
Comparing PFQ: A High-Speed Packet IO Framework

Dominik Schöffmann
Betreuer: Sebastian Gallenmüller

Seminar Innovative Internet Technologies and Mobile Communications (IITM) WS2015/16
Lehrstuhl Netzarchitekturen und Netzdienste

Fakultät für Informatik, Technische Universität München
Email: schoeffm@in.tum.de

ABSTRACT
This paper discusses the PFQ framework built for high-
speed data transfers on an x86 platform. In order to fa-
cilitate the understanding of such a framework the low level
mechanics of the Linux kernel are discussed. This includes
historic approaches and the state-of-the-art situation. PFQs
internal workings are discussed including its functional en-
gine which is unique to this framework. The main con-
cepts of similar frameworks are explained and compared to
PFQ. Conducted measurements of PFQs performance are
reviewed and compared to other measurements done by the
frameworks creator.

Keywords
PFQ Linux network Internet framework

1. INTRODUCTION
The Internet is transferring more and more data by the
minute. Traditionally middle boxes such as routers and fire-
walls were built using specialized hardware in order to speed
up the processing and hence be able to handle the growing
load.

A more recent approach is to use commodity hardware such
as Intel x86 platforms. However normal Operating Systems
(OS) kernels are not able to provide the speed needed to
fully exploit the hardware provided network link speed.

Furthermore modern networking hardware is able to take
away load from the CPU, for example by computing the
ethernet CRC32 checksum in hardware. Another improve-
ment is the support of multiple packet queues which allow
better utilization of multi-core processors.

In order to actually use all these new possibilities, high per-
formance frameworks need to be developed, tested and used.

The purpose of this paper is to test a framework called
PFQ and compare it against other frameworks. In Section 2
the low-level mechanics of the existing network stack of the
Linux kernel in which PFQ partly lives are explained. The
framework itself is discussed in Section 3. Comparing PFQ
to other frameworks is done in Section 4. Section 5 presents
the conducted measurements and evaluates the result with
respect to previous performance tests.

2. THE LINUX KERNEL
The PFQ framework mostly works inside of the Linux ker-
nel. Also the packet retrieval from the network interface
is handled in the standard Linux way. This section covers
the communication between the Linux kernel and the Net-
work Interface Controller (NIC), by explaining how this was
achieved in the past and today.

2.1 Softnet
In the early days of the Linux kernel the Internet did not
consist of networks capable of transferring as much data in
a short period of time as it does nowadays. As an addition,
the hardware design was much simpler. Most notably there
were not as much multi-core processors, as today. As a result
multithreading the network stack inside of the Linux kernel
was no priority, even thread safety was not given until it
was introduced in Linux 2.0 [1]. Thread safety was provided
by using a mutex which only allowed one thread to operate
inside of the network context.

All this changed with the Linux kernel version 2.3.43 in
which multi-core support was added allowing multiple pro-
cessors to concurrently work on network traffic as it came
in from a NIC. The patchset which contained these changes
was called “Softnet” [1].

One problem which led to excessive packet loss in high traffic
situations however remained. At some point the hardware
has to inform the OS, that there are one or more packets to
be handled. Meanwhile the network card stores the pack-
ets in a DMA memory ring. Up to this point a hardware
interrupt was used to signal this event for every incoming
packet. This behavior is suitable when packets only arrive
every once in a while, but needless and even harmful if lots
of packets get received. As soon as a hardware interrupt
is caught by the processor it needs to be handled imme-
diately, delaying the work which is currently being done.
As observed by Salim et al. [1] this could lead to an un-
equal usage of computing resources between the kernel and
the user space. Therefore packets may have been queued,
but never actually been processed by a process interested in
these packets in the first place.

2.2 NAPI
As seen in chapter 2.1 issuing an interrupt for every single
packet which arrives at the network card does not yield a
very good performance for high traffic environments. The
exact opposite of this approach would be to use no interrupts

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

61 doi: 10.2313/NET-2016-07-1_09

at all, but to periodically poll the network card for packets.
Obviously the second way will oftentimes add unnecessary
latency to the further usage of the transmitted data [1].

The “New API” (NAPI) as presented by Salim et al. [1] pro-
vides a hybrid of these two worlds. When the network card
is initialized, it is configured to emit an interrupt as soon
as a packet arrives. Once this event occurs the interrupt for
incoming packets gets disabled and the NIC is inserted into
a queue of NICs having unprocessed packets. At some point
in time the OS decides to handle the queued interfaces and
thus the waiting packets. After all the packets from this in-
terface are retrieved, the interrupt is re-enabled. Packets get
dropped if the OS is not capable to schedule the processing
of the DMA ring while it has still space left. As soon as it
runs out of space no further packets can be written into the
RAM, these newly arriving packets are therefore lost.

This behavior mimics the two extremes outlined before in
extremely high or low traffic situations. If only a few pack-
ets arrive with a long enough time distance an interrupt is
send for each packet. When a lot of packets are arriving in
a rapid succession the system basically reverts to polling.
Thus a good middle ground was found between these two
mechanisms.

Up to now the Linux kernel uses the NAPI.

3. INNER WORKINGS OF PFQ
After understanding how the Linux kernel works for retriev-
ing packets from network interfaces, the next upper layer of
the used software stack is the PFQ framework itself.

3.1 General Structure
PFQ works inside of the NAPI context making use of the
standard way to retrieve packets from network cards. When
receiving a packet on the link, PFQ performs multiple steps
in order to make this packet accessible to a user space pro-
gram.

Figure 1 provides an illustration of the content which will
be discussed in the following paragraphs.

First there is the so called packet fetcher [2] which operates
on single packets. The one thing the packet fetcher does is
saving a pointer to the packet inside of the batching queue
[2]. Internally the packets are still represented by a sk buff
struct as used by the kernel. The whole point of the packet
fetcher is to speed up the processing afterwards in the next
stages by only working on batches of packets instead of pro-
cessing every single packet on its own.

The batching queue is the input to the packet steering block
[2]. Inside of the packet steering block it is decided to which
socket the packet is forwarded. Alternatively a packet can be
fed back into the Linux kernel or discarded completely. Dur-
ing this process the functional engine (discussed in section
3.2) is active. As an output location of the packet steering
block the socket queue is used.

The socket queue is the interface between the kernel world
and the user space world [2]. It is realized as a wait-free
double buffer. While one buffer is being processed by a user

space thread, the other buffer is used for storing new packets
which are currently coming into the system. This process
is facilitated by mapping the buffers into the appropriate
memory spaces.

The user space sockets are the only instances which only
operate in the user space and not inside of the kernel [2].
These sockets provide a way for threads to retrieve packets.

In order to speed up the low-level operations an additional
component called an “aware driver”[2] can be used. This
kind of driver provides only small code changes to the orig-
inal vanilla driver. When using such a special driver the
Operating System kernel does no longer receive network in-
put. All the incoming packets are processed by PFQ. [2]

At this point it should be noted, that the normal Linux ker-
nel would need to do a lot more preprocessing then PFQ
does. For example PFQ does not implement IP reassem-
bling or checks if a TCP segment actually belongs to a cur-
rently open connection. It does only provide a thin interface
between the networking hardware and the user space pro-
cessing.

ethX Hardware

Batching-Queue
NAPI-Driver

Functional Engine

Socket Queue

Figure 1: Inner Structure of PFQ, Image was re-
drawn and adapted, original by Bonelli et al. [2]

3.2 Functional Engine
The functional engine is a feature implemented within the
packet steering block. This engine determines what to do
with a packet. Possible options are: dropping, feeding it
back into the kernel, sending it to a group of sockets, all
sockets, one randomly chosen socket or forwarding it to a
specific socket (a group with only one member socket). If a
group is chosen as the destination, it may be decided if the
whole group receives the packet, or only one random mem-
ber, which thus results in a load-balancing situation. The
used language is called“PFQ-Lang”and was first introduced
by Bonelli et al. [3].

Using a functional approach inside of the kernel provides
the capability to run checks against the program in order to
verify properties like guaranteed termination (no loops) or
that all types correct [3]. This is useful in order to avoid
crashes inside of the kernel.

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

62 doi: 10.2313/NET-2016-07-1_09

Inside of the program multiple processing steps can be per-
formed, which can result in a conclusion in which direction
the packet should be destined. If multiple different deci-
sions are made during this process the last decision is used.
One special case is a drop, if a packet is set to be dropped,
later steps cannot overwrite this with another action. These
steps are also called a “processing pipeline” [3] inside of the
functional engine.

A decision on how to handle a specific packet is made by
properties of the packet. These properties include the pro-
tocols used in the layers 3 and 4. Furthermore source and
destination addresses and ports can be investigated. More
detailed information about the packet, for example if it is
fragmented, can also be used.

Having a filtering mechanism like this, which does not crash
and operates inside the kernel does promise a comparably
good speed. Therefore middlebox software seems like a sen-
sible application for this type of feature.

4. COMPARISON WITH OTHER FRAME-
WORKS

Comparing the basic mechanisms of PFQ to those of other
frameworks is important in order to evaluate the perfor-
mance and fitness for some purpose.

4.1 Netmap
Similar to PFQ Netmap also operates inside the Operat-
ing Systems kernel, although most of Netmap is based in
the user space. Contrary to PFQ running Netmap means,
that the network interface on which Netmap is used is no
longer usable for the normal kernel. This limitation is only
enforced if an application uses the Netmap framework, oth-
erwise the interface behaves normal. Another difference is,
that PFQ can work with vanilla drivers whereas Netmap re-
quires patched drivers, which can be derived from the orig-
inal Linux drivers [4]. Netmap basically works by letting
the NIC write its incoming frames to the user space process
memory [2].

4.2 DPDK
DPDK also exclusively uses the network interface which is
switched into this exclusive mode whenever a special kernel
module is loaded. Said kernel module is named “UIO” and
serves as the network cards driver. The only responsibility
the kernel module has, is to map the cards memory into the
memory space of the process which wants to use DPDK.
Obviously this process runs in the user space which means,
that the framework parts inside of the kernel space are less
then the ones PFQ runs inside of the kernel. This framework
does not only provide a fast way to send and receive packets,
but a complete framework to realize Data Plane Devices like
routers or switches. One example feature which is important
to such devices is an efficient implementation of longest-
prefix-matching. [4]

4.3 PF_RING ZC
One feature which PFQ adapted from PF RING ZC is the
usage of aware drivers. PF RING ZC actually was the first
framework to propose such an approach [2]. Similarly to
PFQ PF RING ZC also uses shared memory rings for the

kernel and the user space. The difference however is, that
PFQ uses two such buffers which get swapped, whereas
PF RING ZC only has one buffer [2]. Measurements con-
ducted by Bonelli et al. [2] showed, that PF RING ZC does
not perform as well as PFQ in regards to scaling up to mul-
tiple threads and hardware queues.

5. MEASUREMENTS
Measurements of the performance of PFQ were carried out.
These include the two basic functions of such a framework,
namely sending and receiving packets.

5.1 Setup
The measurements were conducted on two servers connected
by a 10 Gbit/s ethernet link. As CPUs the first server used
an Intel Xeon E3-1230, the other server an Intel Xeon E3-
1230 V2. The used Network Interface Controllers (NICs)
were an Intel 82599ES and an Intel 82599EB respectively.
No further supporting kernel modules or patches to the net-
work driver were used. The systems were running the Linux
kernel version 3.19.

PFQ was compiled from source using the Glasgow Haskell
Compiler (GHC) version 7.8.4. The version of PFQ itself
was 5.0.4.

5.2 Traffic Generation
Using PFQ traffic was generated on the server with the Intel
Xeon E3-1230 processor and the Intel 82599ES NIC. Dur-
ing the experiment the number of threads used for packet
generation was incremented from 1 to 4 in steps of 1. The
packet size was fixed to 60 Bytes. In another run the size
of the packets was set to 128 Bytes, in order to measure
if PFQ also performs well in situations with more realistic
packet sizes. Using the second setup only 1 and 2 threads
were tested. During this test hugepages were not mounted.

The test was performed with the bundled test tool “pfq-gen”
using the command line pfq-gen -l 60 -R -t 0.5.ethtest0

-k 1,...

 0
 2
 4
 6
 8

 10
 12
 14
 16

 1 2 3 4

M
pp

s

Number of threads

Packet length 60 Byte
Packet length 128 Byte

i7-2600 [5] Packet length 60 Byte

Figure 2: Packet generation

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

63 doi: 10.2313/NET-2016-07-1_09

As can be seen in Figure 2, using more than one core does
help to generate packets at a faster rate. The framework
does also scale with rising packet sizes, since the sending
rate did only decrease inside of the error margin. During
the experiment it was also observed, that the sending rate
dropped below the average at multiple occasions, leading
to a quite high standard derivation which is also shown in
Figure 2. Notably the average sending rate peaked with
three cores and descended with the usage of four cores.

 2x106

 4x106

 6x106

 8x106

 1x107

 1.2x107

 0 10 20 30 40 50 60

pp
s

Number of sample

Figure 3: Packet generation on 3 cores

Figure 3 shows the performance of PFQ in packets-per-
second for every taken sample of the measurement with 3
cores. It can be observed, that most samples are on one level
above 10 Mpps and only a few downwards directed peaks are
featured in the graph. These peaks occur relatively regular.

5.3 Traffic Capturing
Capturing traffic was performed on the Intel Xeon E3-1230
V2 processor and the Intel 82599EB Network adapter. The
traffic was generated by PFQ running on 3 cores and build-
ing packets with a size of 60 Bytes. During the measure-
ments the amount of used hardware queues was raised from
1 to 4. Each queue was bound to one processor core, which
results in a multithreading situation inside of the kernel. In
contrast to the traffic generation measurement hugepages
were mounted.

Analogous to the traffic generation the used tool also was in-
side of the PFQ test suite. It is called “pfq-counter” and the
used command was pfq-counters -c 64 -t 0.5.ethtest0.
Before issuing the command the PFQ kernel module was
reloaded with the appropriate queue number.

Figure 4 illustrates that the packet capturing capabilities of
PFQ rise in a linear fashion with the number of queues used.
As in the traffic generation test a significant derivation in the
measured data was found.

5.4 Comparison with other measurements
Similar benchmarks were performed by Bonelli et al. and the
results published in the projects wiki page [5]. Differences
between the tests were the kind of processor, and software
optimizations. The measurements in this paper were con-
ducted with vanilla drivers, whereas Bonelli et al. [5] used

 0
 2
 4
 6
 8

 10
 12
 14
 16

 1 2 3 4

M
pp

s

Number of queues/threads

Packet length 60 Byte
Linear fit

i7-2600 [5] Packet length 60 Byte

Figure 4: Packet capture

a driver which was optimized by the pfq-omatic tool. Fur-
thermore Bonelli et al. loaded a special kernel module which
provided support for Direct Cache Access. The used traffic
generation and capturing tool were the same and even shared
the same options. However the PFQ kernel module was
loaded with different options. The measurements conducted
by Bonelli et al. used the option “xmit batch len=128”[5],
whereas the measurements done in this paper used the de-
fault value of one. Another big difference were the clock
speeds of the used processors, which were lower in the here
presented results. Using hugepages might as well have an
impact on the performance (it is not stated if Bonelli et al.
used hugepages, although this is very probable).

It can be observed, that the measurements conducted in this
paper do not yield such a high performance as the previous
measurements made by Bonelli et al. [5].

6. CONCLUSION
In this paper historical approaches to handling packets at a
low-level were discussed. These included thread safeness and
interrupts. Modern operating systems migrated away from
issuing one interrupt per packet to issuing one interrupt per
batch of packets.

Furthermore an overview of the building blocks of the PFQ
high performance I/O framework was given. These included
getting the packets from the low-level kernel space, steering
them according to a functional engine and enqueuing them
to be accessible by user space applications. The internals
and capabilities of said functional engine were discussed.

Other frameworks promising similar functionality were ex-
amined for similarities and differences. Discussed were
Netmap, DPDK and PF Ring ZC. All provided the same
basic functions like sending and receiving packets, but the
methods achieving this do differ from one to another. All
use some kind of kernel module, although the ratio of work
done in the kernel space and the user space vary heavily.

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

64 doi: 10.2313/NET-2016-07-1_09

Lastly measurements were taken to determine how many
packets PFQ can send and receive on x86 commodity hard-
ware. Inside of these measurements the number of used cores
was variated. Within these measurements it was observed,
that there were severe drops of the transmission rate. An-
other important note is, that when capturing traffic there
is a linear correlation between the received packets and the
number of hardware queues which PFQ was able to use.

7. REFERENCES
[1] J. H. Salim, R. Olsson, and A. Kuznetsov. Beyond

softnet. In Proceedings of the 5th annual Linux
Showcase & Conference, volume 5, pages 18–18, 2001.

[2] N. Bonelli, A. Di Pietro, S. Giordano, and G. Procissi.
On multi–gigabit packet capturing with multi–core
commodity hardware. In PAM’12 Proceedings of the
13th international conference on Passive and Active
Measurement, pages 64–73. Springer, 2012.

[3] N. Bonelli, S. Giordano, G. Procissi, and L. Abeni. A
purely functional approach to packet processing. In
Proceedings of the Tenth ACM/IEEE Symposium on
Architectures for Networking and Communications
Systems, ANCS ’14, pages 219–230, New York, NY,
USA, 2014. ACM.

[4] F. W. D. R. Sebastian Gallenmüller, Paul Emmerich
and G. Carle. Comparison of frameworks for
high-performance packet io. In ACM/IEEE
Symposium on Architectures for Networking and
Communications Systems, 2015.

[5] Nicola Bonelli. PFQ Benchmarks
https://github.com/pfq/PFQ/wiki/Intel-IXGBE-10-
20G (last retrieved 8.12.2015)

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

65 doi: 10.2313/NET-2016-07-1_09

