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ABSTRACT
To address the challenges arising from the development of
computer network management over the past decades, re-
searchers have developed a number of tools to assist the op-
eration of networks and help administrators avoid mistakes.
These tools often follow the approach to verify an exist-
ing network configuration. This poses the problem that the
behavior of a lot of potentially complex networking device
configration has to be supported. The usual approach to
this is to develop simple models that only reflect the aspects
of the system that the tool can understand. We survey the
related literature for the use of this type of model.
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1. INTRODUCTION
Over the past decades, computer networks have grown con-
siderably in size and complexity. Attempts to fulfil the re-
sulting complicated service requirements has given rise to
more and more complicated middleboxes (switches, routers,
firewalls, etc. . . ). Configuring these middlboxes poses an
enormous challenge to network operators, who have to be
able to understand numerous configuration languages and
manage interoperating distributed configuration. While this
earned network operators the title“masters of complexity”[24],
it is generally seen as problematic.

Computer networks researchers have recognized that other
fields, e.g., programming languages, have developed high
level approaches to mitigate complexity and present users
with simple ways of detecting and avoiding errors. In the
past decade, research transferring these approaches to net-
working has gained traction. A number of tools have been
developed that can be invoked to analyze an existing net-
work configuration. The usual approach of these tools is to
have the user collect the configuration of his network on a
single machine. This configuration is complex and can thus
not be directly and likely not fully understood. A tool will
parse the configuration and translate it into a representa-
tion it can reason about: a model. Depending on the type
of the tool, different reasoning is possible; a very common
application is to find all possible routing loops — or, if none
are found, to prove the absence. However, the development
of such tools holds the same challenges that network man-
agement holds: a lot of diverse configuration languages and
devices has to be supported. Software Defined Network-
ing (SDN) attempts to alleviate this burden for operators

by proposing a central, programmable controller. This con-
troller is connected to all network devices and can configure
them. The devices can notify the controller when they re-
ceive a certain type of packet, e.g., packets belonging to a
new connection. The controller hands these notifications to
a program written by the user. This program can then con-
figure the devices accordingly, e.g., create a path for the new
connection. SDN allows to manage nearly all configuration
in a single language and logically on a single host.1 This
greatly simplifies the operators tasks and can simplify the
verification of the configuration by automated tools.

The crucial steps when attempting to verify a configura-
tion are defining a model of how the configuration is going
to be understood, and how to translate real configuration
into a representation in the model. This holds various chal-
lenges, some of them are intrinsic to modeling: if the model
is too simple, it may not be able to represent reality. If it is
too complex, it may lose its purpose, as reasoning about it
becomes as complicated as reasoning about the original ob-
jects. Other challenges are specific to the problem at hand:
no tool can possibly understand all the different configura-
tion languages. Typical tools, such as Anteater [18], Has-
sel [16], VeriCon [5], or Exodus [23] are able to understand
subsets of a few configuration languages, such as Cisco IOS
or Juniper configurations. This is usually accompanied by
the claim that other configuration languages can be easily
translated in the same manner, without giving further con-
siderations to the subtleties of such a translation.

In this paper, we survey the related work for the use of mod-
els. We focus on the analysis of how systems are modelled.

The rest of this paper is organized into two parts: Section 2
contains the survey of the different models and what aspects
they model. We have grouped the models into subsections
by the type of the device that is modelled. Section 3 con-
tains a short overview of what purpose the models serve and
whether they could be repurposed.

2. BOX MODELS
We continue with the different box models. Section 2.1 sur-
veys link layer switches, Section 2.2 routers, Section 2.3 SDN
switches, and Section 2.4 Firewalls. Section 2.5 looks at
models of devices that do not only provide a single function.
Additionally, Section 2.6 shows the big switch model.

1Note that this reflects the understanding of SDN from the
view of OpenFlow [20], variants exist.
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Figure 6: Internal flow of packets within a router. Edges are labeled with decisions rendered by the policies at the
Figure 1: Margrave’s router model, taken from [22].

2.1 Link Layer Switches
When considering only the basic switching functionality, Link
layer switches become relatively simple devices. They nei-
ther offer many opportunities for modeling, nor are they very
interesting as a target for verification, since most switches
simply have no configuration to verify. Accordingly, there is
not much material in the related literature.

There is one problem that arises when verifying networks
that contain switches among other devices. Switches are
stateful devices, while some verification systems do not sup-
port state. A simple modeling solution for that is presented
in Header Space Analysis [16]:

When we generated box transfer functions, we
chose not to include learned MAC address of end
hosts. This allowed us to unearth problems that
can be masked by learned MAC addresses but
may surface when learned entries expire.

While this modelling decision has consequences for the mod-
els of a variety of devices, it implies that switches are always
in their learning phase, i.e. are effectively replaced by broad-
cast devices.

2.2 Routers
For this section, we will focus solely on layer 3 forwarding.

While Margrave [22] is originally a tool for the analysis of
firewalls, it also has a detailed understanding of the packet
forwarding process in Cisco IOS to be able to accurately
perform its tasks. The model that Margrave uses is shown
in Figure 1. The process of forwarding is described as fol-
lows. First, packets destined to locally attached subnets are
filtered out and directly forwarded. All other packets are
subjected to routing. The second step is thus to handle
policy routing — packets with special routing rules that do
not only depend on the destination address but e.g., on the
source address, too. The third step is to consider statically
configured routes. All remaining packets are processed using
the default policy.

A more abstract model of routing is presented by Xie et
al. [25].2 They model a network of routers to be an an-
notated graph (V,E,F) where the nodes V represent the
routers, E contains two directed edges for each physical
link, and the edge labels Fu,v ∈ F express which packets
are allowed to flow over an edge u, v. The routing process
is modelled using F : a flow over an edge u, v will only be
permitted by Fu,v if the router u has a route to v for that
specific flow.

To summarize, the Margrave’s model [22] describes the rout-
ing process while the model in [25] abstracts it away to be
a property of a graph.

2.3 SDN Switches
This section surveys selected works on switches in software
defined networking (SDN). Various approaches to SDN exist.
This section focuses on OpenFlow [20] since it is currently
the most actively researched variant. We assume that the
reader is familiar with its basics. While it could be said
that the OpenFlow switch specification [3] itself is based on
a model of a generic networking device, we are not going
to explore this and instead examine models of OpenFlow
switches. We will continue to denote OpenFlow switches as
switches in this section for succinctness. The term datapath
element would be more accurate since the switches can take
arbitrary functions.

Guha et al. [14] present a fully machine-verified implemen-
tation of a compiler for the NetCore controller programming
language. For this purpose, they give a detailed model of an
OpenFlow switch that adheres closely to version 1.0 of the
OpenFlow switch specification [2], including packet process-
ing and switch-controller interaction. We will examine the
most important details and begin with the flow table evalu-
ation semantics: Guha et al. dedicate significant attention
to how a packet is matched against a flow table entry. Their
main concern there is related to behavior that was only made
explicit in later versions of the specification, e.g. [3, §7.2.3.6]:

2The Anteater tool [18] mentioned in Section 1 is based on
this work.
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K

∃(n, pat , {|pt1 · · · ptn|}) ∈ FT .
pk#pat = true

∀(n ′, pat ′, pts ′) ∈ FT . n ′ > n ⇒
pk#pat ′ = false

JFT K pt pk  ({|(pt1) · · · (ptn)|}, {||})
(MATCHED)

∀(n, pat , pts) ∈ FT pk#pat = false
JFT K pt pk  ({||}, {|(pt, pk)|}) (UNMATCHED)

Figure 2: Flow table semantics by Guha et al., taken
from [14].

The presence of an [OpenFlow match] with a
given [type] may be restricted based on the pres-
ence or values of other [matches], its prerequi-
sites. Matching header fields of a protocol can
only be done if the OpenFlow match explicitly
matches the corresponding protocol.

For example, to match an outgoing SSH connection, a match
must check for at least layer 4 destination port 22, layer 4
protocol TCP, and layer 3 protocol IP. If only the match for
layer 4 destination port is included, some implementations
of an OpenFlow switch return an error as required by the
specification [3, §7.5.4.3]. Others, including the reference
implementation [1], silently drop them, which has led to
several severe bugs, according to [14]. Guha et al. specify
their packet matching semantics to only evaluate matches
when a previously executed match on the preconditions has
assured that the necessary header fields are present.

Next, they specify a flow table to be a multiset of triples of
priority, a match condition, and a multiset of output ports.
Although a multiset allows for uncountably many flow ta-
ble entries instead of a bounded number thereof, the im-
plications for the validity of the model are minimal. The
semantics JFT K pt pk  (o, c) for evaluating such a table
is shown in Figure 2. The semantics describes the decision
for a flow table FT and a packet pt arriving on a port p.
It can specifiy to forward the packets on the port set o or
to send the messages c to the controller. The operator #
matches a packet against a rule. Note that this semantics is
nondeterministic: if there are multiple matching flow table
entries with the same priority, it can be said that all of their
actions are executed nondeterministically. This is used to
model the fact that the specification [2, §3.4] says that the
switch is free to choose any order between overlapping flow
entries. For this paper, we have verified that determinism
can be enforced by adding the following precondition on the
flow table:

∀(n, pat , pts) ∈ FT . ∀
(
n′, pat ′, pts ′) ∈ FT \ {(n, pat , pts)} .

n = n′ =⇒ @pk. pk#pat ∧ pk#pat′, (1)

i.e. for two rules with the same priority, no packet matches
both. Note that this is slightly stronger than necessary to
make the semantics deterministic: overlapping entries could
be shadowed by a rule with higher priority.

Guha et al. also specify a semantics for the message pro-
cessing and passing between switches and controllers. They

model it as an inductively defined relation on the states of
switches, controller(s) and links between them. The seman-
tics of this is comparatively large: its 12 rules span an en-
tire page. There is one important modelling detail that can
be singled out: Switches are modelled as a tuple of their
unique identifier, their ports, one flow table, and four mes-
sage queues, one for each combination of in/out and con-
troller/switch to switch. These message queues are multi-
sets. On the receipt of a message through a link, or when
obtaining a message through processing at a switch, the mes-
sage is first enqueued in one of these queues. The seman-
tics is non-deterministic and allows to accumulate arbitrary
many messages and dequeue them in an arbitrary order.
This models the option for switches to reorder messages.
The only exception is a BarrierRequest, which is never en-
queued but, given that the input queue is empty, directly
processed. It can thus be used to ensure that all messages
have been sent before it is processed.

Orthogonal to the work of Guha et al. stands VeriCon [5].
It is not a verified compiler for controller programs but a
verifying tool for controller programs. It does not have
a detailed model of single switches against which it veri-
fies the output of its compiler. Instead, it checks its re-
sult on a high-level model of a network of switches. Its
authors, Ball et al., begin by presenting a simple exam-
ple programming language for controllers, called CSDN, and
give a formal semantics for this language. VeriCon allows to
prove correctness of programs within these semantics but it
does not establish the correctness of the compiler. VeriCon
takes three inputs: a CSDN program, a topology invari-
ant, and a correctness condition. The topology invariant
allows to limit the possible changes in topology, e.g., the
user can define that they will always ensure that no path in
the network has more than 3 hops. The correctness con-
dition is then verified to hold for all possible states and
topology changes. To achieve that, VeriCon uses the fol-
lowing high-level model of a network of switches: Its state
is modelled as 5 relations. The first relation contains the
links between switches, or switches and hosts, the second
one all paths that are possible over those links. These two
relations are mainly used to formulate topology invariants.
The third relation S.ft (Src → Dst , I → O) records whether
switch S has a rule in its forwarding table to forward packets
from host Src to Dst from input port I to output port O.
Similar to that S.send (Src → Dst , I → O) records whether
such a packet has actually been sent. Lastly, the relation
S.rcv this (Src → Dst , I) models whether a packet has been
received at input port I. With these, given a desired post-
condition Q, VeriCon can compute the weakest precondition
wpJcK(Q) for executing a command c in CSDN. For example:

wp JpktIn (s, p, i)⇒ cK (Q) :=
(
s.rcv this (p, i) ∧ s.ft (p, i→ o)

)
=⇒ wpJcK (Q) . (2)

This is the precondition semantics for the event handler
specification pktIn(s, p, i) ⇒ c. In the event of receiving a
packet p at port i of switch s, c is executed. The semantics
expresses the following: given that such a packet is actually
received and a forwarding rule is installed, the handle has
to satisfy the weakest precondition of its command.
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Similar to VeriCon is NICE [8]. It uses model checking and
other techniques to verify the correctness of a controller pro-
gram at runtime. It models an SDN as a system of stateful
“components” that communicate in a first-in first-out man-
ner. Communication between the components is, among
other things, modelled by state transitions in the system.
The controller programs are modelled accordingly: as a set
of event handlers that trigger state changes in the controller.
For model checking, NICE executes these handlers to explore
the state space and see if any of the transitions can violate
correctness invariants.

NICE notes that, for model checking, it would also need to
explore the state space of the switches. Since even the ref-
erence implementation Open vSwitch [1] has multiple hun-
dred KB of state when executed, this is not directly feasible.
NICE thus presents a simple model of a switch with a re-
duced amount of state. A switch is modelled as a set of
communicating channels, two state transitions and a single
flow table. Except for the control channel, which operates
strictly in a first-in first-out manner, these channels may
also drop or reorder messages3. On the receipt of at least
one message, a state transition is executed. To reduce the
amount of state transitions necessary, all packets present in
a state are modelled as being processed as a single tran-
sition. NICE also makes an important remark on the flow
table: two flow tables can be syntactically different, i.e. have
a different entry structure, but be semantically equivalent,
i.e. lead to the same forwarding decisions. This observation
is true for all three models here. For example, a table that
contains only exact flow matches (flow entries without any
wildcards) makes decisions independent of the priority of the
rules (i.e. the order in which they are considered)4. NICE
uses heuristics to merge semantically equivalent states.

2.4 Firewalls
The term firewall is used for a diverse variety of devices
and software. Devices by different vendors, such as Cisco,
Sun Microsystems, or Sophos have a largely different set of
features and purposes. Even the Linux kernel has two dif-
ferent firewall implementations (iptables and nftables). This
means that a large number of different models exists. Nev-
ertheless, a common principle can be factored out: most
firewalls and all models considered here consist of rules,
which in turn consist of at least a match and an action.
The match decides whether the action is to be applied to a
given packet. The firewalls’ types differ in how rules are or-
ganized, i.e. in which order they are applied, and what kind
of match expressions and actions are supported. Another de-
tail of interest is how connection state tracking is modelled,
i.e. how packets that belong to established connections are
treated differently from packets for new connections. Many
real world firewalls begin by accepting packets that belong
to or are related to an established connection. Finding a
simple but powerful model for state is hence important.

Accompanying a model of a firewall, there always has to be
a model of packets on which the firewall operates, albeit this

3Note the difference to [14] where the control channel does
also not operate in a first-in first-out manner and can reorder
messages.
4Assuming that the switch does not accept overlapping
rules.

is often left implicit. One of the few works that explicitly
specifies the packet model is [6]:

(α, β) packet :=

(id× protocol × α src× αdest× β content) . (3)

This can be read as: given arbitrary types α and β, a packet
consists of a record of a unique identifier, the used protocol
(http, ftp, . . . ), a source and destination address of type α
and packet content of type β.5 It is obvious that this format
does not model real packets very closely, since neither the
used (application layer) protocol is usually stated directly,
nor is every connection associated with a unique ID. Nev-
ertheless, the ID hints to how state is modelled by Brucker
et Wolff in [6]. They model state by allowing the match to
consider a list of all packets that the firewall has accepted
so far. The ID can be used to determine if a packet is the
first of its connection.

A less complicated model of state, which is also based on
the packet format, can be found in ITVal [19] (however, not
in a strongly formal manner). Whether a packet is part of
an established connection is simply treated to be another
packet field. The theory files accompanying [12] contain
a proof that that model is not weaker than querying an
internal state table when performing a stateful match.

The packet model is often tightly tied to which types of
match expressions the firewall supports. A very common
subset that can be found in many real firewalls and models
is to support equality matches on (OSI) layer 4 protocol,
source, destination (“ports”), the physical ingress port and
additionally prefix matches on the layer 3 addresses. Some
models extend this by fields for TCP flags [19, 26], or con-
nection state [6, 22].

Besides the set of supported match expressions, firewalls and
models also differ in how these expressions can be combined
and how these combinations are represented. Margrave [22]
supports conjunctions of disjunctions, i.e. it allows to spec-
ify several possible values for one field and allows combining
fields while requiring all of them to match. Iptables Seman-
tics [12] by Diekmann et al. allows for more complicated
expressions: given match is a match on a single field, it sup-
ports the following match expressions mexpr :

mexpr := match | ¬mexpr | mexpr ∧mexpr | True (4)

This model is a superset of what iptables supports: iptables
supports negation of matches only on the lowest level, i.e. it
only supports constructing ¬match but not ¬mexpr . This
is an example (but not the only one) of a model that could
have been easily made to mirror a system more closely but
instead was made more powerful. In this case, mexpr allows
to express arbitrary boolean functions, which can be used
to compute the expression for packets that are not matched
by a rule.

Packet and match models that are tailored to be suitable for
the implementation of an analysis can be found in FIRE-
MAN [26] and ITVal [19]. FIREMAN models a packet as a

5Brucker et Wolff later specify α to be a four-tuple of inte-
gers to represent the IP-address in dotted-decimal notation
and a port, also represented by an integer (i.e. a number
from Z).
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1st Octet 0. . . 191 192 193. . . 255

2nd Octet 0. . . 167 168 169. . . 255 0. . . 255

3rd Octet 0. . . 159 160. . . 191 192. . . 255 0. . . 255

4th Octet 0. . . 255 0. . . 255

Inside Outside

Figure 3: Example of how ITVal [19] would repre-
sent a match for 192.168.160.0/19, given that the
packet consists only of a single IP address to match
on.

vector of bits that represent its header. Match expressions
are boolean expressions that can be efficiently represented by
Reduced Ordered Binary Decision Diagrams (ROBDD) [7].
ITVal [19] extends this to MDDs [17], a structure that is
similar to a ROBDD but allows continuous values for its
variables. Consequently, ITVal models packets as the vector
of bytes that represent source and destination for IP address
and layer 4 port. Additionally, it keeps separate fields for
the layer 4 protocol type, the TCP flags and the connection
states. Each byte and field is then represented by one level
in the MDD. Figure 3 shows an example of how an MDD is
used to match a single IP prefix. The purpose of this sub-
division of the packet header is to create a balance between
too many levels and too much information on a single level
of the MDD.

After considering the match of a rule, the action has to be
modelled. The common subset of actions that can be found
in all models we analyzed is to either let packets pass the
firewall or to stop them. Iptables supports a number of other
actions that are directly executed, such as LOG, which will
generate debug output but have no effect on forwarding, or
REJECT, which will stop the packet and additionally send an
error message. The semantics by Diekmann et al. [12] shows
a way to translate action types with behavior unkown to
the system back to only forwarding or discarding the packet.
The model of actions given by Brucker et Wolff [6], allows for
something more complicated: the action returns a packet.
This allows to model packet modification by firewall rules.

The last important property of a firewall model is how rules
are combined to form the firewall. Most models can be cate-
gorized to either use what Yuan et al. [26] call the simple list
model (used e.g. in [22]) and the complex chain model (used
e.g. in [19]). The list model states that the firewall rules are
written as one list that is traversed linearly. Each rule either
applies and the execution terminates or the execution con-
tinues with the next rule. The chain model extends this by
allowing for multiple lists and the possibility to conditionally
jump to the start of such a list and to conditionally return
to the origin of the jump. Diekmann et al. [12] formalized

both and present a translation from the chain model to the
list model.

If a firewall is an actual networking device, it also needs to
decide on which port to forward packets, i.e. become a switch
or router additionally to its firewall function. This type of
combined functionality is considered in the next section.

2.5 Complex devices
Real network devices often fulfil more than one of the func-
tions described above. A common example of this is a Cisco
IOS router, which is usually configured with both an ACL
(i.e. its firewall function) and routing information.

An important insight is that these functions usually have
very little or no relevant shared state. The key implication
of this is that the different stages of such a system can be
analyzed separately and then pipelined together. In the ex-
ample of the IOS router, this would mean to first analyze
the incoming ACL, then the routing configuration and then
the outgoing ACL.

Dobrescu and Argyraki [13] have realized that this holds true
even for controller software that is written for SDN swit-
ches. When attempting verification of software in general,
one has to deal with the path explosion problem. By di-
viding a network system into m independent elements with
maximally n branches each, pipelined analysis can reduce
the amount of paths that has to be analyzed exponentially
from O (2mn) to O (m2n). Combined with further optimiza-
tion for relevant data structures and symbolic computation,
their tool ClickVerifier is able to verify controller programs.
Dobrescu and Argyraki make an explicit point of using the
pipeline model only to explain why their system has the de-
sired performance. For the verification, the actual generated
controller program bytecode is passed to the analysis engine
S2E [10] to avoid any abstraction errors that might happen
when modeling OpenFlow switches.

Another interesting instance of the pipelining model can be
found in the tool Margrave by Nelson et al. [22]. A schematic
representation of how it is used to decompose a Cisco IOS
configuration can be found in Figure 4. Each element of
the pipeline is used to provide the further elements of the
pipeline with necessary information to continue the analy-
sis, e.g., the Internal Routing step is used to decide which
outbound NAT and ACLs apply.

A very similar approach to this is taken in Hassel, the tool
that implements Header Space Analysis by Kazemian et
al. [16]. Hassel translates dumped Cisco IOS configurations
into functions represented in a model on which symbolic
computation is possible. Representing the full function of a
router with a single function of this model would result in
very large representations. The transfer through one Cisco
IOS router is thus modelled as traversing three layers in the
model, one input ACL and VLAN untagging step, one rout-
ing step, and one output processing step. The difference to
how Margrave uses the pipeline model is that Header Space
Analysis reuses the exact same model for each step.

This solution of size reduction is also applied by Exodus [23].
It translates Cisco IOS configurations into controller config-
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Figure 4: Margrave’s decomposition of firewall configurations
Figure 4: Margrave’s decomposition of IOS configurations, taken from [22]

uration for an OpenFlow switch (cf. Section 2.3). Much of
the available OpenFlow capable hardware only supports a
single table of matches and output ports. Similar to the
functions of Hassel, compressing the entire functionality of
a Cisco switch into a single table would create very large
representations through the use of cross products. Exodus
thus uses multiple switches (i.e. physically multple devices).
Their pipeline steps are, in order, VLAN untagging, input
ACLs, routing, NAT, routing (2), layer 2 rewriting, output
ACLs, and VLAN tagging.

2.6 Big Switch Model
While the big switch model is not strictly speaking a model
of a networking device but a model of the entire network,
we feel that it is important enough to mention it here. It is
used in various places, first and foremost in SDN [9, 15, 21]
programming languages, but also e.g., for network verifica-
tion [4]. The general idea is that a network or subnetwork
of switches, routers, firewalls displays a forwarding behavior
to all attached devices that are not part of the subnetwork.
The subnetwork usually has a complicated distributed con-
figuration that defines its forwarding behavior. Even in SDN
programming languages, this state is often exposed to the
programmer. Proponents of the big switch model usually
attempt to represent this state as if it was the configuration
of a single switch with each of its ports representing one
connection from the subnetwork to something outside of it.
The rationale for this is that a representation for the con-
figuration of the big switch could be smaller and thus easier
to understand or verify.

Anderson et al. [4] propose a slightly different interpretation
of the big switch model: for a network to be an instance of
the big switch model, they require that the network dis-
plays the behavior of a big learning switch, i.e. implements
all-pairs reachability. Since NetKAT [4] allows testing the
equality of two network descriptions, they formulate a formal
condition for this to be true. Showing this condition here
would require explaining the formalism used by NetKAT
and is thus out of scope.

3. COMPARISONS
In the previous section, we surveyed for existing models and
what they express. This section gives an overview of what
type of model they are, i.e. how they are used and inte-

Work Pro
of

Im
pl

em
en

ta
tio

n

R
eu

sa
bl

e

NetKAT [4] 4 4 4
VeriCon [5] 4 4 8
HOL-TestGen [6] 4 4 4
NICE [8] 8 4 8
Iptables Semantics [12] 4 4 4
(Dobrescu and Argyraki) [13] 8 8 8
(Guha et al.) [14] 4 4 4
HSA / Hassel [16] 8 4 8
ITVal [19] 8 4 8
Margrave [22] 8 4 4
Exodus [23] 8 4 8
(Xie et al.) [25] 8 8 4
FIREMAN [26] 8 4 8

Table 1: Usage of models in the surveyed work

grated in their environment. The results of this section are
summarized in Table 1. For the table, we differentiated be-
tween two types of model usage: are the models used in a
proof that establishes correctness properties of the system,
or are they used when implementing a surrounding system.
Additionally, we checked if some kind of formalization was
available and ready for reuse. Some of the attributions are
not entirely clear. We will explain them in the following
paragraphs.

Most of the models considered here fall into one of two us-
age categories. Members of the first category [8, 16, 19, 22,
23, 26] propose a model of networks or networking devices
that simplifies reality significantly. This model is then used
to justify and explain the steps that have been taken in the
implementation of an accompanying tool. The level of for-
mality of these models varies. Also, the models are usually
tightly tied to the implementation and not suitable for reuse
in other projects. Margrave is a notable exception to this as
its model is a relatively generic representation of Cisco IOS
configuration.

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

52 doi: 10.2313/NET-2016-07-1_07



Members of the second category [6, 12, 14] give a model
that has a high degree of formality and is accompanied by a
semantics that aims to closely mirror the behavior of the real
system. This semantics of all of the models from the second
category is available in form of code for theorem proving
software.

Some models could not be sorted into either of these cate-
gories.

• VeriCon [5] explicitly formalizes the model it uses and
includes a semantics. However, its semantics does not
mirror the behavior of any real device. Nevertheless,
the use of the Satisfiable Modulo Theories solver Z3 [11]
does provide proof that the programs checked with
VeriCon are indeed correct wrt. the semantics. Veri-
Con’s authors also claimed that the semantics would
be made available online. To this date, it is marked as
“pending”.

• Similar to VeriCon’s case is NetKAT [4], except the
formalization is available.

• While Dobrescu and Argyraki [13] do propose a model,
they do not use it in their implementation. This is,
as mentioned, to avoid carrying any discrepancies be-
tween the model and reality into the implementation.
The model is merely used to justify why the implemen-
tation can terminate quickly.

• The work by Xie et al. [25] gives a model of a network
of routers but does not implement anything based on
it. An implementation that is based on that network
model has later been given with Anteater [18] by differ-
ent authors. As such, the model by Xie et al. proved to
be (re-)usable even though there is no readily available
formalization of it other than the publication itself.

4. CONCLUSION
We surveyed related work for the use of models of network-
ing boxes. We included models of learning switches, routers,
OpenFlow switches, firewalls, and devices that include mul-
tiple of these functions. This work can provide a reference
for further works in the area that want to use strong for-
malism and thus have to use models of networking boxes. It
can answer the questions of which models have already been
constructed, how they are used, and how their properties
make them qualified for the specific use-case.
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