

...
pK

1
CA =

0
B@

c11 . . . c1K

...
. . .

cK1 . . . cKK

1
CA

−1 0
B@

p′
1
...

p′
K

1
CA ,

where, pi is a native packet, and p′
i is a coded packet whose code

vector is �ci = ci1, . . . , ciK . As soon as the destination decodes the
batch, it sends an acknowledgment to the source to allow it to move
to the next batch. ACKs are sent using best path routing, which is
possible because MORE uses standard 802.11 and co-exists with
shortest path routing. ACKs are also given priority over data packets
at every node.

5. PRACTICAL CHALLENGES
In §4, we have described the general design of MORE. But for

the protocol to be practical, MORE has to address 3 additional chal-
lenges, which we discuss in detail below.

5.1 How Many Packets Does a Forwarder Send?
In traditional best path routing, a node keeps transmitting a packet

until the nexthop receives it, or the number of transmissions exceeds
a particular threshold, at which time the node gives up. In oppor-
tunistic routing, however, there is no particular nexthop; all nodes
closer to the destination than the current transmitter are potential
nexthops and may participate in forwarding the packet. How many
transmissions are sufficient to ensure that at least one node closer
to the destination has received the packet? This is an open question.
Prior work has looked at a simplified and theoretical version of the
problem that assumes smooth traffic rates and unlimited wireless
capacity [27, 28]. Even under these assumptions, the proposed al-
gorithm requires solving a convex optimization with constraints that
grow exponentially with the maximum number of nodes reached by
a broadcast [27, 28].

In this section, we provide a heuristic-based2 practical solution to
the above problem. Our solution has the following desirable charac-
teristics: 1) It has low complexity. 2) It is distributed. 3) It naturally
integrates with 802.11 and preserves spatial reuse. 4) It is practical–
i.e., it makes no assumptions of infinite capacity or traffic smooth-
ness, and requires only the average loss rate of the links.

(a) Approach: Define the distance from a node, i, to the destina-
tion, d, as the expected number of transmissions to deliver a packet
from i to d along the best path– i.e., node i’s ETX [11]. We pro-
pose the following heuristic to route a packet from the source, s, to
the destination, d: when a node transmits a packet, the node clos-
est to the destination in ETX metric among those that receive the
packet should forward it onward. Ensuring that the node closest to
the destination forwards the packet reduces the expected number of
transmissions to deliver the packet to its final destination, and thus
improves the overall throughput.

Formally, let N be the number of nodes in the network. For any
two nodes, i and j, let i < j denote that node i is closer to the desti-
nation than node j, or said differently, i has a smaller ETX than j. Let
εij denote the loss probability in sending a packet from i to j. Let zi

be the expected number of transmissions that forwarder i must make
to route one packet from the source, s, to the destination, d, when all
nodes follow the above routing heuristic. In the following, we as-
sume that wireless receptions at different nodes are independent, an
assumption that is supported by prior measurements [32, 30].

We focus on delivering one packet from source to destination. Let
us calculate the number of packets that a forwarder j must forward
to deliver one packet from source, s to destination, d. The expected
number of packets that j receives from nodes with higher ETX isP

i>j zi(1−εij). For each packet j receives, j should forward it only if
no node with lower ETX metric hears the packet. This happens with
probability

Q
k<j εik. Thus, in expectation, the number of packets

that j must forward, denoted by Lj, is:

Lj =
X
i>j

(zi(1 − εij)
Y
k<j

εik). (1)

Note that Ls = 1 because the source generates the packet.
Now, consider the expected number of transmissions a node j

must make. Node j should transmit each packet until a node with
lower ETX has received it. Thus, the number of transmissions that
j makes for each packet it forwards is a geometric random variable
with success probability (1 − Q

k<j εjk). This is the probability that
some node with ETX lower than j receives the packet. Knowing the
number of packets that j has to forward from Eq. (1), the expected
number of transmissions that j must make is:

zj =
Lj

(1 − Q
k<j εjk)

. (2)

(b) Low Complexity: The number of transmissions made by each
node, the zi’s, can be computed via the following algorithm. We can
ignore nodes whose ETX to the destination is greater than that of the
source, since they are not useful in forwarding packets for this flow.
Next, we order the nodes by increasing ETX from the destination d
and relabel them according to this ordering, i.e. d = 1 and s = n.
We begin at the source by setting Ln = 1, then compute Eqs. (1) and
(2) from source, progressing towards the destination. To reduce the
complexity, we will compute the values incrementally. Consider Lj,

2The algorithm in this paper uses the ETX [11] metric, which ig-
nores opportunistic receptions when computing proximity to the
destination. Recently, we have introduced the EOTX metric, which
addresses this limitation [10].

as given by Eq. (1). If we computed it in one shot, we would need
to compute the product

Q
k<j εik from scratch for each i > j. The

idea is to instead compute and accumulate the contribution of node
i to the Lj’s of all nodes j with lower ETX, so that each time we only
need to make an incremental update to this product (denoted P in
the algorithm).

1 Computing the number of transmissions each node makes to de-
liver a packet from source to destination, zi’s

for i = n . . . 1 do
Li ← 0

Ln ← 1 {at source}
for i = n . . . 2 do

zi ← Li/(1−Q
j<i εij)

P← 1
for j = 2 . . . i− 1 do
{compute the contribution of i to Lj}
P← P× εi(j−1) {here, P is

Q
k<j εik}

Lj ← Lj + zi × P× (1− εij)

Alg. 1 requires O(N2) operations, where N is the number of nodes
in the network. This is because the outer loop is executed at most n
times and each iteration of the inner loop requires O(n) operations,
where n is the number of nodes that are closer to the destination
than the source, in the ETX metric. Further, n is bounded by the
total number of nodes in the network, N.

(c) Distributed Solution: Each node, j, periodically measures the
loss probabilities εij for each of its neighbors via ping probes. The
loss probabilities are distributed to other nodes in the network in
a manner similar to link state protocols [6]. Each node can then
build the network graph annotated with the link loss probabilities
and compute Eq. (2) from the εij’s using the algorithm above.

Note that though measuring link loss probabilities creates over-
head, this is not a MORE-specific overhead. Loss probabilities are
needed in all state-of-the-art routing protocols, including ExOR [7]
and best path routing [6].

(d) Integrated with 802.11: A distributed low-complexity solu-
tion to the problem is not sufficient. The solution tells each node
the value of zi, i.e., the number of transmissions it needs to make
for every packet sent by the source. But a forwarder cannot usually
tell when the source has transmitted a new packet. In a large net-
work, many forwarders are not in the source’s range. Even those
forwarders in the range of the source do not perfectly receive every
transmission made by the source and thus cannot tell whether the
source has sent a new packet. Said differently, the above assumes a
special scheduler that tells each node when to transmit.

In practice, a router should be triggered to transmit only when it
receives a packet, and should perform the transmission only when
the 802.11 MAC permits. We leverage the preceding to compute
how many transmissions each router needs to make for every packet
it receives. Define the TX credit of a node as the number of trans-
missions that a node should make for every packet it receives from a
node farther from the destination in the ETX metric. For each packet
sent from source to destination, node i receives

P
j>i(1 − εji)zj,

where zj is the number of transmissions made by node j and εji is
the loss probability from j to i. Thus, the TX credit of node i is:

TX crediti =
ziP

j>i zj(1 − εji)
. (3)

Thus, in MORE, a forwarder node i keeps a credit counter.
When node i receives a packet from a node upstream, it increments
the counter by its TX credit. When the 802.11 MAC allows the node

to transmit, the node checks whether the counter is positive. If yes,
the node creates a coded packet, broadcasts it, then decrements the
counter. If the counter is negative, the node does not transmit. The
ETX metric order ensures that there are no loops in crediting, which
could lead to credit explosion.

(e) Pruning: MORE’s solution to the above might include for-
warders that make very few transmissions (zi is very small), and
thus, have very little contribution to the routing. In a dense network,
we might have a large number of such low contribution forwarders.
Since the overhead of channel contention increases with the num-
ber of forwarders, it is useful to prune such nodes. MORE prunes
forwarders that are expected to perform less than 10% of all the
transmissions for the batch (more precisely, it prunes nodes whose
zi < 0.1

P
j∈N zj).

5.2 Stopping Rule
In MORE, traffic is pumped into the network by the source. The

forwarders do not generate traffic unless they receive new packets.
It is important to throttle the source’s transmissions as soon as the
destination has received enough packets to decode the batch. Thus,
once the destination receives the Kth innovative packet, and before
fully decoding the batch, it sends an ACK to the source.

To expedite the delivery of ACKs, they are sent on the shortest
path from destination to source. Furthermore, ACKs are given pri-
ority over data packets at all nodes and are reliably delivered using
local retransmission at each hop.

When the sender receives an acknowledgment for the current
batch, it stops forwarding packets from that batch. If the transfer
is not complete yet, the sender proceeds to transmit packets from
the next batch.

The forwarders are triggered by the arrival of new packets, and
thus stop transmitting packets from a particular batch once the
sender stops doing so. Eventually the batch will timeout and be
flushed from memory. Additionally, forwarders that hear the ACK
while it is being transmitted towards the sender immediately stop
transmitting packets from that batch and purge it from their mem-
ory. Finally, the arrival of a new batch from the sender causes a for-
warder to flush all buffered packets with batch ID’s lower than the
active batch.

5.3 Fast Network Coding
Network coding, implemented naively, can be expensive. As out-

lined above, the routers forward linear combinations of the packets
they receive. Combining N packets of size S bytes requires NS multi-
plications and additions. Due to the broadcast nature of the wireless
medium, routers could receive many packets from the same batch.
If a router codes all these packets together, the coding cost may be
overwhelming, creating a CPU bottleneck.

MORE employs three techniques to produce efficient coding that
ensure the routers can easily support high bit rates.

(a) Code only Innovative Packets: The coding cost scales with the
number of packets coded together. Typically, network coding makes
routers forward linear combinations of the received packets. Coding
non-innovative packets, however, is not useful because they do not
add any information content. Hence, when a MORE forwarder re-
ceives a new packet, it checks if the packet is innovative and throws
away non-innovative packets. Since innovative packets are by defi-
nition linearly independent, the number of innovative packets in any
batch is bounded by the batch size K. Discarding non-innovative
packets bounds both the number of packets the forwarder buffers
from any batch, and the number of packets combined together to
produce a coded packet. Discarding non-innovative packets is par-

Figure 3: MORE Header. Grey fields are required while the white fields
are optional. The packet type identifies batch ACKs from data packets.

ticularly important in wireless because the broadcast nature of the
medium makes the number of received packets much larger than in-
novative packets.

(b) Operate on Code Vectors: When a new packet is received,
checking for innovativeness implies checking whether the received
packet is linearly independent of the set of packets from the same
batch already stored at the node. Checking independence of all data
bytes is very expensive. Fortunately, this is unnecessary. The for-
warder node simply checks if the code vectors are linearly indepen-
dent. (Checking for vector independence can be done using Gaus-
sian elimination [13]. To amortize the cost over all packets each
node keeps code vectors of the packets in its buffer in row echelon
form.) The data in the packet itself is not touched; it is just stored
in a pool to be used later when the node needs to forward a lin-
ear combination from the batch. Thus, operations on individual data
bytes happen only occasionally at the time of coding or decoding,
while checking for innovativeness, which occurs for every overheard
packet, is fairly cheap.

(c) Pre-Code Packets: When the wireless driver is ready to send a
packet, the node has to generate a linear combination of the buffered
packets and hand that coded packet to the wireless card. Linearly
combining packets involves multiplying individual bytes in those
packets, which could take hundreds of microseconds. This inserts
significant delay before every transmission, decreasing the overall
throughput.

To address this issue, MORE exploits the time when the wire-
less medium is unavailable to pre-compute one linear combination,
so that a coded packet is ready when the medium becomes avail-
able. If the node receives an innovative packet before the prepared
packet is handed over to the driver, the pre-coded packet is updated
by multiplying the newly arrived packet with a random coefficient
and adding it to the pre-coded packet. This approach achieves two
important goals. On the one hand, it ensures the transmitted coded
packet contains information from all packets known to the node, in-
cluding the most recent arrival. On the other hand, it avoids inserting
a delay before each transmission.

6. IMPLEMENTATION DETAILS
Finally, we put the various pieces together and explain the system

details.

6.1 Packet Format
MORE inserts a variable length header in each packet, as shown

in Fig. 3. The header starts with a few required fields that appear
in every MORE packet. The type field distinguishes data packets,
which carry coded information, from ACKs, which signal batch de-
livery. The header also contains the source and destination IP ad-
dresses and the flow ID. The last required field is the batch ID, which

(a) Sender side (b) Receiver side

Figure 4: MORE’s Architecture. The figure shows a flow chart of our
MORE implementation.

identifies the batch to which the packet belongs. The above is fol-
lowed by a few optional fields. The code vector exists only in data
packets and identifies the coefficients that generate the coded packet
from the native packets in the batch. The list of forwarders has vari-
able length and identifies all potential forwarders ordered accord-
ing to their proximity to the source. For each forwarder, the packet
also contains its TX credit (see §5.1). Except for the code vector, all
fields are initialized by the source and copied to the packets created
by the forwarders. In contrast, the code vector is computed locally
by each forwarder based on the random coefficients they picked for
the packet.

6.2 Node State
Each MORE node maintains state for the flows it forwards. The

per-flow state is initialized by the reception of the first packet from
a flow that contains the node ID in the list of forwarders. The state is
timed-out if no packets from the flow arrive for a few minutes (the
default is 5 minutes). The source keeps transmitting packets until
the destination acks the last batch of the flow. These packets will re-
initialize the state at the forwarder even if it is timed out prematurely.
The per-flow state includes the following.

• The batch buffer stores the received innovative packets.
Note that the number of innovative packets in a batch is bounded
by the batch size K.

• The current batch variable identifies the most recent batch
from the flow.

• The forwarder list contains the list of forwarders and their
corresponding TX credits, ordered according to their distance
from the destination. The list is copied from one of the received
packets, where it was initialized by the source.

• The credit counter tracks the transmission credit. For each
packet arrival from a node with a higher ETX, the forwarder
increments the counter by its corresponding TX CREDIT, and
decrements it 1 for each transmission. A forwarder transmits only
when the counter is positive.

6.3 Control Flow
Figure 4 shows the architecture of MORE. The control flow re-

sponds to packet reception and transmission opportunity signaled
by the 802.11 driver.

On the sending side, the forwarder prepares a pre-coded packet
for every backlogged flow to avoid delay when the MAC is ready
for transmission. A flow is backlogged if it has a positive credit
counter. Whenever the MAC signals an opportunity to transmit,
the node selects a backlogged flow by round-robin and pushes its
pre-coded packet to the network interface. As soon as the transmis-
sion starts, a new packet is pre-coded for this flow and stored for fu-
ture use. If the node is a forwarder, it decrements the flow’s credit
counter.

On the receiving side, whenever a packet arrives the node checks
whether it is a forwarder by looking for its ID in the forwarder list in
the header. If the node is a forwarder, it checks if the batch ID on the
packet is the same as its current batch. If the batch ID in the
packet is higher than the node’s current batch, the node sets
current batch to the more recent batch ID and flushes pack-
ets from older batches from its batch buffer. If the packet was
transmitted from upstream, the node also increments its credit
counter by its TX credit. Next, the node performs a linear in-
dependence check to determine whether the packet is innovative.
Innovative packets are added to the batch buffer while non-
innovative packets are discarded.

Further processing depends on whether the node is the packet’s fi-
nal destination or just a forwarder. If the node is a forwarder, the pre-
coded packet from this flow is updated by adding the recent packet
multiplied by a random coefficient. In contrast, if the node is the
destination of the flow, it checks whether it has received a full batch
(i.e., K innovative packets). If so, it queues an ACK for the batch,
decodes the native packets and pushes them to the upper layer.

6.4 ACK Processing
ACK packets are routed to the source along the shortest ETX path.

ACKs are also prioritized over data packets and transferred reliably.
In our implementation, when a transmission opportunity arises, a
queued ACK is given priority, and the ACK packet is passed to the
device. Unless the transmission succeeds (i.e., is acknowledged by
the MAC of the nexthop) the ACK is queued again. In addition, all
nodes that overhear a batch ACK update their current batch
variable and flush packets from the acked batch from their batch
buffer.

7. MULTICAST
Multicast in MORE is a natural extension of unicast. All of our

prior description carries on to the multicast case except for three
simple modifications.

First, the source does not proceed to the next batch until all desti-
nations have received the current batch.

Second, the list of forwarders and their TX credits are different.
The source computes the TX credits and the forwarder list for hy-
pothetical unicast flows from itself to each of the destinations in the

multicast group. The forwarder list of the multicast flow is the union
of the forwarders of the unicast flows. The TX credit of each for-
warder is computed using Eq. (3) where each zi is the maximum of
what forwarder i gets in each of the hypothetical unicast flows.

Third, for multicast the TX credit of a forwarder takes a dynamic
nature. In particular, as the current batch progresses towards the
end, more and more destinations are able to decode. Those for-
warders that were included in the forwarder list in order to reach
destinations that have already decoded the batch are temporarily not
needed. Thus, whenever a destination acks the current batch, the
source recomputes the TX credits of the forwarders as the maxi-
mum TX credit taken over only the hypothetical unicast flows to
the destinations that have not yet decoded the batch. The forwarders
that hear the new TX credit in the packet update their information
accordingly.

8. EXPERIMENTAL RESULTS
We use measurements from a 20-node wireless testbed to evaluate

MORE, compare it with both ExOR and traditional best path rout-
ing, and estimate its overhead. Our experiments reveal the following
findings.

• In the median case, MORE achieves 22% better throughput than
ExOR. In comparison with traditional routing, MORE improves
the median throughput by 95%, and the maximum throughput
gain exceeds 10x.

• MORE’s throughput exceeds ExOR’s mainly because of its abil-
ity to exploit spatial reuse. Focusing on flows that traverse
paths with 25% chance of concurrent transmissions, we find that
MORE’s throughput is 45% higher than that of ExOR.

• For multicast traffic, MORE’s throughput gain increases with the
number of destinations. For 2-4 destinations, MORE’s through-
put is 35-200% larger than ExOR’s. In comparison to traditional
routing, the multicast gain can be as high as 3x.

• MORE significantly eases the problem of dead spots. In particu-
lar, 90% of the flows achieve a throughput higher than 51 pack-
ets/second. The corresponding number in traditional routing is
only 12 packets/second.

• MORE keeps its throughput gain over traditional routing even
when the latter is allowed automatic rate selection.

• MORE is insensitive to the batch size and maintains large
throughput gains with batch size as low as 8 packets.

• Finally, we estimate MORE’s overhead. Our MORE implemen-
tation supports up to 44 Mb/s on low-end machines with Celeron
800MHz CPU and 128KiB of cache. Thus, MORE’s overhead is
reasonable for the environment it is designed for, namely station-
ary wireless meshes, such as Roofnet [1] and community wireless
networks [34, 3].

8.1 Testbed
(a) Characteristics: We have a 20-node wireless testbed that spans
three floors in our building connected via open lounges. The nodes
of the testbed are distributed in several offices, passages, and
lounges. Fig. 5 shows the locations of the nodes on one of the floors.
Paths between nodes are 1–5 hops in length, and the loss rates of
links on these paths vary between 0 and 60%, and averages to 27%.

(b) Hardware: Each node in the testbed is a PC equipped with a
NETGEAR WAG311 wireless card attached to an omni-directional
antenna. They transmit at a power level of 18 dBm, and operate in
the 802.11 ad hoc mode, with RTS/CTS disabled.

(c) Software: Nodes in the testbed run Linux, the Click toolkit [25]
and the Roofnet software package [1]. Our implementation runs as

Figure 5: One Floor of our Testbed. Nodes’ location on one floor of our
3-floor testbed.

a user space daemon on Linux. It sends and receives raw 802.11
frames from the wireless device using a libpcap-like interface.

8.2 Compared Protocols
We compare the following three protocols.

• MORE as explained in §6.
• ExOR [7], the current opportunistic routing protocol. Our ExOR

code is provided by its authors.
• Srcr [6] which is a state-of-the-art best path routing protocol for

wireless mesh networks. It uses Dijkstra’s shortest path algorithm
where link weights are assigned based on the ETX metric [11].

8.3 Setup
In each experiment, we run Srcr, MORE, and ExOR in sequence

between the same source destination pairs. Each run transfers a 5
MByte file. We leverage the ETX implementation provided with the
Roofnet software to measure link delivery probabilities. Before run-
ning an experiment, we run the ETX measurement module for 10
minutes to compute pair-wise delivery probabilities and the corre-
sponding ETX metric. These measurements are then fed to all three
protocols, Srcr, MORE, and ExOR, and used for route selection.

Unless stated differently, the batch size for both MORE and
ExOR is set to K = 32 packets. The packet size for all three pro-
tocols is 1500B. The queue size at Srcr routers is 50 packets. In
contrast, MORE and ExOR do not use queues; they buffer active
batches.

Most experiments are performed over 802.11b with a bit-rate of
5.5Mb/s. In §8.7, we allow traditional routing (i.e., Srcr) to exploit
the autorate feature in the MadWifi driver, which uses the Onoe
bit-rate selection algorithm [5]. Current autorate control optimizes
the bit-rate for the nexthop, making it unsuitable for opportunistic
routing, which broadcasts every transmission to many potential nex-
thops. The problem of autorate control for opportunistic routing is
still open. Thus in our experiments, we compare Srcr with autorate
to opportunistic routing (MORE and ExOR) with a fixed bit-rate of
11 Mb/s.

8.4 Throughput
We would like to examine whether MORE can effectively exploit

opportunistic receptions to improve the throughput and compare it
with Srcr and ExOR.

(a) How Do the Three Protocols Compare? Does MORE improve
over ExOR? How do these two opportunistic routing protocols com-
pare with traditional best path routing? To answer these questions,
we use these protocols to transfer a 5 MByte file between various

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200

C
um

ul
at

iv
e

F
ra

ct
io

n
of

 F
lo

w
s

Throughput [pkt/s]

Srcr
ExOR

MORE

Figure 6: Unicast Throughput. Figure shows the CDF of the uni-
cast throughput achieved with MORE, ExOR, and Srcr. MORE’s me-
dian throughput is 22% higher than ExOR. In comparison to Srcr, MORE
achieves a median throughput gain of 95%, while some source-destination
pairs show as much as 10-12x.

nodes in our testbed. We repeat the same experiment for MORE,
ExOR, and Srcr as explained in §8.3.

Our results show that MORE significantly improves the unicast
throughput. In particular, Fig. 6 plots the CDF of the through-
put taken over 200 randomly selected source-destination pairs in
our testbed. The figure shows that both MORE and ExOR signif-
icantly outperform Srcr. Interestingly, however, MORE’s through-
put is higher than ExOR’s. In the median case, MORE has a 22%
throughput gain over ExOR. Its throughput gain over Srcr is 95%,
but some challenged flows achieve 10-12x higher throughput with
MORE than traditional routing.

Further, MORE and opportunistic routing ease the problem of
dead spots. Fig. 6 shows that over 90% of MORE flows have a
throughput larger than 51 packets a second. ExOR’s 10th percentile
is at 35 packets a second. Srcr on the other hand suffers from dead
spots with many flows experiencing very low throughput. Specifi-
cally, the 10th percentile of Srcr’s throughput is at 12 packets a sec-
ond.

(b) When Does Opportunistic Routing Win? We try to identify
the scenarios in which protocols like MORE and ExOR are partic-
ularly useful, i.e., when should one expect opportunistic routing to
bring a large throughput gain? Fig. 7a shows the scatter plot for the
throughputs achieved under Srcr and MORE for the same source-
destination pair. Fig. 7b gives an analogous plot for ExOR. Points
on the 45-degree line have the same throughput in the two compared
schemes.

These figures reveal that opportunistic routing (MORE and
ExOR) greatly improves performance for challenged flows, i.e.,
flows that usually have low throughput. Flows that achieve good
throughput under Srcr do not improve further. This is because when
links on the best path have very good quality, there is little ben-
efit from exploiting opportunistic receptions. In contrast, a source-
destination pair that obtains low throughput under Srcr does not have
any good quality path. Usually, however, many low-quality paths ex-
ist between the source and the destination. By using the combined
capacity of all these low-quality paths, MORE and ExOR manage
to boost the throughput of such flows.

(c) Why Does MORE Have Higher Throughput than ExOR?
Our experiments show that spatial reuse is a main contributor to

MORE’s gain over ExOR. ExOR prevents multiple forwarders from
accessing the medium simultaneously [7], and thus does not exploit
spatial reuse. To examine this issue closely, we focus on a few flows
that we know can benefit from spatial reuse. Each flow has a best
path of 4 hops, where the last hop can send concurrently with the
first hop without collision. Fig. 8 plots the CDF of throughput of

 1

 10

 100

 1 10 100

M
O

R
E

 T
hr

ou
gh

pu
t [

pk
t/s

]

Srcr Throughput [pkt/s]

(a) MORE vs. Srcr

 1

 10

 100

 1 10 100

E
xO

R
 T

hr
ou

gh
pu

t [
pk

t/s
]

Srcr Throughput [pkt/s]

(b) ExOR vs. Srcr

Figure 7: Scatter Plot of Unicast Throughput. Each point represents the
throughput of a particular source destination pair. Points above the 45-degree
line indicate improvement with opportunistic routing. The figure shows that
opportunistic routing is particularly beneficial to challenged flows.

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70

C
um

ul
at

iv
e

F
ra

ct
io

n
of

 F
lo

w
s

Throughput [pkt/s]

Srcr
ExOR

MORE

Figure 8: Spatial Reuse. The figure shows CDFs of unicast throughput
achieved by MORE, ExOR, and Srcr for flows that traverse 4 hops, where
the last hop can transmit concurrently with the first hop. MORE’s median
throughput is 45% higher than ExOR.

the three protocols for this environment. Focusing on paths with
spatial reuse amplifies the gain MORE has over ExOR. The figure
shows that for 4-hop flows with spatial reuse, MORE achieves a
45% higher median throughput than ExOR.

It is important to note that spatial reuse may occur even for shorter
paths. The capture effect allows multiple transmissions to be cor-
rectly received even when the nodes are within the radio range of
both senders [32]. In particular, less than 7% of the flows in Fig. 6
have a best path of 4 hops or longer. Still MORE does better than
ExOR. This is mainly because of capture. The capture effect, how-
ever, is hard to quantify or measure. Thus, we have focused on
longer paths to show the impact of spatial reuse.

Figure 9: Multicast Topology. A simple topology used in the multicast
experiments in Fig. 10.

 0

 50

 100

 150

 200

 250

 2 3 4

T
hr

ou
gh

pu
t P

er
 D

es
tin

at
io

n
[p

kt
/s

]

Number of Destinations

Srcr
ExOR

MORE

Figure 10: Multicast Throughput as a Function of the Number of Des-
tinations for the Topology in Fig. 9. The figure shows the per-destination
multicast throughput of MORE, ExOR, and Srcr. The thick bars show the
average per-destination throughput taken over 40 runs with different nodes.
The lines show the standard deviation.

8.5 Multicast
We want to compare the performance of multicast traffic under

MORE, ExOR, and Srcr. In §7, we described how multicast works
under MORE. In contrast, ExOR [7] and Srcr [6] do not have mul-
ticast extensions. Thus, we need to define how these protocols deal
with multicast. For Srcr we adopt the same approach as wired mul-
ticast. Specifically, we find the shortest path from the source to
each destination, using ETX as the metric. These paths create a
tree rooted at the source. Srcr’s multicast traffic is sent along the
branches of this tree. In contrast, with ExOR, we want multicast traf-
fic to exploit opportunistic receptions. We find the ExOR forwarders
for each destination. The per-destination forwarders use the ExOR
protocol to access the medium and coordinate their transmissions.
In contrast to unicast ExOR, if the forwarders toward destination X
opportunistically hear a packet by a forwarder in the forwarder list
of destination Y , they exploit that opportunistic reception. Said dif-
ferently, we allow opportunistic receptions across the forwarders of
various destinations.

Our results show that MORE’s multicast throughput is signifi-
cantly higher than both ExOR and Srcr. In particular, we experiment
with the simple topology in Fig. 9, where the source multicasts a
file to a varying number of destinations. Fig. 10 shows the aver-
age multicast throughput as a function of the number of destina-
tions. The average is computed over 40 different instantiations of the
topology in Fig 9, using nodes in our testbed. As expected, the per-
destination average throughput decreases with increased number of
destinations. Interestingly, however, the figure shows that MORE’s
throughput gain increases with increased number of destinations.
MORE has 35-200% throughput gain over ExOR and 100-300%
gain over Srcr.

MORE’s multicast throughput gain is higher than its unicast gain.
This is because network coding fits naturally with multicast. Recall
from the example in §2 that without network coding, a transmitter
(whether the source or a forwarder) needs to retransmit the union
of all packets lost by downstream nodes. In contrast, with coding
it is enough to transmit just the number of packets missed at the
downstream node that experienced the most packet loss.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

C
um

ul
at

iv
e

F
ra

ct
io

n
of

 F
lo

w
s

Throughput Per Destination [pkt/s]

Srcr
ExOR

MORE

Figure 11: CDF of Multicast Throughput for 3 Destinations in a Ran-
dom Topology. The figure shows the CDF of the per-destination multicast
throughput of MORE, ExOR, and Srcr. For each run, a source and 3 destina-
tions are picked randomly from among the nodes in the testbed.

 0

 20

 40

 60

 80

 100

 120

 140

 1 2 3 4

A
ve

ra
ge

 F
lo

w
 T

hr
ou

gh
pu

t [
pk

t/s
]

Number of flows

Srcr
ExOR

MORE

Figure 12: Multi-flows. The figure plots the per-flow average throughput
in scenarios with multiple flows. Bar show the average of 40 random runs.
Lines show the standard deviation.

Next, we run multicast over random topologies and multihop
paths. We pick a source and 3 destinations randomly from the nodes
in the testbed. We make the source multicast a file to the three des-
tinations, using MORE, ExOR, and Srcr. We repeat the experiment
for 40 different instantiations of the nodes, and plot the CDFs of the
throughput. Fig. 11 confirms our prior results showing significant
gain for MORE over both ExOR and Srcr. In this figure, however,
the difference between MORE and ExOR is less pronounced than
in Fig. 10. This is because the CDF uses random topologies with all
nodes in the testbed potentially acting as forwarders. This increases
the potential for opportunistic receptions and thus makes the relative
gain from network coding look less apparent.

8.6 Multiple Flows
One may also ask how MORE performs in the presence of multi-

ple flows. Further, since the ExOR paper does not show any results
for concurrent flows, this question is still open for ExOR as well.
We run 40 multi-flow experiments with random choice of source-
destination pairs, and repeat each run for the three protocols.

Fig. 12 shows the average per-flow throughput as a function of the
number of concurrent flows, for the three protocols. Both MORE
and ExOR achieve higher throughput than Srcr. The throughput
gains of opportunistic routing, however, are lower than for a single
flow. This highlights an inherent property of opportunistic routing; it
exploits opportunistic receptions to boost the throughput, but it does
not increase the capacity of the network. The 802.11 bit rate decides
the maximum number of transmissions that can be made in a time
unit. As the number of flows in the network increases, each node
starts playing two roles; it is a forwarder on the best path for some
flow, and a forwarder off the best path for another flow. If the driver
polls the node to send a packet, it is better to send a packet from the
flow for which the node is on the best path. This is because the links

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

C
um

ul
at

iv
e

F
ra

ct
io

n
of

 F
lo

w
s

Throughput [pkt/s]

Srcr
ExOR

MORE
Srcr autorate

Figure 13: Opportunistic Routing Against Srcr with Autorate. The fig-
ure compares the throughput of MORE and ExOR running at 11Mb/s against
that of Srcr with autorate. MORE and ExOR preserve their throughput gains
over Srcr.

on the best path usually have higher delivery probability. Since the
medium is congested and the number of transmissions is bounded,
it is better to transmit over the higher quality links.

Also, the gap between MORE and ExOR decreases with multiple
flows. Multiple flows increase congestion inside the network. Al-
though a single ExOR flow may underutilize the medium because
it is unable to exploit spatial reuse, the congestion arising from the
increased number of flows covers this issue. When one ExOR flow
becomes unnecessarily idle, another flow can proceed.

Although the benefits of opportunistic routing decrease in a con-
gested network, it continues to do better than best path routing. In-
deed the throughput gains persist despite our implementation be-
ing suboptimal for multi-flows. In particular, in our implementation,
a forwarder transmits in a round-robin fashion from all flows that
have positive credits. A better design would give priority to those
flows for which the forwarder is on the best path to the destina-
tion, allowing each transmission to make more progress toward the
packet’s final destination. Second, our implementation uses stan-
dard 802.11 broadcast. The broadcast mode in 802.11 does not sup-
port congestion avoidance and relies solely on carrier sense to avoid
collisions. This is usually not an issue for a single flow because a
forwarder’s TX credit decreases as more nodes participate in for-
warding the flow. For multiple flows, however, a scheme that aug-
ments the 802.11 broadcast mode with congestion avoidance would
increase the throughput gains further.

Finally, this section highlights the differences between inter-
flow and intra-flow network coding. Katti et al. [23] show that the
throughput gain of COPE, an inter-flow network coding protocol,
increases with an increased number of flows; but, COPE does not
apply to unidirectional traffic and cannot deal with dead spots. Thus,
inter-flow and intra-flow network coding complement each other. A
design that integrates MORE and COPE is a natural next step.

8.7 Autorate
Current 802.11 allows a sender node to change the bit rate auto-

matically, depending on the quality of the link to the recipient. One
may wonder whether such adaptation would improve the throughput
of Srcr and nullify the gains of opportunistic routing. Thus, in this
section, we allow Srcr to exploit the autorate feature in the MadWifi
driver [29], which uses the Onoe bit-rate selection algorithm [5].

Opportunistic routing does not have the concept of a link; it
broadcasts every packet to many potential nexthops. Thus, current
autorate algorithms are not suitable for opportunistic routing. The
problem of autorate control for opportunistic routing is still open.
Therefore, in our experiments, we compare Srcr with autorate to op-
portunistic routing (MORE and ExOR) with a fixed bit-rate of 11
Mb/s.

Operation Avg. Time [μs] Std. Dev. [μs]
Independence check 10 5
Coding at the source 270 15
Decoding 260 150

Table 2: Average computational cost of packet operations in MORE.
The numbers for K = 32 and 1500B packets are measured on a low-end
Celeron machine clocked at 800MHz with 128KiB cache. Note that the cod-
ing cost is highest at the source because it has to code all K packets together.
The coding cost at a forwarder depends on the number of innovative packets
it has received, and is always bounded by the coding cost at the source.

Fig. 13 shows CDFs of the throughputs of the various protocols.
The figure shows that MORE and ExOR preserve their superiority to
Srcr, even when the latter is combined with automatic rate selection.
Paths with low throughput in traditional routing once again show the
largest gains. Such paths have low quality links irrespective of the
bit-rate used, therefore autorate selection does not help these paths.

Interestingly, the figure also shows that autorate does not neces-
sarily perform better than fixing the bit-rate at the maximum value.
This has been noted by prior work [36] and attributed to the autorate
algorithm confusing collision-caused losses for error-caused losses,
and unnecessarily reducing the bit-rate. Indeed, a close examina-
tion of our logs indicates that the auto-rate algorithm often picks the
lowest bit-rate in an attempt to reduce packet loss. This reduction in
bit-rate has little impact on improving the average success rate of all
transmissions, which increases only by 2%. In contrast, the reduc-
tion in bit-rate causes a significant decrease in throughput. About
23% of all transmissions under autorate are done at the lowest bit-
rate, which takes roughly 10 times longer than the highest bit-rate.
These transmissions form a throughput bottleneck and consume al-
most 70% of the shared medium time. As shown in Fig. 13, this
problem affects about 80% of all flows in the testbed.

8.8 Batch Size
We explore the performance of MORE and ExOR for various

batch sizes. Fig. 14 plots the throughput for batch sizes of 8, 16, 32,
64, and 128. It shows that ExOR’s performance with small batches
of 8 packets is significantly worse than large batches. In contrast,
MORE is highly insensitive to different batch sizes.

In both ExOR and MORE, the overhead increases with reduced
batch size. ExOR nodes exchange control packets whenever they
transmit a batch. Increasing the batch size allows ExOR to amortize
the control traffic and reduces the chance of spurious transmissions.
MORE may make a few spurious transmissions between the time
the destination decodes a batch and when the source and forwarders
stop transmitting packets from that batch. A bigger batch size allows
MORE to amortize the cost of these spurious transmissions over a
larger number of packets, increasing the overall throughput.

Insensitivity to batch sizes allows MORE to vary the batch size to
accommodate different transfer sizes. We expect that for any transfer
size larger than 7-10 packets (i.e., a batch larger than 7-10 packets),
MORE will show significant advantages. Shorter transfers can be
sent using traditional routing. Note that MORE benignly co-exists
with traditional routing, which it uses to deliver its ACKs.

8.9 MORE’s Overhead
Finally, we would like to estimate MORE’s overhead and its suit-

ability for deployment in mesh networks like Roofnet [1] and com-
munity wireless networks [34, 3].

(a) Coding Overhead: In MORE, the cost of coding/decoding pack-
ets is incurred mainly when the packet has to be multiplied by a ran-
dom number (in a finite field of size 28). To optimize this operation,
our implementation reduces the cost by using a 64KiB lookup-table

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

C
um

ul
at

iv
e

F
ra

ct
io

n
of

 F
lo

w
s

Throughput [pkt/s]

MORE, K=8
MORE, K=16
MORE, K=32
MORE, K=64

MORE, K=128

(a) MORE

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

C
um

ul
at

iv
e

F
ra

ct
io

n
of

 F
lo

w
s

Throughput [pkt/s]

ExOR, K=8
ExOR, K=16
ExOR, K=32
ExOR, K=64

ExOR, K=128

(b) ExOR

Figure 14: Impact of Batch Size. The figure shows the CDF of the
throughput taken over 40 random node pairs. It shows that MORE is less
sensitive to the batch size than ExOR.

indexed by pairs of 8 bits. The lookup table caches results of all
possible multiplications, so multiplying any byte of a packet with a
random number is simply a fast lookup.

Table 2 provides micro benchmarks for coding and decoding in
MORE. The measurements are taken on a low-end Celeron 800MHz
machine. The benchmarks show that coding and decoding have
roughly equal cost. They require on average K finite-field multipli-
cations per byte, where K is the batch size. This ties the choice of
K with the maximum achievable throughput. In our setting K = 32
and coding takes on average 270μs per 1500B packet. This limits the
effective throughput to 44 Mb/s, which is higher than the effective
bit rate of current wireless mesh networks [20].

(b) Memory Overhead: In MORE, like in ExOR, routers do not keep
an output queue. Instead, they store the current batch from each
flow. This per-flow state is dominated by the storage required to
buffer innovative packets from the current batch, which is bounded
by K = 32 packets. Additionally, as stated above, MORE nodes
keep a 64KiB lookup-table. Given that the number of concurrent
flows in a mesh network is relatively small, we believe MORE’s
memory overhead is acceptable.

(c) Header Overhead: MORE’s header in our current implementa-
tion is bounded by 70 bytes because we bound the number of for-
warders to 10. Certain values in the header are compressed to in-
crease efficiency. For example, since routers only keep the current
batch, we can represent batch IDs using a few bits. Similarly, we
compress the node ID in the forwarder list to one byte, which is a
hash of its IP. This works because only nodes whose ETX to the
destination is smaller than the source are allowed to participate in
forwarding. For 1500B packets, the header overhead is less than 5%.
Note that our throughput numbers are computed over the delivered
data, and thus they already account for header overhead.

Note that the probe packets used to measure link loss probabilities
do not constitute a MORE-specific overhead. These probabilities are
measured by the all state-of-art wireless routing protocols, including
ExOR [7], and best-path [6].

9. CONCLUSION
Opportunistic routing and network coding are two powerful ideas

which may at first sight appear unrelated. Our work combines these
ideas in a natural fashion to provide opportunistic routing without
a global medium access scheduler. We design a practical system,
MORE, that plugs random network coding into the current network
stack, exploits the opportunism inherent in the wireless medium,
and provides significant performance gains. Field tests on a 20-node
wireless testbed show that MORE provides both unicast and multi-
cast traffic with significantly higher throughput than both traditional
routing and prior work on opportunistic routing.

10. ACKNOWLEDGMENTS
We thank Srikanth Kandula, Nate Kushman, Hariharan Rahul and

Stan Rost for their insightful comments. We also thank Micah Brod-
sky for his help with ExOR. This work is supported by DARPA
CBMANET, Quanta, and an Intel gift. The opinions and findings in
this paper are those of the authors and do not necessarily reflect the
views of DARPA, Quanta, or Intel.

11. REFERENCES
[1] D. Aguayo, J. Bicket, S. Biswas, G. Judd, and R. Morris.

Link-level measurements from an 802.11b mesh network. In
SIGCOMM, 2004.

[2] R. Ahlswede, N. Cai, S. R. Li, and R. W. Yeung. Network
Information Flow. In IEEE Trans. on Information Theory, Jul
2000.

[3] Bay Area Wireless User Group. http://www.bawug.org.
[4] P. Bhagwat, B. Raman, and D. Sanghi. Turning 802.11

inside-out. In HotNets, 2003.
[5] J. Bicket. Bit-rate selection in wireless networks. M.S. Thesis,

2005.
[6] J. Bicket, D. Aguayo, S. Biswas, and R. Morris. Architecture

and evaluation of an unplanned 802.11b mesh network. In
MOBICOM, 2005.

[7] S. Biswas and R. Morris. Opportunistic routing in multi-hop
wireless networks. In SIGCOMM, 2005.

[8] N. Cai and R. W. Yeung. Secure Network Coding. In ISIT,
2002.

[9] Calling p2p: Peer-to-peer networks coming to a phone near
you, 2005. http://www.econtentmag.com.

[10] S. Chachulski. Trading structure for randomness in wireless
opportunistic routing. M.S. Thesis, 2007.

[11] D. S. J. De Couto, D. Aguayo, J. Bicket, and R. Morris. A
high-throughput path metric for multi-hop wireless routing. In
MOBICOM, 2003.

[12] Digiweb offers wireless IPTV in Ireland, 2005.
http://www.dtg.org.uk/news/.

[13] J. E. Gentle. Numerical Linear Algebra for Applications in
Statistics. Springer–Verlag, 1998.

[14] C. Gkantsidis and P. Rodriguez. Network Coding for Large
Scale Content Distribution. In INFOCOM, 2005.

[15] T. Ho, M. Médard, J. Shi, M. Effros, and D. Karger. On
randomized network coding. In Allerton, 2003.

[16] D. T. J. N. Laneman and G. Wornell. Cooperative diversity in
wireless networks: Efficient protocols and outage behavior.
IEEE Trans. on Information Theory, Dec 2004.

[17] S. Jaggi, M. Langberg, S. Katti, T. Ho, D. Katabi, and
M. Médard. Resilient Network Coding In The Presence of
Byzantine Adversaries. In INFOCOM, 2007.

[18] S. Jaggi, P. Sanders, P. A. Chou, M. Effros, S. Egner, K. Jain,
and L. Tolhuizen. Polynomial time algorithms for multicast
network code construction. IEEE Trans. on Information
Theory, 2003.

[19] A. Jiang. Network Coding for Joint Storage and Transmission
with Minimum Cost. In ISIT, 2006.

[20] A. Kamerman and G. Aben. Net throughput with IEEE
802.11 wireless LANs. In WCNC, 2000.

[21] A. Kamra, V. Misra, J. Feldman, and D. Rubenstein. Growth
Codes: Maximizing Sensor Network Data Persistence. In
SIGCOMM, 2006.

[22] S. Katti, D. Katabi, W. Hu, H. S. Rahul, and M. Médard. The
importance of being opportunistic: Practical network coding
for wireless environments. In Allerton, 2005.

[23] S. Katti, H. Rahul, D. Katabi, W. H. M. Médard, and
J. Crowcroft. XORs in the Air: Practical Wireless Network
Coding. In SIGCOMM, 2006.

[24] R. Koetter and M. Médard. An algebraic approach to network
coding. IEEE/ACM Trans. on Networking, 2003.

[25] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The click modular router. ACM Trans. on
Computer Systems, Aug 2000.

[26] S.-Y. R. Li, R. W. Yeung, and N. Cai. Linear network coding.
IEEE Trans. on Information Theory, Feb 2003.

[27] D. S. Lun, M. Médard, and R. Koetter. Efficient operation of
wireless packet networks using network coding. In IWCT,
2005.

[28] D. S. Lun, M. Médard, and R. Koetter. Network coding for
efficient efficient wireless unicast. In International Zurich
Seminar on Communications (IZS 2006), 2006.

[29] MADWiFi: Multiband Atheros Driver for WiFi.
http://madwifi.org.

[30] A. K. Miu, H. Balakrishnan, and C. E. Koksal. Improving loss
resilience with multi-radio diversity in wireless networks. In
MOBICOM, 2005.

[31] J. S. Park, M. Gerla, D. S. Lun, Y. Yi, and M. Médard.
Codecast: A network-coding based ad hoc multicast protocol.
IEEE Wireless Comm. Magazine, 2006.

[32] C. Reis, R. Mahajan, M. Rodrig, D. Wetherall, and
J. Zahorjan. Measurement-based models of delivery and
interference. In SIGCOMM, 2006.

[33] Ruckus to announce wireless, IPTV deals with 15 telcos,
2006. http://www.eweek.com/article2/0,1895,1989290,00.asp.

[34] Seattle wireless. http://www.seattlewireless.net.
[35] J. Widmer and J.-Y. L. Boudec. Network Coding for Efficient

Communication in Extreme Networks. In SIGCOMM WDTN,
2005.

[36] S. H. Y. Wong, S. Lu, H. Yang, and V. Bharghavan. Robust
rate adaptation for 802.11 wireless networks. In MOBICOM,
2006.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

