
Self-Healing in Self-Organizing Networks

Oliver Scheit
Betreuer: Tsvetko Tsvetkov

Seminar Innovative Internettechnologien und Mobilkommunikation SS2014
Lehrstuhl Netzarchitekturen und Netzdienste

Fakultät für Informatik, Technische Universität München

Email: oliver.scheit@tum.de

ABSTRACT

Self-Organizing Networks are a way to manage the increasing

number and complexity of current mobile networks. They provide

functions to automatically configure network elements allowing

for faster installation of new network elements. The domains SON

also include the ability to self-optimize the network parameters

and to detect and solve problems. The detection and diagnosis of

degraded network elements is based on performance indicators

provided by the individual network element. The diagnosis

furthermore requires the combination of the knowledge of the

correlation between the performance indicators and the

corresponding faults. This paper shows an example framework

that implements the detection and diagnosis of faults and provides

an example of a SON-function that can find conflicts during the

self-automated processes.

1. INTRODUCTION
Due to increasing complexity seen in today’s networks, methods

to efficiently manage them have to be introduced. One way to do

so is to automate various parts of the system and create a so called

“SON”, short for self-organizing network. The goal of a SON is to

configure, maintain and self-heal parts of the system based on

information the system gathers itself, without needing manual

assistance from the systems operator.

One usage area of SONs is mobile communication, in particular

LTE (long term evolution), where a large amount of Base Stations

are required for coverage purposes. Deploying a bigger number of

network elements however means that there is a higher chance of

failure in the systems network. This is the reason self-healing of

self-organizing networks was introduced as a requirement for LTE

by 3GPP, the 3rd Generation Partnership Project, to automatically

identify faulty behavior.

This paper aims to give a short summary about the general idea

and the domains of self-organizing networks and a more detailed

overview about the self-healing aspect of SONs based on LTE

network deployment. This includes the detection of a faulty

element and the diagnosis of the root problem.

The document is structured as follows: in Section 2 self-

organizing network domains will be explained and the benefits of

automation will be shown. Section 3 will detail the general self-

healing idea. Section 4 gives an insight into detection of degraded

network elements and Section 5 will show different ways to

diagnose the root-cause of problems in the network. Section 6 will

show case how to implement an automatic self-healing

framework. In Section 7 a SON-function to detect problems in the

self-optimization process is outlined and Section 8 shows other

possible uses for SONs. Section 9 will then conclude the paper.

2. SELF-ORGANIZING NETWORKS
Modern mobile communications networks tend towards end nodes

with smaller range to be able to serve users with higher bandwidth

and more stable connections, this drastically increases the amount

of network elements to be deployed and maintained. Configuring,

optimizing, monitoring and troubleshooting all individual cells

therefore is an unpractical, if not impossible, task for the networks

operator. To provide an efficient cost-effective network these

tasks have to be at least partly automated so that the operator only

has to supervise the parameter provided to him by the system and

the SON processes. Such a self-managing network is commonly

referred to as a self-organizing network. In mobile

communications the domains of a SON include self-configuration,

self-optimization and self-healing of the systems elements. [3]

2.1 Self-Configuration
To be able to efficiently install new hardware or software the

deployment of network elements should be a “plug & play”

system in which cells automatically download the necessary setup

information and adapt to their environment. The SON self-

configuration enables the system to add new elements to the

existing network in real-time. The auto configuration sets up

physical parameters like Physical Cell Identifier, transmission

power and antenna tilt. In addition it is responsible for neighbor

discovery and handover parameters. [3]

2.2 Self-Optimization
The goal of self-optimization is to find the most efficient

parameters for a network at any given time. If the network

environment changes over time, the system has to reconfigure

parameters accordingly.[3] Some examples of self-optimization

are

 Mobility Load Balancing (MLB) which enables cells to

redirect part of the user generated traffic to neighboring

cells. This allows the load to be evenly distributed

across cells giving customers a better throughput and

allowing an improved user experience. MLB also

increases the overall capacity of the network and helps

avoiding a congested cell while neighboring cells are

unused.

 Energy saving allows cells to be deactivated during

times of low traffic to reduce the power consumption of

Seminars FI / IITM SS 2014,
Network Architectures and Services, August 2014

175 doi: 10.2313/NET-2014-08-1_22

the network without impairing the overall network

performance.

 Mobility Robustness Optimization or MRO. This

function aims to minimize intra-LTE handover failures

or unnecessary handovers to other radio access

technologies. Typical scenarios include handovers

initiated too early/late or to wrong cells.

 Inter Cell Interference Coordination enables cells to

coordinate their signals to decrease interference i.e. cell

A uses the lower part of the channel bandwidth while

cell B uses the upper part

All of the functions above can be implemented as decentralized

functions in each network element. [2]

3. SELF-HEALING
Self-healing is the least researched of the self-organizing

functions as it is the most complex of the SON domains.

Nevertheless it is still an important part of self-management as

even though the network won’t be able to recover a physical

damaged cell, it can help identify which network element is not

functioning as expected. The self-healing processes should

contain:

 Alarm correlation, a diagnosis process triggered on

alarms that tries to find the root cause of the alarm. If an

possible cause is discovered, an automatic recovery

action can be started to try to resolve the problem

 Sleeping cell or cell degradation detection, locate cells

that don’t transmit faults/alarms but still do not perform

as planned

 Cell Outage Compensation; reconfigure neighbor cells

temporarily to compensate the failure of another cell.

3.1 Self-healing use cases by 3GPP
The 3GPP, 3rd Generation Partnership Program has therefore

defined sell-healing use cases.

Self-recovery of Network Element software: try loading an

older software version or configuration to solve faults. This can be

done multiple times until you reach a certain amount of tries. The

process will then inform the IRP-Manager if the recovery was

successful or not.

Self-healing of board faults: discovery of malfunctioning

network element hardware. If there is a redundant hardware

element the cell will try to activate the backup. If there is no

redundancy and there is a loss of radio services, cell outage

management will be started. The use cases for cell outage

management include:

Cell outage Detection: The System detects a degraded,

out-of-service or a “sleeping cell”. A cell that does not

serve user equipment with requested data even though

users are connected to the cell and that does not raise

any alarms to indicate the malfunction. To detect these

kind of problems so called performance indicators are

observed and irregularities are reported to the operator.

Cell outage Recovery: Based on the diagnosis an

available recovery action is performed to restore the

systems normal capabilities and the results will be

reported.

Cell Outage Compensation: as stated above, the

network reconfigures itself to compensate for potential

coverage holes created by the failure.

Return from Cell Outage Compensation: After the

fault has been resolved the cells that took part in the

compensation process have to return to their pre-fault

state to ensure the optimal configuration state.

3.2 3GPP self-healing process
The proposed general self-healing process is structured as follows:

An input monitoring function continuously checks whether a

performance indicator has violated its corresponding threshold. In

case one or more did the associated self-healing process will be

triggered. The process will then gather additional system

information like performance indicators, system variables, test

results and radio measurements. See chapter 4 for a more detailed

explanation about the detection process. With this aggregated data

an analysis function is started to detect the root cause of the

problem. Depending on the result of the diagnosis, i.e. was a there

a problem at all, corrective action is taken if the problem can be

solved through a SON-function. It is advisable to back up the

system configuration prior to executing the SON process

however. Afterwards an evaluation of the new system state is

initiated to see whether the problem has been resolved or not or

even if the new configuration created new problems. These steps

are repeated until the fault is solved or stop conditions i.e. a reset

counter is fulfilled. The result of the self-healing process will be

monitored by the Self-healing and Monitoring function that has

access to data of all of the above mentioned process and allows

the operator to control the execution of the self-healing process.

[3]

3.3 Cell degradation management
Cell Degradation management is one of the most important parts

of the self-healing process. Detection and Diagnosis of faults can

reduce the costs for the operator and help improving the user

experience.

The typical problems found in cellular networks are hardware or

software faults, planning and configuration faults and

environmental changes. Without SON functionality the

degradation detection is only partially automated. The system will

check itself for alarms, once an alarm is found the most common

attempt to fix the cell is to reset it. If the problem is not resolved

after a given number of resets the system will alert the operations

department. The element will then be investigated remotely, in

case this does not help solve the problem a technician will have to

inspect the cell on-site and possibly replace hardware elements or

the whole cell. Not all cell degradations cause alarms however, to

see if a cell is working in an efficient, optimal way the

optimization department will have to assess additional parameters

provided by the cell. These are called KPI or PI, (key)

performance indicators. To find malfunctioning cells thresholds

for these parameters are set that should not by violated i.e.

percentage of dropped calls. Base stations that breach the allowed

limit or that show the biggest change in performance from one

time period to another will then be selected for further

investigation. [3]

Seminars FI / IITM SS 2014,
Network Architectures and Services, August 2014

176 doi: 10.2313/NET-2014-08-1_22

3.4 Cell outage compensation (COC)
Cell outage compensation is one of the most crucial parts of the

self-healing use cases. After the detection and diagnosis of a

faulty network element neighbor cells will be configured to partly

provide coverage for the area of the broken cell. The COC will be

triggered when it is clear that the loss-of-service will persist for a

prolonged period of time. To be able to do this several parameters

of the neighboring nodes can be tweaked like antenna tilt,

transmission power, beam forming and shaping. Since it is

desirable to recover the service in the area as fast as possible to

minimize user complaints the COC process will not try to find

optimal parameters and settle for providing coverage in the

affected area as fast as possible. After the COC process is finished

additional self-optimization algorithms can be executed to find

optimal settings for the new network environment. [3]

4. DETECTION OF DEGRADATIONS
The detection of faulty hardware or performance degradations

plays an important role in the self-healing domain. Being able to

reliantly detect problems in cells allows for faster diagnosis and

reduces human resources. The detection algorithm does not equal

the diagnosis process. Detection focuses on finding anomalous

behavior and triggers an alarm if it found an unusual system state.

The diagnosis process then gathers the information provided by

the detection and concludes whether this is an actual fault or

normal system behavior. The detection of degradation is based on

event counters, KPIs and alarms. The process will determine if the

provided performance indicators are in an acceptable range i.e.

“healthy”. As these performance indicators are usually

stochastically distributed statistical methods to define a healthy

state have to be found. To do so you can create profiles for each

of the KPIs that describe a range of normal, expected behavior. A

KPI that leaves this range could point to degradation in the

network performance. This approach has the advantage that the

operator can define states that are normal and does not have to

define states that are degraded, as these are often hard to define

and statistically seen rather rare in overall network lifetime. The

profiles can be split into three basic categories:

 Absolute threshold: this profile defines a threshold that

should not be violated. Therefore the KPI should not

exceed or fall short of. Examples for values that should

not be exceeded are fault or failure rates like call drop

ratio. An example for a rate that should not fall below a

certain threshold would be the handover success ratio.

See Figure 1

 Statistical profile: This profile defines an acceptable

upper, maximum threshold that should not be exceeded

and a lower, minimum threshold. These profiles can

define a mean and it corresponding standard deviation

that should not be violated. This profile can be

symmetric or asymmetric. See Figure 2

 Time dependent profile: Much like the statistical profile

there is an upper and a lower threshold that the KPI

should comply with. The difference is that these

thresholds fluctuate with time, meaning that acceptable

borders will change during the time period. These

profiles are typically user driven, e.g. traffic generated

in the system. See Figure 3

While most of the task mentioned above, are already done

automatically, the process to define what is faulty behavior and

what is normal, but until now not encountered behavior has to be

further refined to improve the accuracy of the fault detection.

There are two different approaches for the anomaly detection. The

first is the univariate, here a single performance indicator is

observed and its specific distribution is considered to decide if it

is in an acceptable range of its past mean and deviation.

A drawback of this approach is that unusual behavior can be,

depending on the profile, declared as a faulty behavior even

though the cell is working fine. The other possible method is the

multivariate anomaly detection where, as the name suggests,

multiple performance indicators are considered and compared

against each other to determine if the cell is working correctly. In

this approach the performance of the cell as a whole rather than

single KPIs can be evaluated, which makes it more reliable at

avoiding false alarms.

The quality of a detection algorithm can be classified by several

grades, as shown in [3]:

 The first is the detection accuracy, which gives an

indication about the reliability of the detection

algorithms. The goal of the detection process should be

to have a high level of true negatives, i.e. no fault no

alarm and true positives, i.e. a fault has occurred and an

alarm was triggered and to avoid false negatives or false

positive, i.e. an alarm was trigger even although there

was no fault or worse there was a degradation but it was

not detected by the process.

 Detection delay is the amount of time passed between a

fault appeared and the detection of it. The faster the

detection works, the faster the problem can be resolved

or at least compensated.

 Other relevant metrics for operators may include

severity indication accuracy that gives the operator an

Figure 3: time dependent profile [3]

Figure 2: statistical profile [3]

Figure 1: absolute threshold [3]

Seminars FI / IITM SS 2014,
Network Architectures and Services, August 2014

177 doi: 10.2313/NET-2014-08-1_22

estimation of the overall severity of the degradation so

that he may schedule maintenance accordingly. The

detection process should give a reliable estimate of the

severity, because simpler less performance impairing

faults do not have to be resolved immediately, whereas

grave faults like cell outage might need fast corrective

action. Signaling Overhead describes the network load

produced by the detection process between the

individual cells, the cell and the network management

and the cell and user devices, e.g. User equipment

measurements.

 The last metric is the Processing Overhead, i.e. the

amount of processing time needed for the detection

algorithm. This typically depends on the amount of

input data and can be exponential which poses a

problem for network elements small processing

capabilities.

5. CELL-DEGRADATION DIAGNOSIS
While the detection of problems in the network is at least partially

automated nowadays the diagnosis of the corresponding root

cause is still a manual task carried out by troubleshooting experts

with years of experience. The general troubleshooting process

starts with a notification of the expert by the detection system.

The experts will then gather additional performance indicators

and identify possible root causes for the problem. In case the

problem can’t be identified by these means a drive test will have

to be performed on-site. An increase in network elements however

makes manual troubleshooting a time intensive and cost expensive

task for operators.

The complete automation of this process is the key goal of self-

organizing networks. A self-healing system would require less

maintenance and less troubleshooting personnel to manage bigger

systems than before.

The challenge is to build a system that, like a human, can make

decisions based on prior knowledge and can use its observations

to include new similar cases to its database. To do so the system

will have to learn a few basic symptom – root cause relations from

existing human knowledge, this phase is called the learning phase

of the diagnosis system. The next phase would be the assistive

phase, where the diagnosis process would inform the

troubleshooting expert about the most probable cause of the

problem, but the execution of recovery action would still be done

by the human operator. The root cause diagnosis will then be fine-

tuned by knowledge of the troubleshooting expert. The last phase

would be a completely autonomous system where the human

operator only supervises decisions done by the self-healing

process.

The critical component of this system is mapping symptoms to

their respective root cause in an efficient, but reliant way. There

are several ways to implement this association; some examples

will be explained in short in the following sections, a more

detailed view on these can be found in [3].

5.1 Rule Based Systems
The easiest way to implement this diagnosis is the rule based

system. Every set of symptoms A is mapped to the root case B in a

simple “if (A) then (B)” style of rules. Obviously a rule based

system is easy to train as new fault cases can added as a new rule

set. This system is very similar to human reasoning and easy to

understand. It also proved to work efficiently in smaller

deterministic environments, but the huge number of different

parameters in mobile networks and their linked nature make these

systems hard to fine-tune to effectively find problems in mobile

networks. Additionally symptoms cannot always be associated to

a single root cause, but with a probability. Rule based system only

allow one specific case for a set of input parameters.

5.2 Bayesian Networks
Based on Bayes’ theorem this system is able to include the

uncertainty included in the performance indicators. Every root

cause can be mapped to different symptoms and every symptom

can be linked to different root cases. These links however do not

always appear with the same frequency, thus they can be

expressed with probabilities. The whole Bayesian network can be

visualized by an acyclic directed graph to give a better overview

of the individual dependencies for the operator. Since the

direction of the tree does not matter operators can build the graph

from the top-down. This means he can define new root-causes and

add the accompanying symptoms, turning this into an easy to

maintain and improve diagnosis system. The problem with this

model however is that for each parent node several probabilities

for its child nodes have to be defined. These probabilities are not

always obvious or can be determined with the required knowledge

for the system to work with the desired accuracy. Furthermore

with a growing number of nodes the size of the conditional

probability table grows exponentially in its size making it

inefficient to compute and maintain. The Bayesian model can be

simplified by two different models one is the naïve model, where

only one root cause can be present each time. This simplifies the

model because symptoms cannot be associated with multiple root

causes which in turn decreases the amount of processing power

required. The noise-or model allows multiple root-causes. It

reduces the amount of space needed for the conditional

probability table from 2n to n by representing every root cause as a

binary node that either exists or not. Than the system will measure

the individual contribution of the root cause to each symptom.

5.3 Case Based Reasoning
Bayesian Networks heavily rely on the distribution of faults to

determine the root-cause, but during normal operation of a

network element these fault cases should be rather rare. This

makes finding a correct probability for the conditional probability

table nearly impossible as reliable data on faults cannot be

provided or the statistical sample is so small that even minor

deviations can trigger false alarms. Case Based Reasoning

therefore tries to classify normal operation and will only react if

there is a deviation from this “healthy” state of the cell. The basic

idea behind a CBR system is to continuously build on the fault

states already discovered by the system. The system starts with no

knowledge of fault cases and monitors the performance indicators

for anomalies, if an anomaly is found it tries to solve the problem

by looking at previously encountered fault states with identical

KPI levels and tries to solve the problem accordingly to previous

solutions. If the root case was found and the problem was solved

the system adds this new case with the associated parameters to its

fault database. In case the problem was not resolved the system

informs an operator to troubleshoot the cell. The result of this

manual troubleshooting process will then be added to the existing

cases creating an ever growing database of root cases with their

respective symptoms.

Seminars FI / IITM SS 2014,
Network Architectures and Services, August 2014

178 doi: 10.2313/NET-2014-08-1_22

6. AUTOMATIC DETECTION AND

DIAGNOSIS FRAMEWORK
This Section will give a closer look into the working of an

automatic detection and diagnosis framework proposed by

Nováczki et al[4] and the exact mechanics behind the system. The

system should be able to integrate into existing network

environments without having to perform major modifications in

the existing network. Additionally it has to be able to adapt itself

to the existing system and its performance indicators and other

available parameters. It is similar to case based reasoning, with

the difference that it does not try to resolve issues by comparing it

directly to older cases, but by assigning KPI footprints to so called

targets and comparing these reports with the current

measurements gathered by the system.

6.1 Detection
Instead of defining thresholds for variables that generate a binary

result for the diagnosis algorithm, i.e. fault yes or no, a way to

transform the KPI value into a continuous number in the range

from 0 to 1 is proposed. Where 0 means perfectly healthy

behavior and the 1 is asymptotically approached as the KPI state

decreases. To build a profile of the KPI n consecutive samples xi

of the KPI are averaged to build one sample ai. The KPI variable

corresponding to the performance indicator K is called K*. The

profile will then be built using the mean and variance of the K*.

Assuming the xi are independent and identically distributed the

variable K* should be normally distributed with

K*
n→∞ ~ Ɲ(μ(K*), σ2(K*))

As a general example n should be bigger than 40 and more than k

> 20 samples should be used, if the samples are not correlated. If

the samples are correlated more samples are needed. After the

profiling process has been completed, the current state of the KPI

called X(K) is computed using the average of the latest n samples

of the variable K*. This current mean X(K) can then be transformed

into a standard normal variable

Z(X) = (X(K) – μ(K*)/σ(K*))

Where μ is the mean of the variable, this means the expected

value and σ is the root of the variance the variable shows. The

variance is the expected deviation from the mean.

After creating the profile K* and current state X(K) of the KPI, a

level function to evaluate the state and transform it into a number

in the range from 0 to 1 has to be defined. The level of the KPI

will be denoted by φ(K). The evaluation will be based on the

desired thresholds of the KPI profile, i.e. upper threshold, lower

threshold or both and the number of standard deviations -C

allowed to result in the KPI level of 0.5. An acceptable upper

threshold will be φ+(K) meaning that the KPI can decrease but

should not increase. φ-(K) is the opposite where an increase in

KPI levels is acceptable. Finally φ±(K) where neither an increase

nor a decrease of the KPI level is desirable. The resulting

functions are:

φ+(K) = Φ (C + Z(K))

φ- (K) = Φ (C − Z(K))

φ±(K) = φ+(K) + φ- (K)

Where Φ is the cumulative distribution function of Ɲ(0,1), i.e. the

standard normal distribution. The advantage of this approach is

that the function does not check for a single violation of a

threshold, but for a constant continuous decrease in the overall

KPI performance. It also provides a uniform level function for all

KPIs without the operator setting specific thresholds for single

KPIs. The problem with this definition of a profile however is that

most performance indicators are user behavior dependent,

meaning that the profile has to adapt to different user behavior in

different time periods of the day. Using a profile with a large

standard deviation proves impractical as it impairs the detection

process, therefore constructing different profiles for different time

slots should be created. Too get a mean of a specific time t you

can interpolate the means of the times t1 and t2 using a standard

linear interpolation function. [4]

6.2 Diagnosis
Now that the detection of KPI levels has been defined the actual

mapping of the levels to Targets has to be created. Targets can be

corrective actions or root cases. This mapping is called a report.

Each time a fault with the same symptom appears an identical

report will be created and added to a database so that the

frequency of a target can be measured as well. These reports can

either be created by an expert for the system or added based on

the solution of previous faults occurring in the network. Each

report contains the subset of KPIs that were observed and the

target that was analyzed by the specific report. There is a special

target T0 which means that the system is working perfectly healthy

and its report R0 that contains an empty set of KPI and the target

T0. No other report however is allowed to have an empty set of

KPIs.

In order to find targets the system continuously monitors the KPIs

and the “winning” target is the one that matches the most KPI

states based on reports previously acquired by the system.

Because not all KPIs are relevant to a target and not all reports for

a target have the same KPI subset a likelihood function is

introduced to evaluate which performance indicators are actually

relevant to the target. This likelihood function is denoted as lT(K)

and shows the relevance of the KPI. It is calculated by dividing

the number of reports for target T that contain the KPI K through

the overall number of reports for T. A likelihood of 0.5 means that

the observed KPI was present in half of the reports for T

rendering it useless as an indicator for T, because it does not

appear to be linked to the target.

This can be further refined by balancing the KPI with a

consistency function cf(x) = 2 * |x – 0.5|. This consistency

function gives a weighted relevance of the KPI to a target. If the

KPI K likelihood is close to 0 or to 1 for a Target Ti the KPI will

have a high relevance, since you can say that whenever K is

absent or present the target Ti is present too. To be able to

compare different targets you have to quantify a score that is

dependent on the KPIs. The score of a single KPI s(K) towards a

the Target can be realized by multiplying the consistency function

with a hamming distance:

dT(K) = φ(K) if lT(K) ≥ 0.5 , else 1 – φ(K)

The overall score of a target is the score of all KPI scores for T:

S(T) = ∑ s(Ki).

In case two targets T1 and T2 end up with the same overall score,

the target with the higher overall number of reports will get the

priority.

Due to the consistency contradictory reports should be checked as

they can cause the KPI scores to become close to zero giving the

Seminars FI / IITM SS 2014,
Network Architectures and Services, August 2014

179 doi: 10.2313/NET-2014-08-1_22

target a lower score in the future. Contradictory results may also

be an indication that there is an unknown error that should be

investigated and added to the database. [4]

6.3 Integration into the Network
In general not all KPIs will be kept live to keep the amount of

data an element creates to a minimum level, therefore not all KPIs

should contribute to the initial detection of a problem. These

inactive KPIs however could contain relevant data to the solution

and need to be considered during the diagnosis. To resolve the

problem an update of these KPIs is needed and should be initiated

by the system. This is called an active measurement; they can be

useful if a conclusion between different targets cannot be reached

by the initial diagnosis process. In case the active measurement

can’t be initiated by the system itself it should notify a

troubleshooting expert with an alarm that an active measurement

is required to resolve a problem. To find the most suitable KPI

that will most likely resolve the stalemate the KPI with the

maximum likelihood for one of the two cells should be

considered, as it will most likely be the most impacting on the

overall score of the respective targets.

One advantage of the proposed framework is that it can, identical

to case base reasoning, start with an empty knowledge base on

targets and add targets and their corresponding reports during its

lifetime. This means that the operator only has to initially do the

troubleshooting process and can let the system take over if it has

enough targets and reports to guarantee optimal operation. The

management of the expert knowledge generated by the system

could be stored on a management server and set to synchronize

regularly with the cell to keep the information up-to-date. It would

also enable the troubleshooting expert to edit the reports and add

a root cause to help the system. [4]

6.4 Possible improvements to the system
To further reduce the amount of human interaction required by the

system an extension to this system can be made where the

operator only has to specify time slots where normal operation

was detected. The framework can then implement a so called two-

sample Kolmogorov – Smirnov test, that can compare two random

distributions to check whether they have the same distribution or

not.

Therefore it compares the empirical cumulative distribution

functions, ECDF, and computes the maximum distance between

these two functions. See Figure 4. [5]

Figure 4: ECDF – comparison [5]. D is max{D+;D-}, D- is the max

distance of ECDFA > ECDFB. D+ the max of ECDFB > ECDFA

The ECDF is the cumulative addition of the probabilities over all

events. Therefore the ECDF ranges from 0 to 1.

The distribution of a KPI profile is its corresponding ECDF

function, which means that an ECDF will have to be computed for

every KPI that will be considered in future diagnosis processes.

The operator now only has to mark the time slots in which the

KPIs and the overall system operation were considered “healthy”.

The input is then divided into fragments. For each of these

fragments the ECDF is computed and saved as a possible profile

candidate. To reduce the number of profiles only the most

representatives are stored however. Then a process starts to find

the minimum number of profiles that cover all the profile

candidates. If a profile covers a candidate is decided as presented

earlier by the two-sample Kolmogorov-Smirnov test. [5]

To detect if one PI shows unusual behavior its latest N samples

from the observation window are taken and the Actual-ECDF of

the PI is computed. The detector then computes the maximum

distance of this A-ECDF from all the profiles in the database of

this particular PI. The minimum distance will be considered as the

best matching example and it will be compared to a similarity

threshold. Distances below this threshold can be defined as

“healthy” operation, since fluctuation in parameters is normal to a

certain level. Since there are different thresholds for each PI

different methods to compute the distance will be used.

 Success Indicators: if the values are higher than

expected there is no fault present to therefore the

distance of the lower side will be use D-
 (Figure 4)

 Failure Indicators: Values should not fall below a

certain threshold. The relevant distance is the high

sided D+

 Neutral: Values should be between a certain range

which means that both distances will be considered in

diagnosis

An unknown distribution can either mean normal operation that

differs from all profiles gathered before or the system is in a

faulty state. This has to be decided by the operator that marks this

new distribution as a new error or normal behavior. [5]

7. SON-FUNCTION COORDINATION
Several SON-functions might interfere with each other at run-

time, e.g. the SON MRO (mobility robustness optimization) and

the CCO (coverage and capacity optimization) where the MRO

might try to resolve handover failures, but these failures are

caused by a coverage hole, for which the CCO function would be

responsible. To prevent this hierarchies of priorities could be

introduced for SON-functions, but this could lead to deadlocks

where a high priority function which is unable to fulfil its goal

blocks a low priority function that could have resolved the

problem. Another approach however is to implement another

SON-function that monitors the execution of the other functions

and tries to find locks in which no improvement in the network is

seen, even though parameters are constantly adjusted. This

function can be called a SONOT (SON Operational

Troubleshooting) that has two main aims, to monitor the

execution of other functions and find unresolvable problems and

to help resolve the problem automatically.

To detect a problem with a SON-function different approaches

can be used a state-based approach that only considers the current

system state and a history based approach that allows considering

Seminars FI / IITM SS 2014,
Network Architectures and Services, August 2014

180 doi: 10.2313/NET-2014-08-1_22

the influence of changes to parameters to the overall system

performance. It also enables the system to predict whether a

function will be able to fulfil its target or not. It can also track if a

function continuously tweaks parameters, an indicator that it is

not able to achieve its desired state.

The SONOT function will then try to analyze the functions

involved and the root cause of the problem. It will also try to

block all non-relevant SON-function execution to block any

interference into the self-healing process. It will then call an more

suitable SON-function to resolve the problem or if the problem is

not resolvable by the system it will notify the network operator

that the problem cannot be solved manually and requires manual

troubleshooting. [1]

8. Other Self-Organizing Systems
Of course the applicability of SONs is not limited to mobile

communications, another example of this network type is the

freifunk network that is currently in development in Germany and

Austria. This project tries to create an open network that provides

internet access to all participants. To do so the nodes have to be

able to find a path to an internet distributing node and deal with

constant changes to the network topology in a self-organizing

manner [6].

A different application from wireless networks would be road

networks. As shown in [7] by Prothmann et al. local, distributed

routing decisions can be applied to improve the traffic flow in

cities in the future. The paper shows that the routing algorithms

used in the internet like Link State and Distance Vector can be

modified to use them to control traffic. The traffic light at

intersections equal routers and can be used to control how many

vehicles can pass through a given route and optimize time to a

cities important locations.

9. Conclusion
Self-Organizing Networks are an efficient way to manage the

increasing complexity in cellular networks seen today. They offer

an easy way to install new cells for the operator with their plug &

play style self-configuration and reduce the amount of

maintenance required through their self-optimization capabilities.

At the same time they possibly improve the user experience

beyond a level possible by manual configuration of parameters.

As described in this paper there are also ways for the system to

automatically deal with problems occurring during the run-time of

the system. This reduces the amount of time needed to detect

problems in the network and can decrease the amount of

necessary drive tests in the network. It can also help detecting

problems more reliably than it would be possible with manual

troubleshooting. This paper also showed the requirements needed

like reliable performance indicators and the corresponding

profiles. The different diagnosis approaches are introduced and

their respective weaknesses and advantages are explained.

Then a conceptual framework is showcased and the way it handles

the detection of degradation and how it build its profiles is

explained. The diagnosis process and its advantages against other

similar approaches are shown. In the last Section an approach to

fault handling of SON-functions is outlined that can detect

problems in the interaction of SON-functions or find functions

that cannot reach their desired objectives. Other applications of

Self-Organizing Systems are then given as a conclusion to the

paper.

10. Literature
[1] Christoph Frenzel, Tsvetko Tsvetkov, Henning Sanneck,

Bernhard Bauer, and Georg Carle. Detection and Resolution of

Ineffective Function. Behavior in Self-Organizing Networks. In

IEEE International Symposium on a World of Wireless Mobile

and Multimedia Networks (WoWMoM), Sydney, Australia, June

2014.

[2]Chris Johnson. Long Term Evolution IN BULLETS. Edition 2,

version 1. ISBN 9781478166177. Amazon Distribution GmBH,

Leipzig, 2012

[3]Seppo Hämäläinen, Henning Sanneck, Cinzia Sartori. LTE

Self-Organising Networks (SON): Network Management

Automation for Operational Efficiency. ISBN 9781119970675.

John Wiley & Sons, 2012.

[4]Péter Szilágyi, Szabolcs Nováczki. An Automatic Detection

and Diagnosis Framework for Mobile Communication Systems

.IEEE transactions on network and service management, VOL. 9,

NO. 2, JUNE 2012.

[5]Szabolcs Nováczki, S., "An improved anomaly detection and

diagnosis framework for mobile network operators," Design of

Reliable Communication Networks (DRCN), 2013 9th

International Conference on the, vol., no., pp.234,241, 4-7 March

2013

[6] http://freifunk.net/, accessed 29.07.2014

[7] Holger Prothmann, Sven Tomforde, Johannes Lyda, Jürgen

Branke, Jörg Hähner, Christian Müller-Schloer, Hartmut

Schmeck. Self-Organised Routing for Road Networks. Self-

Organizing Systems. 6th IFIP TC 6 InternationalWorkshop,

IWSOS 2012 Delft, The Netherlands, March 15-16, 2012

Proceedings. ISBN 978-3-642-28582-0

Seminars FI / IITM SS 2014,
Network Architectures and Services, August 2014

181 doi: 10.2313/NET-2014-08-1_22

