
HTTP/2

Michael Conrads
Betreuer: Benjamin Hof

Seminar Future Internet SS2015
Lehrstuhl Netzarchitekturen und Netzdienste

Fakultät für Informatik, Technische Universität München
Email: conrads@in.tum.de

ABSTRACT
The new version of HTTP/1.1, HTTP/2, has been approved
by the IETF’s steering group for publication as an RFC. The
number of assets per web page has increased over the last
ten years. Optimization techniques like sharding, CSS data:
inlining or image sprites are used to address speed issues
inherent to the HTTP/1.X protocols. HTTP/2 removes the
need for these optimizations by introducing binary frames,
transmitted over streams on a single TCP/IP connection.
It enables the client to indicate priorities for streams to the
server. Servers are able to push data to clients anticipat-
ing the clients need for resources like JavaScript or CSS files
referenced in requested HTML. HTTP/2 transmits headers
using the HPACK format, using redundancy in the header
key-value pairs to reduce the transmitted header size. The
HTTPbis working group reached its goal in creating an per-
formance optimized HTTP protocol, but it is questionable
if advanced features of HTTP/2 will be fully supported.

Keywords
SPDY, HTTP/2, HPACK

1. INTRODUCTION
HTTP is one of the most commonly used protocols on the
web. It was first defined in 1991 [6] and was published as a
Request For Comment (RFC) in 1996 (RFC 1954, Hypertext
Transfer Protocol – HTTP/1.0) [10]. It was widely adopted
and the next version HTTP/1.1 followed in 1999 [9]. In ad-
dition to functionality updates, speed issues were addressed
by adding pipelining [9, section 8.1.2.2], which is explained
in section 3. Furthermore, HTTP/1.1 made persistent TCP
connections the default setting for HTTP [9, section 8.1.2].
The increasing number of images, CSS and JavaScript files
per page require an increasing number of HTTP request,
which made new drawbacks of HTTP/1.1 became apparent.
Figure 1 shows the average web page transfer size as well as
number of requests, based on the Alexa top 1 million pages
between Jan 2011 and Mar 2015 [12]. As can be seen, the
number of requests per page increased from 78 to 96 and the
total transmission size increased from 724kB to 1977kB in
the last 4 years.

HTTP/2 tries to address these problems and adapt HTTP
to the requirements of the modern web.

2. A SHORT INTRODUCTION TO HTTP
HTTP/1.X (HTTP/1.0 and HTTP/1.1) are text-based pro-
tocols used for transmitting content between a client and

Figure 1: Average transfer size and number of re-
quests required to load a web page

a server in request-response form. A well known use case
is the transmission of web pages. HTTP is built on top of
the TCP/IP stack, guaranteeing reliable transfer between
two parties. HTTP/1.X messages consists of a header and a
body, separated by two carriage-return linefeeds (CR LF CR

LF, CR and LF are control characters denoting a new line).

Listing 1 shows an exemplary HTTP/1.1 response from a
server to a request from the client. Every header value
is separated by one CR LF. The last header value ’Server:
Apache’ is separated from the content of the response
’<!DOCTYPE html’ by CR LF CR LF, visible as the empty line
after the header. The header of a HTTP message contains
meta-information regarding the request or response, e.g. the
method used for the request (GET, POST etc.) or the status
code for the response as well as additional information like
the type of the content or information about the server. The
body of the HTTP response contains the requested content,
in this example a page containing HTML.

Listing 1: Example HTTP Response from a Server

HTTP /1.1 200 OK
Content -Type: text/html
Server: Apache

<!DOCTYPE html ...>
<html >
content of the web page here
</html >

Seminars FI / IITM SS 15,
Network Architectures and Services, September 2015

9 doi: 10.2313/NET-2015-09-1_02



3. PROBLEMS WITH HTTP/1.X
When requesting resources over HTTP/1.0, a new TCP con-
nection is established for every resource transmitted. Af-
ter the transmission of the resource, the TCP connection is
closed again. With the number of resources per web page
growing, clients need an increasing number of requests to
load them [12]. The TCP slow-start mechanism was de-
signed to decrease network load and find the optimal trans-
mission rate for an established connection [21]. Slow-start
gradually increases the number of transmitted bytes, based
on the amount of transmission acknowledgments received.
As a result, short lived TCP connections never reach their
optimal transmission capacity.

HTTP/1.1 addresses these issues by allowing established
TCP connections to be reused by default (keep-alive) [9,
Section 8.1]. Nevertheless, the popular Apache webserver
closes a connection if no request is sent over a period of
time, which defaults to 5 seconds [22]. Even if the timeout
on the server side is increased, clients maintain their own
timeout setting e.g. in Firefox version 36 persistent connec-
tions timeouts after 115 seconds. To reuse an established
TCP connection, the client has to wait for a response to a
request before issuing a new one. HTTP/1.1 circumvents
this problem by introducing Pipelining.

Pipelining enables the client to issue multiple requests to
a server without having to wait for a response to the first
request to issue the second one. The order of the requests
is significant, as it is required that the server responds to
these requests in the order they were issued. As a result, if
the response to the first request is delayed (e.g. because of
large file size), all other requests are delayed as well. This
problem is called head of line blocking. As can be seen, by
fixing one problem, HTTP/1.1 creates a new one.

4. HTTP/1.1 WORKAROUNDS
Several workarounds have been found to mitigate the issues
described in section 3 and increase web page load speed:

CSS data: inline By including base64 encoded images in
CSS stylesheets, multiple images can be loaded with one
CSS request, reducing the number of requests to the server.

Spriting Multiple images are combined into one larger im-
age, called a sprite. The individual images are displayed by
specifying the offset X and Y coordinates in combination
with the target image size [15]. This workaround aims at
reducing the number of requests.

Sharding HTTP/1.1 states, a maximum of 2 parallel HTTP
connections should be open simultaneously between a client
and a server. [9, 8.1.4] Modern browsers don’t conform to
this standard. Firefox version 36.0.1 allows 6 persistent con-
nection. Sharding refers to the technique of distributing as-
sets of a page on multiple subdomains. These are considered
seperate servers, thus resetting the number-of-connections
limit. Figure 2 show a screenshot of a HTTP-request trace
when visiting www.gmx.de. GMX distributes images via mul-
tiple domains to increase the number of connections between
client and server.

Concatenation Another way of decreasing the number of
HTTP requests is the concatenation of text based assets.
Similar to the spriting technique for images, multiple

Figure 2: Sharding used by www.gmx.de

JavaScript or CSS files are concatenated into larger files,
reducing the number of requests sent to the server.

The existence of these workarounds points to a shift in usage
of the HTTP/1.1 protocol in regard to its original purpose
when it was created.

5. THE HTTP/2 WORKING GROUP
The Working Group (WG) charged with maintaining the
HTTP specifications is part of the Internet Engineering Task
Force (IETF) [13]. Its charter states the goals they want to
achieve with the HTTP/2 standard [14]:

• “[...] us[e] draft-mbelshe-httpbis-spy-00 as starting point.”

• “Substantially and measurably improve end-user perceived
latency in most cases, over HTTP/1.1 using TCP.”

• “Address the ‘head of line blocking‘ problem in HTTP.”

• “Not require multiple connections to a server to enable
parallelism, thus improving its use of TCP, especially re-
garding congestion control.”

• “Retain the semantics of HTTP/1.1, [...] including [...]
HTTP methods, status codes, URIs, and [...] header fields.”
This goal aims at compability with websites accessing
HTTP/1.1 header fields.

• “Clearly define how HTTP/2.0 interacts with HTTP/1.x”
As HTTP/2 will be gradually rolled, dynamic upgrade
mechanism from HTTP/1.1 connections to HTTP/2 are
important to ensure a smooth transition which is not no-
ticed by the user (e.g. no popup asking the user if he
wants to use the HTTP/2 protocol).

• “Clearly identify any new extensibility points and policy
for their appropriate use.”

The fulfillment of these goals will be evaluated in
section 9.

5.1 The SPDY Protocol
As stated in the WG charter, draft-mbelshe-httpbis-spy-
00 [4] of the SPDY protocol was used in 2012 as the starting
point for HTTP/2 [16]. The SPDY protocol was developed
by Google, which made the existence of the project known
to the public in 2009. It was meant as a replacement for
HTTP and “optimize the way browsers and servers commu-
nicate” [3]. SPDY features a binary format, stream multi-
plexing as well as header compression. These features were

Seminars FI / IITM SS 15,
Network Architectures and Services, September 2015

10 doi: 10.2313/NET-2015-09-1_02



retained in the HTTP/2 protocol and are described in the
following sections. The SPDY Protocol is supported on the
client side by Google Chrome since version 6 (2010), Firefox
since version 13 (2012) and Safari since version 8 (2014) [8].
On the server side, SPDY support was added as a mod to
Apache version 2.2 (2012) [20] and nginx since version 1.3
(2013) [1].

Google will retire the SPDY protocol in “early 2016”, as “[...]
HTTP/2 is well on the road to standardization.” [2].

6. THE HTTP/2 PROTOCOL
This section gives a summary of the core features of the
HTTP/2 protocol. Contrary to the HTTP/1.1 text based
protocol, HTTP/2 is a binary protocol. The main difference
between text based and binary protocols is the way in which
they represent values. Text based protocols use ASCII key-
value pairs like ’Content-Length: 42’ (which is at least 16
bytes long) whereas binary protocols transmit values in des-
ignated bit positions (e.g. the first 3 bytes in an HTTP/2
message contain the length of the message). This space-
efficient value representation reduces the size of transmitted
messages.

HTTP/1.1 defines CR LF as the separator between header
fields [9, section 4.1]. The header parsing is not clearly de-
fined in some points, e.g. HTTP/1.1 defines four different
ways to specify message length based on the context of the
message or the existence of header fields [9, section 4.4].
The RFC even states an example of wrong implementations
producing extra CR LF sequences [9, section 4.1]. HTTP/2
transmits data in frames, which are logical grouped bytes.
The concept of frames and their different types are explained
in section 6.2.

As opposed to HTTP/1.1, HTTP/2 defines a clear separa-
tion between header information and content. Header fields
are transmitted using HEADERS frames, content is transmit-
ted using DATA frames. In HTTP/1.1 header and content
are transmitted together, separated by CR LF CR LF.

Another advantage of binary protocols is the reduction of
protocol overhead in regard to number of bytes transmitted,
as described at the top of this section. Common criticism of
binary protocols is their illegibility when displayed during
text based debugging. While this is true, TLS encrypted
HTTP/1.1 messages are not human readable as well. In
addition, the popular network packet analyzer Wireshark
features HTTP/2 support1.

Frames and Streams
Frames and streams are the core concepts of HTTP/2. Frames
are the basic unit of data transmission between clients and
servers. Similar to TCP or IP frames, they start with meta
information about their purpose and payload and carry their
content in the payload field. Frames are described in section
6.2. Frames are transmitted via streams. Streams are theo-
retical groups of frames which are transmitted over one TCP
connection. The TCP connection is not aware of the exis-
tence of streams. Every frame carries a stream identifier,
marking their assigned stream. Streams can be prioritized

1https://wiki.wireshark.org/HTTP2

in regard to each other and allow multiplexing of frames on
one TCP connection. Streams are described in section 6.3.

The following sections shows how an HTTP/2 connection is
established and data transmitted between clients and servers.

6.1 Initiating a HTTP/2 connection
There are multiple ways to initialize a HTTP/2 connection,
depending on the usage of TLS or cleartext transmission.

HTTPS over TLS
To establish a secure connection to a HTTPS URI, the client
uses the application layer protocol negotiation (ALPN, [11]),
an extension to the TLS protocol. As part of the TLS hand-
shake, the client sends a list of supported application layer
protocols (represented by protocol identifiers) to the server
in the ClientHello message. The server responds with a se-
lected protocol in the ServerHello message [11, section 3.1].
The protocol identifier used for HTTP/2 is h2 [5, section
3.3].

After the completion of the TLS handshake, client and server
have to send a connection preface [5, Section 3.4]. The Con-
nection Preface is composed of the string
’PRI * HTTP/2.0\r\n\r\nSM\r\n\r\n’ base 64 encoded and
a Settings frame. PRI is a new HTTP method, used exclu-
sively for the HTTP/2 connection establishment [5, section
11.6].

Cleartext HTTP
If the client is not aware of server HTTP/2 capabilities, it
uses the HTTP/1.1 upgrade mechanism, issuing a HTTP/1.1
request to the server. This initial request contains a HTTP
Upgrade header field with the value h2c (HTTP/2 cleartext)
as well as a base64 encoded HTTP/2 SETTINGS frame as the
value of the new header field HTTP2-Settings [5, section
3.2].

The server acknowledges the protocol change by sending
a 101 switching protocols HTTP/1.1 message. If the
server does not support HTTP/2, it ignores the Upgrade and
HTTP2-Settings header fields and respond with a HTTP/1.1
200 OK response.

If the client is aware of HTTP/2 capabilities of the server
(e.g. from the Alt-Svc, see section 8 or previous connections)
and wants to establish a cleartext TCP connection, it can
send the Connection Preface and immediately start sending
HTTP/2 frames.

Note the \r\n\r\n (CR LF CR LF) in the Connection Pref-
ace. When receiving the Connection Preface, the server
starts scanning for a HTTP/1.1 header, which is ended by
CR LF CR LF. In cases where the client assumes the server
supports HTTP/2 from prior knowledge, but the server does
not (e.g. server has been replaced), the server does not rec-
ognize the Connection Preface and does not attempt to scan
the following HTTP/2 frames.

Seminars FI / IITM SS 15,
Network Architectures and Services, September 2015

11 doi: 10.2313/NET-2015-09-1_02



6.2 Frames
Frames are the smallest unit of communication between client
and server. Figure 3 shows the format of a HTTP/2 frame.
The number in braces specifies the number of bits per field.
Every frame starts with a Length field, containing the num-
ber of bytes in the Payload field. Type and Flags are dis-
cussed in the following section. R is a reserved bit. The
Stream Identifier (stream ID) indicates the stream this
frame is assigned to, see section 6.3. The Frame Payload

field contains the actual payload of the frame.

Length (24)

Type (8) Flags (8)

Stream Identifier (31)R

Frame Payload (0…)

Figure 3: HTTP/2 Frame format

Frame Types and Flags
There exist several frame types, the most important ones
are listed here, other frame types are mentioned where ap-
propriate. The data transmitted by these frames is carried
in the payload field. Unknown frame types must be dis-
carded [5, section 4.1].

DATA A frame with type DATA transmits request or re-
sponse payloads like HTML, CSS, images or other resources.

HEADERS The HEADERS frame is used to open a new
stream and transmit header fragments, compressed via the
compression format HPACK. If the HTTP header in its com-
pressed form is too large the fit in one HEADERS frame, it is
split up into header fragments where the first one is trans-
mitted in the HEADERS frame and the following fragments are
transmitted in CONTINUATION frames. If the END_HEADERS

flag is set in one frame, it signals to the receiver the com-
pleted transmission of all header fragments and the receiver
is able to assemble them to their decompressed HTTP header
form. The HPACK compression and header fragments are
explained in section 7.

An optional use of the HEADERS frame is to specify an initial
stream dependency, explained in section 6.3.

SETTINGS The SETTINGS frame is used to control the en-
tire connection, not just a single stream. The Stream Iden-

tifier must therefore be set to 0x00. The SETTINGS frame
must be sent from both endpoints to negotiate the connec-
tion at startup.
The SETTINGS frame is used to control the size of the dy-
namic header compression table (see section 7). It allows the
clients to enable/disable PUSH_PROMISE frames and specify a
flow control window size (SETTINGS_INITIAL_WINDOW_SIZE,
see section 6.4) as well as a maximum frame size
(SETTINGS_MAX_FRAME_SIZE).

PRIORITY The PRIORITY frame is used to indicate a de-
pendency between two streams. It contains the identifier
of the stream the current stream depends on, as well as
a weight which is assigned to the siblings of the current
stream. Stream dependencies and weights are explained in
section 6.3.

PUSH PROMISE The PUSH_PROMISE frame payload con-
tains a promised stream ID and header fragments. The
PUSH_PROMISE must only be sent from the server and in-
dicates to the client the intent to push resources which are
not (yet) requested. An example would be the request to
a web page with an embedded image A. The server knows,
that the client will request the image as soon as it receives
the HTML with the embedded link. The server can send
a PUSH_PROMISE frame before it sends the HTML in a DATA

frame. The PUSH_PROMISE has to be sent beforehand to avoid
race conditions (e.g. the client requests resources while the
server is already sending them). The client receives the
PUSH_PROMISE frame which contains a request header for
the not yet requested image A. The client reserves a stream
with the transmitted Stream Identifier and knows (from
the header) that the server will push the image A on this
stream. When the client parses the HTML, it can match the
link to image A to the request header for image A sent in the
PUSH_PROMISE from the server, thereby saving the request
to the server for the image. In this regard, PUSH_PROMISE

works similar to the HTTP/1.1 Data: inline technique with
the possibility of client opt-out: If the client does not want
to receive server pushes, it can disable them with the SET-

TINGS_ENABLE_PUSH flag in the SETTINGS frame. If the client
wants to receive server pushes in general, but wants to cancel
a specific PUSH_PROMISE, it can send a RST_STREAM frame.

RST STREAM The RST_STREAM frame (Reset Stream) is
used to cancel a stream. In HTTP/1.1, peers had no way
of aborting an ongoing transmission of data without having
to close the TCP connection. The RST_STREAM frame can be
sent at any time to tell the peer that all transmissions on a
specific stream should be canceled.

WINDOW UPDATE The WINDOW_UPDATE frame is used
to increase the flow control window. Flow control can apply
to individual streams as well as the whole connection. If
a peer wants to reduce the flow control window, it has to
send a new SETTINGS frame, containing the new value for
the setting SETTINGS_INITIAL_WINDOW_SIZE. Flow control
is described in section 6.4.

6.3 Streams
A stream is a concept for bi-directional transmission of frames
between client and host, not a physical existing connection.
One TCP connection can contain multiple streams. Every
frame is assigned to a stream. As streams are logical con-
cepts, there is no overhead in establishing new streams, as
opposed to establishing a new TCP connection. Streams are
referenced by IDs. To circumvent a possible ID collision,
streams opened by the server are assigned even numbered
IDs, streams opened by the client odd numbered IDs [5, sec-
tion 5.1.1].

Streams are opened using a HEADERS frame, identifying the
resource that will be transmitted over the stream. If the
PRIORITY flag is set, the HEADERS frame includes an initial
stream priority and dependency. As opposed to HTTP/1.1
requests/responses, HTTP/2 stream communication is state-
ful. Both HEADERS and DATA frames are needed to transmit
resources and their order is significant for their reassembly
on the receiver side.

Seminars FI / IITM SS 15,
Network Architectures and Services, September 2015

12 doi: 10.2313/NET-2015-09-1_02



Priority and Dependency
Streams can be dynamically (re)prioritized using a Prior-

ity frame, which assigns priorities as weights. Weights are
values between 1 and up to 255. The priority of a stream
tells the server which requests it should answer first. If a
server receives requests from a high-priority stream and a
low priority stream, it should assign more resources (e.g.
bandwidth) to answering the high-priority stream than the
low-priority stream.

Streams can be dependent on each other. This creates a
dependency tree on the server. The stream with ID 0 is
not used and is inserted on the server to form the root of
the tree. The HTTP/2 specification does not enforce strict
compliance to the priority and dependency model [5, section
5.3.1 and 5.3.2].

id:1
weight:200

non-
existent

id:5
weight:100

id:3
weight:16

Figure 4: Stream Dependency example

Figure 4 shows an example for stream dependency. Streams
1 and 5 do not have a parent stream (the Stream Depen-

dency field contained 0x00) but different weights. This
prompts the server to assign more resources to stream 1
than to stream 5. Stream 3 is depending on stream 1, which
means requests on stream 1 should be handled before re-
quests on stream 3. A weight of 16 is assigned as the default
value, if no priority is specified.

Consider this exemplary transmission of a web page using
the dependency in figure 4:
A client requests a web page, which contains an image and
a JavaScript file. As the HTML contains the links to all
needed resources, it should be transmitted first and will be
requested over stream 1. The JavaScript file is transmitted
over stream 3, as the JavaScript has to wait for the browser
to build the DOM-tree before it is able to apply DOM ma-
nipulations. The image can be requested over stream 5, as
soon as the HTML DATA frame containing the image link is
parsed.

6.4 Data Transmission and Flow Control
Persistent connections introduced in HTTP/1.1 in combina-
tion with pipelining allow multiple HTTP requests in par-
allel. The order in which these requests are answered is
used to match the responses to the requests and is therefore
significant. Consider two exemplary pipelined HTTP/1.1 re-
quests to a server, requesting a database entry and a static

html page. Pipelining requires these requests to be answered
in the same order, e.g. the response from the database fol-
lowed by the static html page. As the response from the
database takes longer than the static html page, the first
response blocks the seconds one. Streams allow HTTP/2
frames to be multiplexed over one TCP connection. The or-
der of frames is significant per stream, not per TCP connec-
tion. This ensures requests to slower resources (e.g. images
or database entries) do not block faster responses, regard-
less of the order in which they are sent. Figure 5 visualizes
a simplified HTTP/1.1 transmission without the usage of
persistent connections to demonstrate the TCP and HTTP
handshake overhead. The index.html response carries the
payload as well as the HTTP headers response.

HTTP request-
response

connection
establishment

client server

connection
establishment

HTTP request-
response

syn
syn ack

ack

image.jpg
request image.jpg

syn
syn ack

ack

index.html
request index.html

Figure 5: HTTP/1.1 transmission without keep-
alive, simplified

Figure 6 shows the request and transmission of HTML as
well as several images: HEADERS frames from the client open
new streams and request resources. No TCP overhead is
generated if a new stream is opened. The server responds
by sending a HEADERS frame with the specified stream ID
to transmit the HTTP response headers, followed by DATA

frames carrying the resources. If the server transmitted a re-
source, the last frame on the stream carries the END_STREAM

flag (ES in figure 6), signaling the end of transmission on the
stream.

HTTP/2 provides a flow control mechanism for each TCP
connection. Flow control applies only to DATA frames, all
other frames are not affected. TCP flow control is meant
to protect the client from receiving data faster than it can
process. As multiple streams are transmitted over the same
TCP connection, TCP flow control cannot apply to single
streams. HTTP/2 flow control can restrict or increase the
throughput on individual streams by transmitting SETTINGS

or WINDOW_UPDATE frames. Every peer maintains a flow con-
trol window, which is initially set to 65,535 Bytes [5, section

Seminars FI / IITM SS 15,
Network Architectures and Services, September 2015

13 doi: 10.2313/NET-2015-09-1_02



Stream 5

Stream 5

Stream 7

Stream 5

Stream 7

client server

connection
establishment

Stream 1

syn
syn ack

ack

HEADERS
index.html

HEADERS
200 OK

DATA ES
index.html

HEADERS
image.jpg

HEADERS
200 OK

DATA ES
image.jpg

HEADERS
large1.jpg

Stream 3

HEADERS
large2.jpg

DATA
large1.jpg

DATA
large2.jpg

DATA ES
large2.jpg

DATA ES
large1.jpg

Figure 6: HTTP/2 transmission, simplified. ES de-
notes the END STREAM flag

5.2.1]. While stream priorities are relative values regarding
the processing of requests on the server side, flow control
can set hard limits on individual streams.

7. HPACK HEADER COMPRESSION
One of the HTTP/2 goals is to “Retain the semantics of
HTTP/1.1 [...] including [...] header fields.” [14]. HTTP/1.1
header fields are very repetitive, with minimal changes be-
tween requests for resources. The header compression for-
mat HPACK [19] uses this repetition to substantially reduce
transmitted header size.

HPACK allows header fields to be split into multiple header
fragments if they are too large to fit into one frame. HEAD-

ERS and CONTINUATION frames are used to transmit header
fragments. The client collects the fragments and assembles
the complete header [19, section 1.1]. The format of the
header fragments in the HEADERS frame is identical to the
one in the CONTINUATION frame. For convenience, only the
HEADERS frame is mentioned.

The HPACK compression uses two tables for decoding, a static
table and a dynamic table.

Static Table
The static table contains fixed values for the most common
header fields. The index 2 for example contains the HTTP
method GET. Index 5 contains path /index.html. A trans-
mission of the index 2 and the index 5 results in GET /in-

dex.html. The content of the static table can be found
in [19, Appendix A.].

Dynamic Table
The dynamic table is empty at the start of the connection.
Both client and server maintain the same dynamic table.
HEADERS frames transmit headers in multiple key-value tu-
ples inside header fragments, in combination with bit flags if
the entry in the key or value field in each tuple is an index
or a literal.

If a peer wants to send a header, it iterates over each field
in the original HTTP header (consisting of key and value),
looking for a representation in the static table. If an entry
is found, the appropriate field in the HEADERS frame is set.
Combinations of an indexed key and a literal value or vice
versa are indicated by the bit flags for each tuple. If a rep-
resentation cannot be found in the static table, the dynamic
table is searched. If no entry can be found as well, the key
or value is added to the dynamic table and added as a literal
to the HEADERS frame. When decoding the HEADERS payload,
the receiver adds the transmitted literals to its dynamic ta-
ble as well, recreating the same dynamic table as the sender.
If the same key or value is sent again in another request or
response, its index from the dynamic table is used.

Hence, HPACK compression is not stateless, requiring every
peer to maintain an identical encoding context in form of
the dynamic table. To further reduce size, the header frag-

ments can be Huffman encoded, which is indicated by a bit
in the transmitting frame.

The HPACK specification describes only the decoding of head-
ers. The encoder is required to transmit the header frag-
ments in a way, such that the client is able to decode them
[19, Section 2.]. Individual implementations (on client and
server side) must come up on their own with efficient al-
gorithms for table traversal and storage. The specification
therefore does not provide an implementation proposal.

8. EXTENSIONS
HTTP/2 is a very strict protocol. The specification states,
that all unknown frames have to be ignored by the receiver
[5, Section 5.5]. Extension points exist to increase the flexi-
bility of the protocol. HTTP/2 extensions are not part of the
main specification, which states only how extensions must
be registered.

Alternative Services
The Alternative Services Extension (Alt-Svc) [17] is an ad-
ditional header field that can be transmitted using the Alt-

Svc frame in a HTTP/2 connection or as a regular header
field in HTTP/1.1. Servers can use the Alt-Svc frame to
signal the client a resource is available in another location,
too. It can be used to switch protocols, e.g. the server
tells the client during a HTTP/1.1 connection the resource
is also available via HTTP/2 on another port: Alt-Svc:

Seminars FI / IITM SS 15,
Network Architectures and Services, September 2015

14 doi: 10.2313/NET-2015-09-1_02



h2c=":8080". It can reroute the client to another endpoint
as well: client visits www.domain.com/endpoint and receives
Alt-Svc: http="www2.domain.com/endpoint". The client
is now able to transition to the www2 server without having to
notify the user. This is not to be confused with a HTTP redi-
rect response (a 3XX status code). Alt-Svc allows the client
to decide, if he wants to use the alternative service [17, 2.4].
In addition, Alt-Svc can offer multiple alternative locations
for a resource; the client is free to choose any. The HTTP
redirect status does not allow such fine control as it forces
a hard redirect on the client. The client can response with
a header field Alt-Used to notify the server of a successful
transition. Using Alt-Svc, the server can transition a client
slowly to another location until all requests are sent to the
new location (in case a full transition is desired).

Opportunistic TLS
Opportunistic TLS [18] is an experimental extension based
on Alt-Svc. It aims at mitigating pervasive monitoring at-
tacks (RFC 7258). Servers advertise using Alt-Svc if their
content is available over TLS as well. Clients are now able to
choose between staying on the current cleartext connection,
risking e.g. http traffic monitoring, or switch to a new TLS
connection.

9. FULFILLMENT OF WG GOALS
The WG aimed at improving end-user perceived latency.
Akamai, a large cloud service provider, released a HTTP/2
test page (https://http2.akamai.com/demo), demonstrating
the speed improvements gained by using HTTP/2 over
HTTP/1.1.

Another goal was to address the TCP slow-start perfor-
mance problem. HTTP/1.1 tried to improve performance
by introducing persistent connections, with led to head of
line blocking problems. HTTP/2 mitigates the slow-start by
reusing the same TCP connection. As opposed to HTTP/1.1,
HTTP/2 stream multiplexing and stream priorities circum-
vent the head of line blocking issues.

HTTP/2 does not change HTTP/1.1 semantics. As soon as
the client has reassembled all header fragments, the HTTP/2
header is identical to the HTTP/1.1 header. Therefore, mi-
gration to HTTP/2 does not break working HTTP/1.1 web-
sites which access header fields (e.g. for cookies).

As the upgrade to HTTP/2 is not mandatory, the HTTP/2
specification provides methods for discovering server HTTP/2
capabilities during an existing HTTP/1.1 cleartext connec-
tion or a TLS handshake using ALPN without breaking ex-
isting HTTP/1.1 implementations.

The strength of HTTP/2 is the reduction of number of round
trips, as less TCP connections need to be established and the
transmitted header size is reduced. If the RTT is already low
because of good network conditions, the impact of HTTP/2
for the end user will not be felt as strongly.

10. CONCLUSION
The success of HTTP/2 can be measured on its rate of adop-
tion. All major browsers have added HTTP/2 and/or SPDY
support. Due to the HTTP/1.1 header compatibility and
the HTTP/2 support in Apache and nginx, gradual roll out
of the protocol should be straightforward for most servers,
eliminating the need for the HTTP/1.1 workarounds men-
tioned section 4. According to Daniel Stenberg, a member
of the HTTP/2 WG, Google reported 5% of their global
traffic uses HTTP/2 by the end of January 2015 [7]. While
this early adoption rate sounds promising, it is difficult to
validate this number and therefore should be treated with
caution. In the opinion of the author, HTTP/2 coverage will
never reach 100%, as many small or ”abandoned” private
webservers will never be updated (following the principle:
’if it ain’t broken, don’t fix it’).

Several speed comparisons between HTTP/1.1 and HTTP/2
exist, claiming varying speed improvements using HTTP/2
over HTTP/1.12. These comparisons are often lacking in in-
formation regarding the test setup and are dubious in their
expressiveness. HTTP/2 core features like stream multiplex-
ing or header compression aim at increasing responsiveness
for web pages using a large number of assets. To objec-
tively measure HTTP/2 performance, a web page operator
has to measure HTTP/1.1 web page load times with current
HTTP/1.1 workarounds in place and compare the results to
the same page using HTTP/2 without using the mentioned
workarounds. This test requires a full HTTP/2 implemen-
tation (using features like promise and stream priorities) on
server and client side as well as a web page with actual con-
tent. While HTTP/2 test pages show promising results, the
use case of requesting 200 images at once seems question-
able. Therefore it is very difficult to provide actual HTTP/2
test results using real web page content and would go beyond
the scope of this paper.

Nevertheless, the author is certain that the impact of HTTP/2
for the end user will be felt on mobile devices due to the effi-
cient usage of TCP. HTTP/2 offers advantages for web pages
with large numbers of assets as well, removing the need for
many HTTP/1.1 optimizations. The webserver support for
advanced features of HTTP/2 like stream dependency, pri-
orities or push promises seems questionable though, as the
HTTP/2 specification does not strictly require the server to
adhere to them or use them at all.

2http2.golang.org/gophertiles or
blog.httpwatch.com/2015/01/16/a-simple-
performance-comparison-of-https-spdy-and-http2

Seminars FI / IITM SS 15,
Network Architectures and Services, September 2015

15 doi: 10.2313/NET-2015-09-1_02



11. REFERENCES
[1] Bartenev, V. Announcing SPDY draft 2

implementation in nginx.
http://mailman.nginx.org/pipermail/nginx-

devel/2012-June/002343.html, June 2012.

[2] Beky, B. and Bentzel, C. Hello HTTP/2, Goodbye
SPDY. http://blog.chromium.org/2015/02/hello-
http2-goodbye-spdy-http-is_9.html, Feb. 2015.

[3] Belshe, M. and Peon, R. A 2x Faster Web.
http://googleresearch.blogspot.de/2009/11/2x-

faster-web.html, Nov. 2009.

[4] Belshe, M. and Peon, R. SPDY Protocol.
http://tools.ietf.org/html/draft-mbelshe-

httpbis-spdy-00, Feb. 2012. Internet-Draft.

[5] Belshe, M. and Peon, R. and Thomson, M. Hypertext
Transfer Protocol version 2, Draft 17. https://tools.
ietf.org/html/draft-ietf-httpbis-http2-17, Feb.
2015. Internet-Draft.

[6] Tim Berners-Lee. The Original HTTP as defined in
1991. http:
//www.w3.org/Protocols/HTTP/AsImplemented.html.

[7] Daniel Stenberg. HTTP/2 is at 5%. http://daniel.
haxx.se/blog/2015/02/10/http2-is-at-5/, Feb.
2015.

[8] Deveria, A. HTTP/2 protocol / SPDY.
http://caniuse.com/#feat=spdy, Feb. 2015.
dynamically generated.

[9] R. Fielding, J. Gettys, J. Mogul, H. Frystyk,
L. Masinter, P. Leach, and T. Berners-Lee. Hypertext
transfer protocol-HTTP/1.1, June 1999. RFC 2616.

[10] R Fielding, U C Irvine, and H Frystyk. HTTP1.0,
May 1996. RFC 1945.

[11] Friedl, S. and Popov, A. and Langley, A. and Stephan,
E. Transport Layer Security (TLS), Application-Layer
Protocol Negotiation Extension, July 2014. RFC 7301.

[12] httparchive.org. Trends.
http://httparchive.org/trends.php?s=All&

minlabel=Jan+20+2011&maxlabel=Mar+15+2015, Mar.
2015. dynamically generated.

[13] IETF HTTP Working Group. About Us.
http://httpwg.github.io/about.

[14] IETF HTTP Working Group. Charter for Working
Group. http:
//datatracker.ietf.org/wg/httpbis/charter/, Oct.
2012.

[15] Mozilla Developer Network. CSS Image Sprites.
https://developer.mozilla.org/en-US/docs/Web/

Guide/CSS/CSS_Image_Sprites, 2015.

[16] Nottingham, M. Rechartering HTTPbis.
https://lists.w3.org/Archives/Public/ietf-

http-wg/2012JanMar/0098.html, Feb. 2012. HTTPbis
Mailing List.

[17] Nottingham, M. and McManus, P. and Reschke, J.
HTTP Alternative Services, Draft 6. http://tools.
ietf.org/html/draft-ietf-httpbis-alt-svc-06,
Feb. 2015. Internet-Draft.

[18] Nottingham, M. and Thomson, M. Opportunistic
Security for HTTP. https://tools.ietf.org/html/
draft-ietf-httpbis-http2-encryption-01, Dec.
2014.

[19] R Peon and H. Ruellan. HPACK - Header

Compression for HTTP/2. http://tools.ietf.org/
html/draft-ietf-httpbis-header-compression-12,
Feb. 2015. Internet-Draft.

[20] Steele, M. mod spdy is now an Apache project.
http://googledevelopers.blogspot.de/2014/06/

modspdy-is-now-apache-project.html, June 2014.

[21] Stevens, W. TCP Slow Start, Congestion Avoidance,
Fast Retransmit, and Fast Recovery Algorithms, Jan.
1997. RFC 2001.

[22] The Apache Software Foundation.
Apache-Kernfunktionen. https://httpd.apache.org/
docs/2.4/mod/core.html#keepalivetimeout, 2015.

All online sources were last accessed on 28. April 2015.

Seminars FI / IITM SS 15,
Network Architectures and Services, September 2015

16 doi: 10.2313/NET-2015-09-1_02


