
Hardware-accelerated Galois Field Arithmetic on the
ARMv8 Architecture

Markus Ongyerth
Advisor: Stephan Günther

Seminar Future Internet WS1415
Chair for Network Architectures and Services

Department of Computer Sience, Technische Universität München
Email: ongyerth@in.tum.de

ABSTRACT
A limiting factor for throughput of a network is the limit
of throughput achievable with traditional routing. Network
coding is a way to avoid this problem. A limiting factor for
network coding is its inherent arithmetic complexity. This
is particular true for high-throughput networks, but lower
throughput and embedded systems suffer from the same lim-
itations. This paper evaluates the performance, of different
implementation and algorithms doing the descrete math re-
quired for network coding on an ARMv8 architecture and
compares it to on an ARMv7 architecture. Since the ARMv7
is a 32bit architecture while ARMv8 is a 64bit, this bench-
mark shows the advantage of having larger general purpose
registers. The different implementations compared in this
paper also show the performance gain by taking advantage
of the NEON SIMD extensions, which increase register size
(even more) to 128bit.

1. INTRODUCTION
In theory, network coding allows to increase the through-
put of a network to its upper bounds [6]. It uses intelligent
broad- and multicasting to distribute information in a way
that is more efficient than routing. To achieve this, packets
are aggregated and encoded in a way that allows a receiv-
ing node to decode the original packets. One of the easiest
examples to show when and how network coding increases
the throughput of a network is the butterfly network which
is shown in Figure 1a.

Each connection can transmit one packet of data per unit
of time. The advantage of network coding in this kind of
network becomes apparent when nodes A and B want to
send data to nodes E and F. These nodes do not have to
be the actual source or actual destination for this data but
can be intermediate nodes as well. In a network that does
not use any network coding this means that the connection
between nodes C and D has to be used twice (once for A to
F and once for B to E ). If the network utilizes network cod-
ing, this can be avoided. In this case, node C receives both
packets from nodes A and B separately and encode those
into one common packet. Since there are only two packets
to combine, this encoding can be done with a simple XOR
operation. This common packet can than be transfered to
node D as one packet. Node D then transmits the packet to
nodes E and F and thus the connection between C and D
is used only once. Nodes E and F receives the packet from
A (for E ) or the packet from B (for F ) over their direct con-

nection to the source node. With one of the source packets
and the combined packet they are now able to decode the
combined packet. Therefore obtaining both packets in a way
that puts less strain on the transport medium.

In this example there was only one situation with only two
packets that could benefit from network coding. For wireless
networks with their inherent broadcast nature every packet
two packets sent at the same time collide with each other,
voiding both packets. This slows down the network since
at a given time, only one, of possibly many, nodes in range
of each other can send a packet without creating a colli-
sion. As the network gets more complicated–especially in
mesh-networks–this becomes a problem. With network cod-
ing information can be exchanged over a network using less
transmissions. By sending fewer packets the medium can be
used more efficiently which increases the overall throughput
of the network.

As mentioned, in this example the encoding and decoding
of packets can be done with XOR operations. For more
complicated networks, it is necessary to combine more than
two packets and therefore more complicated encoding and
decoding algorithms have to be applied. These algorithms
have an inherent computational complexity, which prevents
their practical deployment. In [4] Günther et al. have cre-
ated and published a library, that does efficient finite field
arithmetic needed for network coding. This library contains
algorithms optimized to use SIMD extensions, in the case
of ARM the NEON extension. They published benchmark
results created with this library on an x86 CPU and ARMv7
CPU. The ARMv7 is a Cortex A15 and has a 32bit architec-
ture. In this paper we compare the benchmark results of the
library running on an ARMv8 processor, which has a 64bit
architecture. This paper does not compare results to a x86
CPU, since traditionally x86 is aimed at high power and
high performance while ARM is tuned for low power con-
sumption. Therefore the ARM CPUs have a considerable
lack of performance compared to the x86 CPU. At the time
this paper is written the only processor comercially available
with an ARMv8 architecture is the Apple A7, which is used
for the benchmarks in this paper.

The remainder of this paper is organized as follows: first
Section 2 describes Galois fields. Section 3 introduces and
describes the hardware in this paper, while Section 4 in-
troduces the algorithms used. In Section 5 the benchmark

Seminars FI / IITM WS 14/15,
Network Architectures and Services, March 2015

45 doi: 10.2313/NET-2015-03-1_07



A

C

B

D

E F

(a) Butterfly net-
work

A

B C

D

(b) Diamond network

BA C

(c) Wireless relay

results are presented and evaluated especially in comparison
to the results in [4] made on the ARMv7 CPU. In Section
6 a few general remarks are made. Section 7 concludes the
paper.

2. GALOIS FIELD
A Finite field, also called Galois field. We denote them as
GF(pn), where p is a prime number and n is a positive
integer. This is possible, because the number of elements
in a finite field is always a power of a prime number and
all finite fields with the same size are isomorphic [4]. In
this paper only binary extensions fields are considered, i.e.,
where the number of elements in the field is of order q = 2n.
Elements of this field can be expressed as polynomials over
F2 of degree n− 1, i.e.,

Fq[x] =

{
n−1∑

i=0

aix
i

∣∣∣∣∣ai ∈ F2

}
. (1)

The coefficients ai ∈ F2 are represented by individual bits
which allows for efficient processing on today’s processor ar-
chitectures. For the scope of this paper we focus on the finite
fields of order n = {2, 4, 16, 256}, namely GF(2), GF(22),
GF(24) and GF(28). These are the most important fields
for network coding since the overhead for their coefficients
is still kept relatively small compared to larger fields such as
GF(216) and GF(232) and their elements naturally fit into
processor registers.

Addition of a, b ∈ Fq[x] is defined as:

a(x) + b(x) =
n−1∑

i=0

aix
i +

n−1∑

i=0

bix
i =

n−1∑

i=0

(ai + bi)x
i. (2)

Note that coefficients are added according to the rules of the
additive group associated with F2, meaning that addition is
done modulo 2. Addition modulo 2 reduces to a simple XOR
operation.

For Multiplication a polynomial r of degree n, that is irre-
ducible over Fq[x] is required. Irreducible means, that the
polynomial r cannot be expressed as the product of two
polynomials in Fq[x]. Such a polynomial is guaranteed to
exist as shown in [5], but generaly not unique. Multiplica-
tion in the obtained finite field depends on the polynomial
g. The product of a, c ∈ Fq[x] is the unique remainder

b(x) = (a(x) · c(x))mod r(x). (3)

The polynomial r is sometimes called reduction polynomial
since it constrains the maximum degree of the result b ∈
Fq [x]. Because r is irreducible, it is guaranteed that a(x) ·
b(x) does not equal r(x). This ensures that the reduction
does not reduce a polinomial to zero and therefore that the
multiplication result is–except for commutativity–unique.

Data words of n bit length are expressed as polynomials
a ∈ Fq[x]. A vector a ∈ F k

q [x] is used as representation of
a data packet of length kn bit. A generation of N source
packets can then be written as matrix A = [ai . . . aN ]. A
coded packet is obtained by

b = Ac =

N∑

i=1

ciai, (4)

where cT = [c1 . . . cN ] ∈ FN
q [x] denotes a vector of random

coefficients which are drawn independently uniformly dis-
tributed from Fq[x].

3. THE HARDWARE USED
Feature Apple A7 Exynos5

Frequency 1.4GHz 1.4GHz
Cores 2 4(+4)
L1 Cache 64 kB/64 kB 32 kB/32 kB
L2 Cache 1MB/ 2MB

Table 1: The hardware specifications of the devices
used. Apple specification extracted from [1] and [3],
while the Exynos5 specifications are from [4]

The Apple A7. The device used for the benchmarks that
are newly made for this paper is an Apple iPad Mini, sec-
ond generation. This device is used because at the time
this paper is written (September 2014) the Apple A7 is the
only commercially available processor with an ARMv8 and
therefore an 64bit ARM architecture. There are different de-
vices that use an Apple A7 processor, but the frequency the
processor runs on does not differ much between the devices
(1.3GHz to 1.4GHz). The frequency on the iPad matches
the frequency of the board used for comparison.

The problem imposed by using a device with an Apple A7
is that Apple has not published much information about the
processor’s specification or even its frequency. Fortunately,
others are interested in the technical specification of these

Seminars FI / IITM WS 14/15,
Network Architectures and Services, March 2015

46 doi: 10.2313/NET-2015-03-1_07



devices as well. Anandtech has published an article, about
the iPhone 5s and later the iPad Mini, which both use the
same Apple A7 SOC, analyzing the processor specification,
of this platform. The information in 1 is extracted from
those articles.

The Exynos 5 Octa. The device used for comparisons in
this paper, is a ODROID-XULite development board. Table
1 displays the specification of this device.

The Exynos5 Octa follows the ARM “big.LITTLE” system
and actually has 4 ”big” cores and 4 ”small” cores, but only
one of these groups is active at a time. This benchmark was
always executed on the faster cores. The core-count itself,
however, does not really have an impact on the results since
the library is single-threaded.

Looking at raw numbers, the two processors are similar for
this benchmark. The A7 has twice as much L1 cache as the
Exynos, but the Exynos has twice the L2 cache. The two
big differences between the two platforms are the core count
- 2 to 8 or rather 4 - and the register width of the processors.
But as mentioned before, the advantage in core-count does
not matter for this benchmark since it is aimed at single-
core throughput, and the difference in word width is one of
the main points why those platforms are compared to each
other.

4. THE ALGORITHMS
For a base performance to compare against, a simple table
lookup algorithm is used. For this table lookup all possible
products of two elements of the Galois field are precomputed
and saved in an array. The multiplication is then done by
retrieving those values from the array.

The imul [4] algorithm does not require SIMD extensions
and can therefore be implemented using only general pur-
pose registers. It can also benefit from wider SIMD registers
if available. It is suitable to run on microarchitectures that
does not have SIMD extensions. The downside to this al-
gorithm is that it scales badly with the degree of the finite
field used. The library contains different implementations of
this algorithm, which differ in the register size used. There
is a 32 bit version and a 64 bit version. Both those versions
only use general purpose registers. There is also a version
using SIMD registers and instructions. Those registers are
at least 64 bit–128 bit on both platform used in this paper.

The shuffle [4] algorithm benchmark results are not consid-
ered in this paper since the benchmark for the iPad has to be
built, with the Apple-llvm compiler, which currently does
not support the intrinsics used for this algorithm. (Septem-
ber 2014)

5. MEASUREMENTS
The linear encoding throughput is compared using a gen-
eration size of N= 16. The throughput is defined as the
total size of encoded packets over a time interval measured
in Gbit/s. The benchmark is done for packet sizes rang-
ing from 128B to 8MB. As baseline performance the table
lookup is used. The packet size has a significant impact on
the performance since there is overhead that has to be done
for every packet. This overhead amortizes for larger packets.

Therefore, a larger packet size yields a higher throughput.
This general assumption holds true until the memory re-
quirements of the working set exceed the cache sizes.

When the cache sizes are reached, the throughput becomes
limited by memory performance. Figures 1a to 1d show the
performance of the Apple A7 compared to the Exynos5 in
GF(2) and GF(22). Generally speaking, the A7 is about 2 to
3 times faster than the Exynos5. This rule of thumb is not
true for every packet size and at its peak the Exynos5 is even
faster than the A7. The change in throughput for varying
packet sizes is rather similar for both processors used.

As expected, the throughput increases until the memory re-
quirements of the working set hit the L1 cache limit. After
this point the throughput remains about the same until the
memory required for the working set hits the size of the
L2 cache. At this point there is a second degradation in
throughput, since main memory performance now has an
effect on the algorithms. This degradation of throughput is
most visible in the NEON implementation. The Exynos5s
performance drops drastically to about half its value. The
A7s memory does not throttle the performance as signif-
icant, but the impact is still visible. A bigger difference
between the two platforms is visible when the difference be-
tween the 64 bit and the 32 bit on a single platform imple-
mentations is analyzed. On the Exynos5 the imul 64bit is at
best as fast as the imul 32bit or even slower. This is caused
by the lack of native 64bit operations, which cut the per-
formance on 64bit numbers at least in half. The A7, which
has support for native 64bit operations, shows that this as-
sumption is correct. On the A7 , the throughput behaves
comparable to the results [4] got on x86_64. Namely the
imul 64bit algorithm is about 1.5 times to twice as fast as
the imul 32bit. This performance increase is possible be-
cause the CPU is able to process twice the amount of data
per instruction than it can process in a single instruction on
32bit registers. This advantage gained by using larger regis-
ters is visible by looking at the imul NEON implementation
as well. This implementation uses NEON SIMD extensions
and therefore has 128bit wide registers, which makes it an-
other 1.5 to 2 times faster than imul 64bit.

Figures 1e to 1h show the benchmark results for GF(24)
and GF(28). In these larger fields the throughput does not
change as much with packet size. It seems like the through-
put gets more consistent with the size of the finite field the
arithmetic is done in. The A7 shows nearly no change when
it hits the cache sizes. Because the throughput gets more
limited by the CPU performance and less by memory perfor-
mance. The impact on throughput by exceeding cache size
gets less significant for larger field sizes on the Exynos5 as
well even though, it isn’t as good as on the A7. The differ-
ence between the two processors does not divert much from
the observations made for smaller field sizes. The A7 is still
about 2 to 3 times faster and benefits from 64bit general
purpose registers when possible.

Next to the cache limits, another interesting packet size is
1024Kib, especially in comparison of the two processors.
The A7 has an unusual big drop in throughput here while
the Exynos5 has an irregular increase of throughput at this
point. So far there is no conclusive explanation for this

Seminars FI / IITM WS 14/15,
Network Architectures and Services, March 2015

47 doi: 10.2313/NET-2015-03-1_07



anomaly on either of the platforms.

6. REMARKS
[4] concluded, that the trend to heterogenous microarchi-
tectures where both CPU and (integrated) GPU access the
same memory might bring a similar gain when low level
arithmetic is outsourced to the graphics processor.

It seems that there is an SRAM cache on the A7 SOC [2],
that may be also accessible by the integrated GPU. For now
this is guesswork and there is no easy way to prove and or
test since Apple does not release any information about the
SOC. But potentially this may be used to transfer data to
and from the GPU and bypass the usual high overhead in-
duced by memory transfer from CPU to GPU, which makes
these operations on GPU, far more viable.

Something interesting to note about the two platforms com-
pared in this paper is, although with different frequencies
both of the platforms have an actual real live use case and
those use cases are rather similar: they have been used as
SOC for a smartphone. The Apple A7 is also used in the
iPhone 5s and the Exynos5 is used in one version of the
Samsung Galaxy S4. Both have been released in 2013 and
competed on the market. Comparing the two platforms with
this benchmark is not fair, since the benchmark only uses a
single core and the Exynos5 which is significantly slower in
this paper has more cores.

7. CONCLUSION
With scalar implementation on general purpose registers
all field sizes larger than GF(22) are limited to less than

1Gbit/s on the A7. Using SIMD extensions GF(24) reaches
1Gbit/s. The performance of the imul NEON is about twice
the performance of the imul 64 bit. The shuffle algorithm
provided by libmoepgf cannot be used for a benchmark on
the A7 yet. This algorithm outperforms the imul implemen-
tations on all tests performed [4]. It will be interesting to
see whether or not the shuffle algorithm outperforms the
algorithms on the A7 as well, and, if it does, what kind of
performance it achieves on the A7.

References
[1] Anandtech: The iPhone 5s Review,

http://www.anandtech.com/show/7335/the-iphone-

5s-review/3

[2] Anandtech: The iPad Air Review,
http://anandtech.com/show/7460/apple-ipad-

air-review/2

[3] Anandtech: The iPad Air Review,
http://anandtech.com/show/7460/apple-ipad-

air-review/3

[4] Stephan M. Günther, Maximilian Riemensberger, Wolf-
gang Utschick: Efficient GF Arithmetic for Linear Net-
work Coding using Hardware SIMD Extensions

[5] D. Hankerson, A. Menezes, and S. Vanstone: Guide to
Elliptic Curve Cryptography, 1st ed., Jan. 2004.

[6] Shuo-Yen Robert Li, Senior Member, IEEE, Raymond
W. Yeung, Fellow, IEEE, and Ning Cai: Linear Net-
work Coding, IEEE transactions on infromation theory,
vol. 49, no. 2, february 2003

Seminars FI / IITM WS 14/15,
Network Architectures and Services, March 2015

48 doi: 10.2313/NET-2015-03-1_07



0.25 KiB 1 2 4 8 16 32 64 256 1024 4096
0

1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0
11.0 L1 L2

XOR NEON
XOR 32 bit
XOR 64 bit

(a) GF(2) on A7

0.25 KiB 1 2 4 8 16 32 64 256 1024 4096
0

1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0
11.0 L1 L2

XOR NEON
XOR 32 bit
XOR 64 bit

(b) GF(2) on Exynos5

0.25 KiB 1 2 4 8 16 32 64 256 1024 4096
0

0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2
3.6
4.0

L1 L2 imul NEON
imul 64 bit
imul 32 bit
table lookup

(c) GF(22) on A7

0.25 KiB 1 2 4 8 16 32 64 256 1024 4096
0

0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2
3.6
4.0

L1 L2
imul NEON
imul 64 bit
imul 32 bit
table lookup

(d) GF(22) on Exynos5

0.25 KiB 1 2 4 8 16 32 64 256 1024 4096
0

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0 L1 L2 imul NEON

imul 64 bit
imul 32 bit
table lookup

(e) GF(24) on A7

0.25 KiB 1 2 4 8 16 32 64 256 1024 4096
0

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0 L1 L2 imul NEON

imul 64 bit
imul 32 bit
table lookup

(f) GF(24) on Exynos5

0.25 KiB 1 2 4 8 16 32 64 256 1024 4096
0

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0 L1 L2 imul NEON

imul 64 bit
imul 32 bit
table lookup

(g) GF(28) on A7

0.25 KiB 1 2 4 8 16 32 64 256 1024 4096
0

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0 L1 L2 imul NEON

imul 64 bit
imul 32 bit
table lookup

(h) GF(28) on Exynos5

Figure 1: Encoding throughput [Gbit/s] for packet sizes varying from 128 B to 8MiB in a generation of size 16
on Apple A7 (left) and Samsung Exynos5 Octa (right) both at 1.4 GHz with marks for both L1 and L2 cache
sizes.

Seminars FI / IITM WS 14/15,
Network Architectures and Services, March 2015

49 doi: 10.2313/NET-2015-03-1_07


