Topology Discovery in controlled environments

Maximilian Pudelko
Betreuer: Florian Wohlfart, Sebastian Gallenmdiller
Seminar Future Internet WS2015
Lehrstuhl Netzarchitekturen und Netzdienste
Fakultat fir Informatik, Technische Universitdt Minchen
Email: maximilian.pudelko@tum.de

ABSTRACT

This paper describes a method to collect data about the
topology of networks. Further on the data is used to generate
images representing the links between the hosts giving a
broader overview over the network. The single steps of the
process are fully automated to reduce manual interaction
with the system.

Keywords

topology discovery, test environment, 11dp

1. INTRODUCTION AND SCENARIO

A research networking testbed can be a rapidly changing
environment as some experiments require different setups.
This leads to a constantly changing wiring and positioning
of the single testbeds. These changes done must be documen-
ted manually and merged into the existing documentation.
As this is seen as a cumbersome process it is often skipped
leading to an outdated information base. It is the goal of this
paper to develop a program which aids this documentation
process by utilizing existing technologies and software to de-
tect the physical topology of the testbed. With this goal set
the program has to meet the following requirements:

e The detected topology should be a correct represen-
tation of the hosts and their interconnection at the
link layer of the network. Detailed information about
speeds and type, in case of links, and hardware confi-
guration in case of hosts should be collected.

e Usage of the tool should result in reduced human in-
volvement compared to collecting the data manually.

e The output must be graphical in a way that presents
the topology suitably.

e The program should integrate into the existing test-
bed setup. Specifically it must not interfere with other
running experiments.

The reminder of this paper is organized as follows: Section
2 describes existing technologies and how they apply here,
Section 3 illustrates the developed solution of which the re-
sults on the Baltikum testbed are presented in Section 4.

2. RELATED WORK

As the idea of developing a method to discover present de-
vices and their physical topology on a Local area network,

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

55

IEEE 802 (LAN) is not new, several solutions have been al-
ready developed by different parties and organisations. The
following chapter will give a short overview over some of the-
se protocols, compares them and explains why Link Layer
Discovery Protocol (LLDP) was chosen as the base to sol-
ve the problem at hand. Additionally the basic operation of
LLDP will be clarified as needed for the understanding of
the solution as it builds on it.

2.1 Proprietary Protocols

Introduced in 1994 the Cisco Discovery Protocol (CDP) aims
to provide a mechanism to discover devices connected to a
network at the Link Layer (L2) by broadcasting informati-
on about itself. This enables any device wanting to collect
information to simply listen for this broadcasts without any
prior configuration [3]. As the usefulness of such a tool for
network administration became evident, it was included in
the OS of Cisco’s networking hardware and over the time
developed further to e.g. set-up VoIP telephones.

Similar the Link Layer Topology Discovery Protocol (LLTD)
was developed by Microsoft which too operates on any IEEE
802 network [4]. Contrary to the CDP it was not included
in networking hardware, but in the network stack of Micro-
soft’s OS starting with Windows Vista to display a graphical
Network Map of home networks and to detect connectivity
problems of wireless networks.

While for both protocols free Linux implementations exist,
neither of them are a viable solution as they are either li-
mited to vendor specific hardware, which would result in
incomplete topologies in case of mixed setups, or require the
signing of a license agreement to use them.

2.2 Link Layer Discovery Protocol

In 2005 a IEEE task force created a vendor neutral protocol
called LLDP to unify the up to then incompatible vendor
specific protocols. In the following the basic operation will
be explained.

Like its predecessors LLDP operates on the Link-Layer of
LANSs, which gives it the benefit of low configuration prere-
quisites. In particular no IP addresses are needed as commu-
nication happens via Ethernet with vendor-set or manually
administered MAC addresses. A participant, referred to as
chassis, may be active and/or passive depending on con-
figuration. An active chassis will broadcast LLDP frames
on all of its ports in regular intervals to inform potential
listeners of its presence. If a passive chassis retrieves this
frame it will store this information in a local Management

doi: 10.2313/NET-2016-07-1 08

LLDP
Ethertype

DA SA Data (+ pad)

LLDP Multicast
address

Chassis MAC

88-CC
address

LLDPDU FCS

6 octets 6 octets 2 octets up to 1500 octets 4 octets

Figure 1: IEEE 802.3 LLDP frame format|[2]

Information Base (MIB). While two hosts may be able to re-
ach each other, no direct communication happens between
them. Particularly it’s not possible to make requests to other
chassis asking for the content of their databases, as LLDP
is designed as a one way protocol [2] using only broadca-
sted and not directly addresses frames frames. As LLDP
operates on L2 every frame has to be wrapped in a Ether-
net frame as shown in figure 1. Since these frames are not
directed to one specific host a broadcast address has to be
used in the destination address field. As normal broadcasted
frames with target FF-FF-FF-FF-FF would get forwarded
by bridges and switches, which would lead to an inclusion of
equipment beyond the physical link of a chassis, the standard
suggests a set of three reserved addresses * to limit frames to
one link on conforming switches. The source address is filled
out with the MAC of the interface (port) on which the frame
goes out. To distinguish LLDP frames from other protocols
like IP a separate Ethertype of 83-CC is used. Next follows
the actual payload in form of the LLDP Data Unit (LLDP-
DU). Each LLDPDU consists of a concatenation of TLVs of
which some are mandatory and some optional. The Chassis
ID TLV contains the identifier of the chassis that send out
the frame and has to remain constant for the time of opera-
tion of the LLDP service. This property is important as it
enables us to compile a list of the available hardware in the
network as explained in 3.2. The likewise mandatory Port
ID TLV uniquely identifies the sending port of a chassis.
With this value it becomes possible to distinguish between
multiple links between two chassis or to determine the ex-
act port number on a connected switch. Among the optional
ones the organizationally specific 2 System Capabilities TLV
and the MAC/PHY Configuration/Status TLV are of spe-
cial interest, as they indicate the type of networking device
(router, switch or simple station) and the bandwidth/type
of the physical link respectively.

As this standard has been implemented by all major networ-
king hardware manufacturer and is usable without restric-
tions, it is chosen as the protocol to use in the Baltikum
testbed. To enable this functionality on the Linux hosts the
FOSS program lldpd is employed, which additionally also
implements a client for most vendor specific protocols [1]
and thus ensures maximum coverage.

2.3 Other, higher layer protocols

While several other protocols like Open Shortest Path First,
a IP link-state routing protocol (OSPF) and Neighbor Disco-
ver Protocol, part of IPv6 (NDP), which operate in a similar
domain, exist, they are not applicable to the scenario of a
testbed because of the layer they operate on. The require-

101-80-C2-00-00-0E, 01-80-C2-00-00-03 and 01-80-C2-00-00-
00. Each with different meanings to provide further control

2Vendors and organizations can define custom TLVs and
apply for inclusion into the standard

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

56

Figure 2: Example topology consisting of the mana-
gement router R and testbeds A, B

ment of getting a link layer topology can not be satisfied with
protocols operating at network layer, as they, by design, ab-
stract single links away. Also is the required knowledge and
organization to set them up often too much of an overhead
or not even possible at all.

3. PROPOSED ARCHITECTURE

Despite being favorable over the other protocols, LLDP co-
mes with several shortcomings by not providing any means
to solicit information from other chassis and operating on the
link-layer (L2) only. On this layer communication is most-
ly limited to direct, neighbor-to-neighbor messages without
any routing over other machines involved. The example in
Figure 2 demonstrates this limitation. With R being the ma-
nagement router and the only host which MIB we consult,
we would get correct information about the testbeds A and
B and their management connections m0Ogr, 4, m1lg, B respec-
tively, but the, usually more interesting, test links 0 and t1
would stay hidden. This leads to the conclusion that for a
complete view of the network the content of all MIBs of the
relevant testbeds, e.g. A and B too, has to be collected. This
in turn complicates the setup process a bit as shown in figure
3, as it has to be ensured that every host has completed the
setup step and is ready to receive/send messages or parts of
the network will remain uncharted. Additionally there will
be a high ratio of duplicate entries which will be dealt with
in chapter 3.2.

3.1 Setup and Data gathering

The first step in the discovery process is to enable LLDP
or vendor specific equivalents on the deployed hardware like
switches or router and the testbeds. Depending on firmwa-
re or configuration these services may normally be disabled
since they may influence experiments negatively or are ge-
nerally not needed. It should be noted that they are only
required during the discovery process and can safely be di-
sabled again afterwards. On the Baltikum testbed this can
be launched over the existing Command and Control (C&C)
interface on the management host. Since the setup process
may take a different amount of time on the hardware a syn-
chronization barrier is employed as show in figure 3. In case
of the Baltikum testbed of the TUM this is done over the
management network, to which all test devices are connec-
ted, but different local viable solutions are thinkable. This
barrier may only be passed once every participating host is

doi: 10.2313/NET-2016-07-1 08

=== ~

f \

I Setup |

| hosts I

| I Ready Barrier
___l ____________________ i_-.

| |

! Survey !

| |

| network I Convergence

I | Barrier
i S -

| |

I Upload l

I data |

N = _— =7 Onevery chassis

()

I Refine data / I

Output I On management
| J host only

Figure 3: Proposed flow

ready, which marks the beginning of the data gathering pha-
se.

Now every host sends the LLDP frames over its interfaces
and collects information over its adjacent neighbor testbeds
or hardware. The physical network should be stable at this
point, so no more replugging should happen. Experiments
on the Baltikum testbed have shown that this discovery pro-
cess only takes a few milliseconds, but non-ideal conditions
in networks spanning large distances or including wireless
links may lead to dropped frames and delays. So a conver-
gence timer of 10 sec to minimize this risk is employed with
the second barrier. After this every host shuts down the
discovery service and saves the gathered data locally to be
collected in the next step. Additionally every chassis collects
information about its hardware such as number and type of
CPUs, amount of RAM and built in mainboard to enrich
the dataset. As this kind of information is not part of the
LLDP specification, it is done at last and simply added to
the dataset.

3.2 Data aggregation and refinement

Now the collected data has to be aggregated and refined to
make it usable. On the Baltikum testbed this has been reali-
zed over the already existing infrastructure for the upload of
normal experiment results, but this may be solved as needed
depending on the actual setup. Once the collection is com-
pleted the filtering phase begins on the management host.
The need for this step can be explained with the example
topology in figure 2 as we look at the theoretically collected
data:

links = {(Ap1, Bp1), (Bp1, Ap1), (Ap2, Bp2), (Bp2, AP2)}3

3The management links m0, m1 have been excluded for cla-
rity. lldpd includes filter to ignore certain interfaces.

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

57

Where a tuple (X;,Y;) stands for a link from X on port %
to Y on port j. And

chassis = {Aa, A, Ap, Ba, Ba, Bg}*

where a value Xy represents a chassis X as seen by Y.

The seemingly duplicate values come from the drawbacks of
using a link layer protocol. As e.g. A is connected to B over
multiple links, B will receive multiple frames from A only
distinguished by the port IDs. The program will therefore
detect multiple entries about the same chassis, as identified
by identical chassis IDs, and merge them. The same principle
applies to the set of links as each side reports the existence of
a link from its Point of View (PoV), the program will try to
find links with common endpoints and join them together to
bidirectional ones. In the example above this would lead to
the aggregation of e.g. the links (Ap1, Bp1) and (Bp1, Ap1) as
they have matching chassis and ports to one link { A1, Bp1}.

3.3 Data presentation

To keep the output as flexible as possible the JavaScript
Object Notation (JSON) was chosen to store the results for
further use such as generating topology graphs later. The
dataset is organized in two list. The first one contains all
connections with associated metrics like link speed as detec-
ted by the LLDP:

[{”endpointA”: {
”interface_name”: ”pl”,
?device_name”: 7A” |
"device_id”: {

”type” . Pmac”? ,
?value”: ”ab:cd:ef:00:00:017”

}

}7

?endpointB”: {
”interface_name”: ”pl”,
”device_name”: "B”
"device_id”: {

77type77 : ”mac77 s
?value”: 7ab:cd:ef:00:00:02”
}
}7
?speed”: 710GigBaseX”

}H

While the seconds list contains all discovered chassis identi-
fied by an ID and further described by a description string
and fields containing their hardware info obtained by the
local data collection:

[{7’A77:
77id”: {
77type77: 77mac77 R
?value”: "ab:cd:ef:00:00:01”
}7
”?descr”: ”Debian, GNU/Linux, 3.16.0—1—grml—amd64” ,
Pcpu”: "E3-1230_.V2_Q@_3.30GHz”,
”cpu_count”: 8,
Pram”: 17179869184
}
}]

The plotting process then becomes a matter of drawing all
chassis and connecting them.

4A chassis always “discovers” itself, as it can supply the most
information about it.

doi: 10.2313/NET-2016-07-1 08

4. RESULTS ON THE BALTIKUM TESTBED

In this chapter the results of a prototype implementation of
the strategy proposed in 3 will be presented. The program
is divided in a bash script for the set-up phase which relies
heavily on the existing infrastructure to start and control ex-
periments, as the whole topology discovery process is defined
as a regular experiment. For the refinement process and the
image generation a Python script incorporating the graph
drawing library pyGraphViz was developed. The Baltikum
testbed consist of 10 Linux hosts, one switch, one router and
the management network. Figure 4 shows a generated topo-
logy of the partial testbed as at the time of the discovery
not every host was available. While the correctness of all the
interconnections between the hosts could be confirmed via
manual inspection of the interfaces, it became evident that
LLDP did not detect links which start and end on the same
chassis. In particular the testbeds Cesis and Nida are mis-
sing each two of these ”short circuits” as seen in Figure 4.
Inspection of the source code of lldpd revealed that frames
that come from the same host are discarded silently to de-
al with faulty NIC drivers which relay broadcasted frames
back. About the overall performance can be said that it’s
largely dependent on the boot time of the machines which
can be as long as 5 minutes, while the experiment itself only
takes a few seconds.

S. CONCLUSION & FUTURE WORK

While a the process of collecting the required information
about a topology could be nearly automated, the goal of a
complete automation could not be archived, as the process is
not yet completely error free and the generated images often
need manual adjustments to be prevent overlapping labels.
In total this program still can provide a value help in the
documentation process as a base to extent from. While the
program it its prototype state is usable, certain areas need
further research. In its current state the topology discove-
ry still has to be explicitly run by the researcher and then
inserted into the documentation, which can be forgotten. A
possible way to solve this would be to let the LLDP service
run continuously instead of running it on-demand. While it
has to be determined that this does not interfere with the
experiments it would provide some benefits, as now tracking
changes over longer time intervals and the utilization of a
central database would be possible. This would shift the re-
sponsibility to the network administrator and away from the
single researcher, who could then, even retroactively, query
this database to get information about the systems state at
the time of his experiment. This interface again could be
provided via the existing wiki to keep information central
and generally available.

6. REFERENCES

[1] lldpd Development Homepage
https://vincentbernat.github.io/lldpd /features.html
Accessed: 2015-12-03

[2] IEEE standard for local and metropolitan area
networks: Station and media access control connectivity
discovery, ieee std 802.1ab, 2009.

[3] Cisco Systems, Inc. LLDP-MED and Cisco Discovery
Protocol, Jun 2006.

[4] Microsoft Corporation. Link Layer Topology Discovery
(LLTD) Protocol Specification, Aug 2010.

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

58

Glossary
C&C Command and Control

CDP Cisco Discovery Protocol

chassis A physical component incorporating one or more
IEEE 802 LAN stations and their associated applicati-
on functionality.

JSON JavaScript Object Notation

L2 Link Layer

LAN Local area network, IEEE 802

LLDP Link Layer Discovery Protocol
LLDPDU LLDP Data Unit

LLTD Link Layer Topology Discovery Protocol
MIB Management Information Base

NDP Neighbor Discover Protocol, part of IPv6

OSPF Open Shortest Path First, a IP link-state routing
protocol

physical topology Physical topology represents the topo-
logy model for layer 1 of the OSI stack - the physical
layer. Physical topology consists of identifying the de-
vices on the network and how they are physically inter-
connected. Note that physical topology is independent
of logical topology, which associates ports based on hig-
her layer attributes, such as network layer address.

PoV Point of View

TLV type, length, value. A short, variable length encoding
of an information element consisting of sequential type,
length, and value fields where the type field identifies
the type of information, the length field indicates the
length of the information field in octets, and the value
field contains the information, itself.

doi: 10.2313/NET-2016-07-1 08

palanga

tallin

tartu eth-mgmt omanyte
ethtest0 ethtestl
1Gig
~ 10GigX
10GigX
cesis
eth-mgmt 1Gig
ethtst2? ethtstl
50 52 1
10GigR 10Gig HP-3800-48G-4SFPP
3 24 22
. 1 1 £ 21
ethtst1 ethtst2 1Gig
eth-mgmt
hida
1Gig 1Gig 1Gig 1Gig 1Gig 1Gig
eth-mgmt L0Giax eth-mgwethtesisthtestdthtestSthtest?
ethtesto 9 ethtesto
klaipeda narva
ethtestl 10GigX efhtest1

riga

vilnius

Figure 4: Generated partial topology map of the Baltikum testbed, 20.12.2015

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

59

doi: 10.2313/NET-2016-07-1 08

