
Survey of Concepts for QoS improvements via SDN

Atanas Mirchev
Supervisor: Lukas Schwaighofer, Daniel Raumer

Seminar Future Internet SS2015
Lehrstuhl Netzarchitekturen und Netzdienste

Fakultät für Informatik, Technische Universität München
Email: ga75lar@mytum.de

ABSTRACT
Considering the current state of the Internet, the available
approaches to providing Quality of Service (QoS) for sin-
gle services or specific tenants are limited and inflexible.
Providers need a better solution that is scalable and that
allows fine-grained tuning of network traffic. Recently, dif-
ferent SDN enabled QoS frameworks have emerged, offering
a lot of possibilities for network reconfiguration and high
level definition of policies. This paper gives a detailed sum-
mary of available QoS mechanisms that rely on SDN and
compares their strengths and weaknesses. In the spirit of
the survey, novel ideas for the future of QoS are discussed.
SDN brings a lot of freedom and monitoring possibilities as
a QoS domain, but the Internet has yet to adapt to this in-
novative concept: at the time of writing most of the existing
solutions are prototypes.

Keywords
Software Defined Networking, Quality of Service, QoS via
SDN, OpenFlow, OpenQoS, FlowQoS, QoS methods, SDN
Approaches to QoS

1. INTRODUCTION
Today’s networking consists of discrete sets of protocols that
specify how hosts in different networks can be connected re-
liably. However, protocols tend to be defined in isolation and
are designed to solve a specific problem. This results in high
network complexity, which is a major limitation with re-
gard to overall networking and providing Quality of Service
(QoS). Due to this fact, today’s networks are static. Typ-
ically all of the control decisions (e.g. how packets should
be forwarded) are taken at the separate forwarding devices.
This proves to be an obstacle considering the dynamic na-
ture of QoS: IT administrators must configure each vendor’s
equipment separately, adjusting parameters (such as band-
width) to meet the predefined rules and policies. This ap-
proach cannot dynamically adapt to the constantly changing
application and user demands.

To tackle this problem, the concept of Software Defined
Networking [1] has emerged. It focuses on decoupling the
control plane from the forwarding plane (Figure 1), there-
fore leaving the existing routers and switches as simple for-
warding devices. The control logic is instead centralized
and deployed on a server (commodity hardware), called an
SDN controller, which allows for easier network management
and monitoring, while improving extensibility and scalabil-
ity possibilities. The Northbound API (c.f. Figure 1) of

an SDN controller is the public interface that other higher
level applications can access. It conceals the actual imple-
mentation and is used to dynamically define abstract rules
which are then enforced on the network by the controller.
This also includes control policies and setting up traffic pri-
orities that can be used for QoS. The Southbound API
(c.f. Figure 1) is the interface between the controller and
the forwarding plane. The standard protocol for communi-
cation over this API is called OpenFlow. It enables the SDN
controllers to dynamically configure all forwarding devices
and allows for more sophisticated traffic management. The
configuration is done by defining rules and actions (called
”flow table entries”) in a switch’s flow table. Those can then
periodically or on demand be changed by the controller, ac-
cording to the chosen policy. The protocol also specifies
that new unmatched packets should be redirected through
the controller (so that it can identify them and assign new
rules to the forwarding elements).

”OpenFlow Configuration and Management Protocol” (OF-
Config) and the ”Open vSwitch Database Management Pro-
tocol” (OVSDB) act as specific extensions to OpenFlow and
help the controller to configure the forwarding devices ac-
cording to the defined rules.

Figure 1: Simplified representation of the SDN ar-
chitecture

In the context of this paper, an important part of networking
is the overall performance of a connection, called Quality of
Service. QoS comprises requirements on all major aspects of

Seminars FI / IITM SS 15,
Network Architectures and Services, September 2015

33 doi: 10.2313/NET-2015-09-1_05



data transmission, such as response time, jitter, interrupts,
etc. In order to provide QoS, application flows1 need to be
differentiated as they compete for bandwidth. Then network
resources have to be allocated to ensure the precedence of
the higher-priority traffic. That allows for the appropriate
network resource distribution. This process often requires
knowledge of the current network state, so that the right de-
cisions with regard to packet forwarding can be made. That
is why network monitoring is an important aspect of QoS.
Ultimately, the goal is to also ensure network convergence,
meaning that the network resources should be utilized as
evenly as possible.

Without consideration of the available SDN methods, QoS
relies on end-to-end agreements between hosts and Service-
level Agreements (SLAs) between provider and user. While
this approach is robust, it is best suited for best-effort ser-
vices and doesn’t allow for fine grained traffic engineering.
Multimedia streaming and VoIP flows, on the other hand,
require timely delivery over robustness and must be handled
separately. The current ”hop-by-hop decision” architecture
of the Internet is sometimes difficult to monitor, mainly be-
cause of the many different vendor-specific firmwares at use
[6]. There is no standardized way for specifying high level
traffic control policies and restrictions with regard to the
depth of traffic differentiation exist.

With the introduction of the SDN controller, a decoupled
control plane is established. Besides translating the require-
ments of the application layer, it provides applications with
an abstract view of the network. The network state is ob-
tained for example via sampling of packets passing through
the controller and can consist of different data, such as statis-
tics or events. Using this information, control policies and
SLAs can be specified by an administrator at a higher ab-
straction level and even dynamically adjusted. These mech-
anisms have proven to be beneficial for QoS. [2] [4] [8].

In the rest of the paper different techniques and possibilities
for providing QoS via SDN are discussed. Chapter 2 presents
viable approaches and methods in this area. Chapter 3 cat-
egorizes existing proposed solutions, while comparing their
weak and strong points. In chapter 4, actual figures and
results from the different frameworks are summarized and
the overall viability of SDN as a QoS domain is assessed. In
the last chapter, novel approaches and ideas for the future
are proposed and concluding remarks are given.

2. APPROACHES TO PROVIDING QOS
There are two main categories of QoS techniques that need
to be taken into consideration: approaches proposed be-
fore the introduction of SDN and SDN enabled tech-
nologies.

When considering traditional QoS strategies, without
the involvement of SDN, two main types have been stan-
dardized. Integrated services [10] (short: IntServ) is a fine-
grained, per flow traffic control architecture. The idea be-
hind it is that every network element (router, switch) has to
individually reserve resources for each flow. This is hard to

1In the sense of networking and SDN, a flow defines any
given set of packets that share some common characteristics
(e.g. all packets for a given HTTP connection)

accomplish in the current Internet [4]. First, routers have
limited computational resources, that prohibits the classifi-
cation of all possible application flows in the device itself.
Second, this approach is not scalable, as every rooter on a
flow’s route needs to support Integrated Services and store
all possible states and informations for the different flows.
This is generally difficult to achieve (vendor lock-ins, limited
memory resources). Therefore, this method is only applica-
ble to small scale networks.

The second approach, Differentiated services [11] (short: Diff-
Serv), is a coarse-grained traffic control architecture, relying
on the 8-bit DS field (in place of the outdated TOS field) in
the IP header. This field supports up to 64 different classes
of traffic [15]. DiffServ routers then decide on per-hop basis
how to forward packets based on their class. While this tech-
nique is applicable to bigger networks (since only a constant
number of 64 classes need to be differentiated), it is static
(because of the predefined number of classes) and lacks the
ability to fine-tune the QoS of separate flows. For exam-
ple, a use case with eight tenants having eight application
types of traffic each easily reaches the limit of the DS field.
This is not an unusual scenario for a single Autonomous Sys-
tem (AS). Furthermore, the specification of policies and the
classification of traffic in DiffServ is done at the boundaries
of DiffServ domains (Autonomous Systems) [4]. Because of
this, there are no end-to-end guarantees across domains for
the user, as the DS-classes can be interpreted differently in
each one. To solve this, RFC 2638 [12] introduces a Band-
width Broker for each domain, that has some knowledge on
the policies in use. To ensure end-to-end QoS, bandwidth
brokers need to communicate with each other across domains
so that policies are interpreted properly. This is similar to
the SDN enabled approaches, as it extracts the logic into a
centralized agent. In fact, some of the proposed frameworks
extend the idea of DiffServ by utilizing SDN [4]. However,
provided the lack of centralized controllers in the current
Internet architecture, DiffServ cannot be implemented glob-
ally, as there is no standardization of router reconfiguration
protocols amongst different vendors. Each Broker relies on
vendor-specific device reconfiguration, which imposes a re-
striction on the network.

In contrast to the described traditional methods, SDN en-
abled approaches tackle all of the problems described
above. Through the higher level of abstraction provided
by the decoupled controller, one can specify policies with-
out the need to reconfigure low-level settings at each of the
forwarding devices. The set of policies and also the differ-
ent flow classes are unrestricted, allowing for fine-grained
tuning based on the needs of the user (in contrast to the
maximum of 64 predefined classes in the DS field). The
rules can therefore be defined per flow (if necessary) and the
controller has the task to apply them properly to the dif-
ferent network elements. In this regard, there are two main
aspects to consider:

• providing QoS for a specific tenant or a business cus-
tomer flow

• providing QoS for a specific application flow

A number of different SDN enabled solutions to those prob-

Seminars FI / IITM SS 15,
Network Architectures and Services, September 2015

34 doi: 10.2313/NET-2015-09-1_05



lems exist. The most common method, used by frameworks
considered in this survey, is a form of virtual slicing of the
available bandwidth. This can be classified as resource
reservation, where each flow gets assigned a part of the
overall transmission capacity. In contrast to that, per-flow
dynamic routing has been proposed as a viable alterna-
tive that does not directly assign any of the resources to
a flow. Moreover, approaches with specific focus on the
actual packet en-queuing and frameworks for policy
enforcement have been discussed as well. Many of the
SDN enabled frameworks also require a form of sampling
to constantly monitor the network [2] [8]. If all nodes are
monitored, the gathered information can be extrapolated to
the whole network [6], thus creating an overview of the net-
work state. This approach creates overhead and needs to be
applied in controlled manner.

In the following chapter, each of these aspects is covered in
depth and example implementations are presented.

3. QOS ENABLED FRAMEWORKS
The following categories are the most prominent ways in
which QoS can benefit from the concept of Software Defined
Networking. For each category, first a short introduction
to the approach is given. Then one or more frameworks
are presented. Each framework’s most notable features are
explained and the results of available tests are discussed. It
is important to notice that the described frameworks do not
solely rely on the principles of the category they represent.
The distribution among the different sections is based on the
main focus of the specific solution.

3.1 Resource reservation frameworks
This is the most common solution for providing QoS, hence
the large number of frameworks that fall into this category.
Typically, frameworks of this type consist of two main mod-
ules: a flow classifier component and an SDN-based rate
shaper. The classifiers read the packets’ fields and attempt
to assign a certain priority to the different flows based on
the policies defined in the controller. The rate shapers, on
the other hand, install resource reservation rules in an Open-
Flow enabled switch based on this classification. The current
OpenFlow implementations for the data plane elements (like
Open vSwitch) don’t explicitly support per-flow rate shap-
ing, so most of the frameworks in this survey attempt to
give some form of a universal solution for this problem.

An example for such a framework is FlowQoS [3]. This
prototype targets small scale networks and utilizes SDN to
reconfigure home routers according to a set of rate shap-
ing policies defined by the user. The classification of the
different flows is done by two separate modules. The first
module performs initial classification of web traffic (HTTP
and HTTPS), determined by the respective port numbers
(80 and 443). Then further classification of this web traf-
fic is done based on the DNS responses, matching the A
and CNAME records against a list of predefined regular ex-
pressions. The second module handles the classification of
other flows (non HTTP/HTTPS). They are classified based
on the flow-tuple2, the first four bytes sent and received

2source IP, source port, destination IP, destination port,
transport layer

and the sent and received payload sizes. After flows have
been successfully classified, the rate shaping takes place. To
tackle the lack of an OpenFlow per-flow rate shaping imple-
mentation, the framework introduces two ”virtual” switches
inside the home router. The different inner-switch connec-
tions between those two are then configured via Linux’s tc
utility and assigned different rates specified by the controller
(predefined by the user). This is a simplified form of net-
work slicing. For more information, please refer to [3]. This
is a limited approach, as it only shows how QoS can be
applied to a home router. Moreover, there is no data on
executed tests and results, compared to the following frame-
works. FlowQoS is a small, proof of concept framework that
shows how SDN can be used to enable QoS and at the same
time simplifies QoS configuration for single users. It can
replace the need of manually using Linux’s tc utility or ipta-
bles tagging, which could be complicated. The authors don’t
state any further use cases in their paper.

Moving from small to large-scale solutions, a more general
framework is a part of the EuQoS project [4]. The focus
of this solution is to enable QoS for business customer flows
and make it possible to prioritize them on demand. The
classification in this approach is based on the value of the
DS field in combination with the destination IP of a packet,
as only different tenant flows need to be distinguished. This
is very similar to the standard approach applied in DiffServ,
but also differentiates the tenants based on their IP address.

All routers are reconfigured by the controller. For each reg-
ular routing entry in a router two OpenFlow flow table en-
tries3 are created, which match the same destination IP as
the routing entry. One of them matches packets with TOS
disabled (low priority) and the other one matches packets
with TOS enabled (high priority). By doing this, best-
effort and high-priority business traffic can be differentiated.
Therefore the number of flow entries is twice the number of
regular routing entries. From a scalability perspective, this
is acceptable.

For rate shaping, two queues with transmission rates are
configured at each router. One matches the TOS enabled
packages, the other one handles the rest. This makes the
network suitable for differentiation of flows coming from dif-
ferent hosts. However, it does not cover the second type of
differentiation - flows of different applications.

In addition to the regular resource reservation, EuQoS fo-
cuses on two more aspects:

• Inter-AS QoS - For each Autonomous System, one
SDN controller is operational. It creates a flow entry at
the edge router that sets the TOS field to enabled for a
given high-priority flow coming from another AS. Since
the only modification of packet fields happens at the
border of an AS and the forwarding decisions are based
on the TOS value, regular DiffServ forwarding can also
take place inside the AS. That is why standard BGP
(Border Gateway Protocol) or OSPF (Open Shortest

3A flow table entry matches a certain flow (based on prede-
fined rules) and defines an action to be applied to that flow
(e.g. forward, drop, change field)

Seminars FI / IITM SS 15,
Network Architectures and Services, September 2015

35 doi: 10.2313/NET-2015-09-1_05



Path) routing can be used at this point. This provides
a dynamic way to give priority to certain tenant flows
across multiple AS, for example when an SLA between
a business customer and a provider is taking place.
EuQoS further allows the existing DiffServ brokers to
utilize the SDN Northbound API.

• Failure recovery - each time a connection fails, the
framework automatically ensures that the high-priority
traffic does not suffer and is restored to the predefined
transmission rate. This also means that if not enough
network bandwidth is available (because of the link
failure), some of the best-effort packets will not be for-
warded immediately.

The framework was tested on the OFELIA [4] testbed, with
100 nodes for single and multiple AS. The results show that
the flows with higher priority do take precedence, even in
cases where the bandwidth is not enough for all the traf-
fic [4]. The extend of this test exceeds that of any of the
frameworks covered in this survey, but EuQoS remains a
prototype.

Another SDN framework that utilizes similar rate shaping
and classification approaches was presented at Princeton
University [9]. The main difference is that it proposes an
adaptive flow aggregator for the case when QoS needs to be
provided per application flow. Services with similar needs
are bundled together and handled as one flow in the for-
warding devices, which improves scalability [9]. This way,
the solution can handle both application flows and customer
flows. The Princeton framework has a second main focus,
which is the convergence of the whole network. For that
purpose, active sampling of the network state is required.
This introduces overhead, bound to put some strain on the
network, which is virtually unavoidable with the given goal.
The authors don’t quantify how much stress is put on the
controller, but this aspect should be taken into considera-
tion.

The framework has been tested in a real world setting with
3 OpenFlow switches and 4 hosts, which is a rather small
testbed. It shows better utilization of network resources due
to the described monitoring. This framework, similarly to
the ones preceding it, remains only a prototype.

3.2 Per-flow Routing Frameworks
This concept distinguishes multimedia flows from regular
data flows via a classifier, similar to the resource reserva-
tion technique. However, instead of reserving resources (in
the sense of bandwidth slices) at each forwarding device,
the controller dynamically places the high priority flows on
QoS guaranteed routes [2]. This enables dynamic routing,
for which SDN is highly advantageous. At the same time,
regular data flows remain on their usual routes. In this con-
text, QoS routing is viewed as a Constraint Shortest Path
(CSP) problem [2]. For example, one possible constraint
is the delay for a multimedia stream. Since this problem
is NP-hard, a heuristic is proposed in the OpenQoS frame-
work. To ensure that the path is really optimal, congestion
of the network is also taken into account. OpenQoS consid-
ers a link to be congested, if its utilization exceeds 70% of
the possible bandwidth [2].

The main advantage of this approach to resource reservation
(as in section 3.1) is minimized latency and packet loss for
the non-QoS flows [2].

A representative framework of this type is OpenQoS. It guar-
antees service (application traffic) delivery on an optimal
path and focuses mainly on multimedia flows, such as VoIP
or video streaming. The framework itself is based on Flood-
light, which is a universal Java controller.

For the generation of effective routes for the high-priority
service flows, the controller needs an overview of the current
network state (expressed in packet loss, delay, etc. for each
link). The network state is collected from the simple for-
warding elements by actively sending FEATURE REQUEST
messages for each feature of interest (doing active sampling).
The performance of the framework depends on the accuracy
of the gathered data, therefore the framework queries the
elements each second [2]. This requirement has a negative
effect on scalability. Gathering precise data for large net-
works is inefficient. The computation of the most efficient
CSP per flow introduces further overhead for the controller.
However, the paper of QoSFlow does not quantify the strain
on the SDN controller that the monitoring causes. This as-
pect of the framework needs to be further investigated.

Another advantage of OpenQoS is its attempt to define flows
only using fields from lower OSI levels, as ”the packet parsing
complexity is lower compared to [..] upper layers”, according
to [2]. That is why OpenQoS differentiates multimedia flows
based on fields in MPLS (Multiprotocol Label Switching),
which is generally placed between the data link and network
OSI layers.

Figure 2: Three samples of PSNR in time, repre-
senting the results of an OpenQoS test [2]

The framework has been tested on a network with 3 Pronto
3290 switches, which is not sufficient to overrule the scala-
bility concerns, and still remains a prototype. One of the
executed tests compares the performance of two video UDP
streams of the same content, with and without enabled QoS.
In the period from second 20 to second 24 of the trans-
mission, there is a significant difference in the PSNR (Peak
Signal-to-Noise Ratio) of the two streams. The metric quan-
tifies the quality of the received signal by measuring the
power of the corrupting noise (loss) during transmission. Ac-
cordingly, higher values mean a better service quality. As

Seminars FI / IITM SS 15,
Network Architectures and Services, September 2015

36 doi: 10.2313/NET-2015-09-1_05



Figure 2 demonstrates, the UDP stream with enabled QoS
is preserved better during the specified time frame. This in
turn shows the effectiveness of the framework when services
need to be prioritized.

3.3 Frameworks with Focus on Queue Man-
agement and Package Scheduling

The topic of packet scheduling and enqueuing is also im-
portant. OpenFlow version 1.3 specifies a standard FIFO
queuing of all incoming packets [13]. This could prevent
certain flows (e.g. multimedia streams) from meeting the
QoS requirements if the network segment is congested. To
overcome this limitation, a framework called QoSFlow is
proposed, which enables the reordering of packets in a given
queue. It attempts to introduce the traffic control capabili-
ties of Linux into OpenFlow networks. In this context, the
framework implements a couple of different packet schedul-
ing mechanisms [13], the most notable of which is SFQ
(Stochastic Fairness Queuing). This algorithms aims at giv-
ing each high-priority flow a fair chance to be forwarded,
contrasting to standard FIFO queuing. Each flow is as-
signed to a bucket. Afterwards, in a round-robin manner,
flow packets are popped one by one from the respective buck-
ets in an effort to ensure fairness.

However, there are some restricting factors as well. The
framework is limited to 8 queues per switch port. This limi-
tation exists because of the used slicing mechanism specified
in OpenFlow 1.0. While it is not caused by the framework
itself, this fact still needs to be taken into account. Another
disadvantage is that it requires that the switches run a Linux
distribution instead of a vendor-specific firmware. Therefore
this solution is not directly applicable to the Internet in its
current state.

QoSFlow has been tested with up to 3 TPLink 1043ND com-
mercial switches [13], which is a small test network. In one
of the tests on the performance of the SFQ algorithm, the
QoE (Quality of Experience) is again quantified by the Peak
Signal-to-Noise Ratio (PSNR), similarly to the OpenQoS
case. For two different video flows the behavior of SFQ
and standard FIFO scheduling is compared. SFQ reaches
a higher PSNR value (which is better) in both cases. Ac-
cording to the QoSFlow paper, the difference between the
two approaches is 48.57 % in the first case and 68.57 % in
the second case, in favor of SFQ against FIFO [13], mean-
ing that the improved scheduling does lead to better video
quality, as far as the user perception is concerned.

3.4 Frameworks for Policy Enforcement
The major problem with predefined SLAs, in regard to QoS,
is that with the current Internet architecture there is not a
single standardized and flexible way to apply those to the
network. Most of the newest technologies that are applied
to achieve those SLAs are also proprietary. Therefore the
need for flexible and scalable management tasks emerges.

Via the Northbound API of an SDN controller, it is possible
to dynamically define SLAs and then enforce them on the
underlying forwarding plane through the southbound API.
One of the proposed SDN-enabled solutions is PolicyCop,
based on the Floodlight controller. It differs from other ex-

isting DiffServ approaches [8] as it is not restricted by static
traffic classes and the coarse-grained granularity that comes
with them. The framework is easily extensible, as it has a
layered architecture. Each layer communicates with the oth-
ers via RESTful JSON APIs, hence the possibility to easily
add new layers or exchange old ones. It further allows to dy-
namically create new flow classes, in contrast to the static
classes in DiffServ [8]. The solution is flexible, as it does not
require any special resources, other than OpenFlow-enabled
switches.

The policy management itself is done by 2 components: a
Policy Validator and a Policy Enforcer. The Policy Valida-
tor monitors the network to ensure that policies are being
applied properly. To make this possible, information per
flow and per flow table needs to be actively gathered by the
controller. This is achieved by inserting packet probes in
the network.[8] Meanwhile, passive statistics are also gath-
ered from packets redirected to the controller. This results
in the monitoring of metrics describing the network state,
like bandwidth usage, residual capacity, number of dropped
packets, latency, error-rate and jitter [8]. For more infor-
mation on the monitoring framework that PolicyCop uses,
please refer to [16]. Similar to OpenQoS, this could lead to a
serious overhead and puts the scalability of the framework in
question. As a result of the inquired network state, the Pol-
icy Enforcer places new rules in the forwarding elements, to
account for possible changes or deviations from the defined
policies.

The network has been tested in an environment of 5 Open
vSwitches and 4 hosts. PolicyCop successfully manages to
restore broken policies and the corresponding flows’ through-
put in a scenario with 4 different services running simulta-
neously [8]. However, the provided testbed is too small and
can only be seen as a ”Proof of Concept”.

3.5 Detailed comparison
From all presented frameworks, only EuQoS has been tested
for a larger scale network. Although the tests of all other
frameworks manage to show their capabilities, they can be
considered insufficient because of the small test-bed sizes. In
contrast to the others, EuQoS also directly supports stan-
dard DiffServ approaches. Nevertheless, that restricts the
differentiation of flows to single hosts (high priority busi-
ness customers), differentiation based on services and appli-
cations is not possible. The framework proposed by Prince-
ton handles this problem well, aggregating similar services
to a single flow in addition to the per-tenant flow classifica-
tion. However, this system has been tested in a much smaller
testbed than the EuQoS framework. Different from those
two more general approaches, OpenQoS focuses on multi-
media traffic only, using per-flow routing instead of resource
reservation. However, while this technique can arguably be
more efficient path-wise, it introduces an overhead due to
active sampling of the system state, which is not necessarily
required in a resource reservation framework. QoSFlow,
on the other hand, is an example of a support framework
that defines additional improvements of QoS via SDN meth-
ods, since it is concerned only with the actual order of the
queues during the packet scheduling. Further investigation
of the possible integration of this framework with the oth-
ers is encouraged. The major problem in this case is that

Seminars FI / IITM SS 15,
Network Architectures and Services, September 2015

37 doi: 10.2313/NET-2015-09-1_05



all forwarding devices are required to run Linux, which is
currently not realistic in a normal network setting. Lastly,
PolicyCop focuses on the actual policy management, giv-
ing administrators full control to efficiently change the way
traffic is handled. All of the covered frameworks are proto-
type solutions.

A detailed summary of all the relevant information can be
found in Apendix 1.

4. VIABILITY OF SDN AS A QOS DOMAIN
Considering the data from the different framework tests, it is
clear that there are advantages when using SDN controllers
to provide QoS.

The EuQoS framework shows that it can transmit all high
priority traffic without any loss in a medium data rate sce-
nario (2.4 Mb/s to 7 Mb/s traffic per host) with a 30% to
70% ratio of high priority to best-effort traffic in the net-
work [4]. QoSFlow suggests a possible gain in QoE of up
to 48.7% when implemented properly [13]. As seen in sec-
tion 3.4, PolicyCop can maintain and enforce policies once
again when they have been broken.

However, the results of those frameworks (with the exception
of EuQoS) were obtained in small networks, consisting of not
more than 5 forwarding devices. Therefore, more thorough
investigation is needed.

The configuration of traffic queues is another important as-
pect of QoS. Protocols such as OF-Config and OVSDB deal
with the issue of configuration of resources (like queues),
but are not properly supported by the mainstream OF con-
trollers. A standalone solution for this problem called Queue-
Pusher has been proposed, as an extension to the controller
Floodlight. It is based on the OVSDB protocol and describes
the mechanisms of building priority queues for the different
QoS enabled flows [7].

This is an example of how some important aspects of SDN
are still not available, despite their specification in the Open-
Flow protocol.

Overall, the fact that a lot of the mentioned frameworks
need to extend a controller or implement a missing protocol
feature, combined with all of them being prototypes, shows
that the concept of SDN still needs to be better accommo-
dated. Nevertheless, all of the frameworks show significant
gains in different aspects of QoS which cannot be neglected.
While it is true that SDN introduces a single point of er-
ror [6] via the centralization of the controller, distributed
solutions have been proposed [4], mitigating this concern.

5. RELATED WORKS
A comprehensive survey of the different aspects of SDN has
already been conducted [1]. The work covers all major as-
pects of the SDN domain, also specifying a list of traffic en-
gineering solutions with regard to QoS. However, a compari-
son or categorization of the SDN enabled QoS frameworks is
not present. Also, no advantages and disadvantages are dis-
cussed and no specific implementation details or test figures
are covered.

6. FUTURE OUTLOOK. CONCLUSION
The proposed QoS frameworks all benefit from the idea be-
hind SDN. Since they are still prototypes, most of them
are continuously developed further. OpenQoS proposes a
future application of ”per-flow routing” in the area of Multi-
ple Description Coding (MDC). A source stream is encoded
into independent bitstreams that can be decoded separately.
There is a requirement that every bit stream should take a
different path. This is achievable via the dynamic routing
possibilities of OpenQoS.

Regarding the whole Internet, the Control Exchange Points
(CXP) [14] has been proposed as an architectural model
that is supposed to improve end-to-end QoS across different
domains. This suggests a new type of business relationship
between ISPs, where each provider defines a ”partial path”
for a flow and the CXP component combines all of them
together.

In this paper different types of SDN enabled QoS solutions
have been evaluated. While small scale frameworks are ben-
eficial to the individual user, larger scale implementations
represent ideas applicable to the whole Internet architec-
ture. Despite the fact that Software Defined Networking is
still a relatively new approach, the detailed categorization
and comparison have revealed important positive effects in
regard to QoS , achievable only through a decoupled and
easily manageable control plane.

7. REFERENCES
[1] Diego Kreutz, Fernando Ramos, Christian

Rothenberg, Siamak Azodolmolky, Steve Uhlig:
Software Defined Networking: A Comprehensive
Survey, page 25, Proceedings of the IEEE, Volume
103, Jan, 2015

[2] Hilmi Egilmez, S. Dane, K. Bagci, A. Tekalp:
OpenQoS: OpenFlow controller design for multimedia
delivery with end-to- end Quality of Service over
Software-Defined Networks, APSIPA ASC, Hollywood,
CA, 3-6 Dec, 2012

[3] M. Seddiki, Muhammad Shahbaz: FlowQoS: QoS for
the Rest of Us, HotSDN?14, Chicago, 22 Aug, 2014

[4] S. Sharma, D. Staessens, D. Colle, D. Palma:
Implementing Quality of Service for the Software
Defined Networking Enabled Future Internet, EWSDN,
Budapest, 1-3 Sep, 2014

[5] G. Araniti, J. Cosmas, A. Iera, A. Molinaro:
OpenFlow over Wireless Networks: Perfomance
Analysis BMSB, Beijing, 25-27 Jun, 2014

[6] Daniel Raumer, Lukas Schaighofer, Georg Carle:
MonSamp: A distributed SDN application for QoS
monitoring FedCSIS, Warsaw, 7-10 Sep, 2014

[7] David Palma et al., The QueuePusher: Enabling
Queue Management in OpenFlow, EWSDN, Budapest,
1-3 Sep, 2014

[8] M. F. Bari et al., PolicyCop: An Autonomic QoS
Policy Enforcement Framework for Software Defined
Networks, SDN4FNS, Trento, 11-13 Nov, 2013

[9] Wonho Kim et al. Automated and Scalable QoS
Control for Network Convergence, INM/WREN, San
Jose, CA, 27 Apr, 2010

[10] R. Braden et al., Integrated Services in the Internet

Seminars FI / IITM SS 15,
Network Architectures and Services, September 2015

38 doi: 10.2313/NET-2015-09-1_05



Architecture: An Overview, Internet Engineering Task
Force, RFC 1633, Jun, 1994

[11] S. Blake et al., An Architecture for Differentiated
Services, Internet Engineering Task Force, RFC 2475,
Dec, 1998

[12] K. Nicolas et al., A Two-bit Differentiated Services
Architecture for the Internet, Internet Engineering
Task Force, RFC 2638, Jul, 1999

[13] A. Ishimori et al. Control of Multiple Packet
Schedulers for Improving QoS on OpenFlow/SDN
Networking, EWSDN, Berlin, 10-11 Oct, 2013

[14] V. Kotronis et al. Control Exchange Points: Providing
QoS-enabled End-to-End Services via SDN-based
Inter-domain Routing Orchestration, ONS, Santa
Clara, CA, 3-5 Mar, 2014

[15] K. Nichols et al. Definition of the Differentiated
Services Field (DS Field) in the IPv4 and IPv6
Headers, Network Working Group, RFC 2474, Dec,
1998

[16] S. R. Chowdhury, M. F. Bari, R. Ahmed, and R.
Boutaba PayLess: A Low Cost Network Monitoring
Framework for Software Defined Networks, NOMS,
Krakow, 5-9 May, 2014

Seminars FI / IITM SS 15,
Network Architectures and Services, September 2015

39 doi: 10.2313/NET-2015-09-1_05



Framework Scale Type Testbed Flexibility Guarantees

Resource
reservation

FlowQoS Small scale
(home
routers)

Prototype - Restricted to
home routers

-

EuQoS Medium to
large-scale
(possible
across multi-
ple AS)

Prototype OFELIA
testbed, 100
nodes

Compatible
with BGP
and OSFP
and therefore
to the current
Internet

Flow of prior-
itized tenant
has prece-
dence, failure
recovery

Princeton
framework

- Prototype 3 ProCurve
5406zl
switches

- Network
wide opti-
mization &
convergence

Per-flow
path opti-
mization

OpenQoS Medium scale
(supposedly,
since the net-
work needs to
be monitored)

Prototype 3 Pronto 3290
switches

Scalability
problems

Multimedia
traffic with
enabled QoS
performes
better

Queuing
and
schedul-
ing

QueryPusher Any Prototype - Floodlight ex-
tension

-

QoSFlow Any Prototype Up to three
TPLink
1043ND

Requires
Linux in-
stalled at
each router;
limited to 8
queues per
switch port

Improvement
in QoE for
QoS enabled
traffic (up to
48 %)

Policy En-
forcement

PolicyCop Medium scale
(supposedly,
since the net-
work needs to
be monitored)

Prototype 5 switches
running Open
vSwitch

Compatible
with all
switches with
OpenFlow
support,
easily ex-
tensible due
its layered
architecture

Enforcement
of policies

Table 1: Apendix 1

Seminars FI / IITM SS 15,
Network Architectures and Services, September 2015

40 doi: 10.2313/NET-2015-09-1_05


