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ABSTRACT 

Self-Organizing Networks are a way to manage the increasing 

number and complexity of current mobile networks. They provide 

functions to automatically configure network elements allowing 

for faster installation of new network elements. The domains SON 

also include the ability to self-optimize the network parameters 

and to detect and solve problems. The detection and diagnosis of 

degraded network elements is based on performance indicators 

provided by the individual network element. The diagnosis 

furthermore requires the combination of the knowledge of the 

correlation between the performance indicators and the 

corresponding faults. This paper shows an example framework 

that implements the detection and diagnosis of faults and provides 

an example of a SON-function that can find conflicts during the 

self-automated processes. 

1. INTRODUCTION 
Due to increasing complexity seen in today’s networks, methods 

to efficiently manage them have to be introduced. One way to do 

so is to automate various parts of the system and create a so called 

“SON”, short for self-organizing network. The goal of a SON is to 

configure, maintain and self-heal parts of the system based on 

information the system gathers itself, without needing manual 

assistance from the systems operator.   

One usage area of SONs is mobile communication, in particular 

LTE (long term evolution), where a large amount of Base Stations 

are required for coverage purposes. Deploying a bigger number of 

network elements however means that there is a higher chance of 

failure in the systems network. This is the reason self-healing of 

self-organizing networks was introduced as a requirement for LTE 

by 3GPP, the 3rd Generation Partnership Project, to automatically 

identify faulty behavior.   

This paper aims to give a short summary about the general idea 

and the domains of self-organizing networks and a more detailed 

overview about the self-healing aspect of SONs based on LTE 

network deployment. This includes the detection of a faulty 

element and the diagnosis of the root problem.  

The document is structured as follows: in Section 2 self-

organizing network domains will be explained and the benefits of 

automation will be shown. Section 3 will detail the general self-

healing idea. Section 4 gives an insight into detection of degraded 

network elements and Section 5 will show different ways to 

diagnose the root-cause of problems in the network. Section 6 will 

show case how to implement an automatic self-healing 

framework. In Section 7 a SON-function to detect problems in the 

self-optimization process is outlined and Section 8 shows other 

possible uses for SONs. Section 9 will then conclude the paper. 

2. SELF-ORGANIZING NETWORKS 
Modern mobile communications networks tend towards end nodes 

with smaller range to be able to serve users with higher bandwidth 

and more stable connections, this drastically increases the amount 

of network elements to be deployed and maintained. Configuring, 

optimizing, monitoring and troubleshooting all individual cells 

therefore is an unpractical, if not impossible, task for the networks 

operator. To provide an efficient cost-effective network these 

tasks have to be at least partly automated so that the operator only 

has to supervise the parameter provided to him by the system and 

the SON processes. Such a self-managing network is commonly 

referred to as a self-organizing network. In mobile 

communications the domains of a SON include self-configuration, 

self-optimization and self-healing of the systems elements. [3] 

2.1 Self-Configuration 
To be able to efficiently install new hardware or software the 

deployment of network elements should be a “plug & play” 

system in which cells automatically download the necessary setup 

information and adapt to their environment. The SON self-

configuration enables the system to add new elements to the 

existing network in real-time. The auto configuration sets up 

physical parameters like Physical Cell Identifier, transmission 

power and antenna tilt. In addition it is responsible for neighbor 

discovery and handover parameters. [3] 

2.2 Self-Optimization 
The goal of self-optimization is to find the most efficient 

parameters for a network at any given time. If the network 

environment changes over time, the system has to reconfigure 

parameters accordingly.[3] Some examples of self-optimization 

are 

 Mobility Load Balancing (MLB) which enables cells to 

redirect part of the user generated traffic to neighboring 

cells. This allows the load to be evenly distributed 

across cells giving customers a better throughput and 

allowing an improved user experience. MLB also 

increases the overall capacity of the network and helps 

avoiding a congested cell while neighboring cells are 

unused. 

 Energy saving allows cells to be deactivated during 

times of low traffic to reduce the power consumption of 
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the network without impairing the overall network 

performance. 

 Mobility Robustness Optimization or MRO. This 

function aims to minimize intra-LTE handover failures 

or unnecessary handovers to other radio access 

technologies. Typical scenarios include handovers 

initiated too early/late or to wrong cells.  

 Inter Cell Interference Coordination enables cells to 

coordinate their signals to decrease interference i.e. cell 

A uses the lower part of the channel bandwidth while 

cell B uses the upper part 

All of the functions above can be implemented as decentralized 

functions in each network element. [2] 

3. SELF-HEALING 
Self-healing is the least researched of the self-organizing 

functions as it is the most complex of the SON domains. 

Nevertheless it is still an important part of self-management as 

even though the network won’t be able to recover a physical 

damaged cell, it can help identify which network element is not 

functioning as expected. The self-healing processes should 

contain: 

 Alarm correlation, a diagnosis process triggered on 

alarms that tries to find the root cause of the alarm. If an 

possible cause is discovered, an automatic recovery 

action can be started to try to resolve the problem 

 Sleeping cell or cell degradation detection, locate cells 

that don’t transmit faults/alarms but still do not perform 

as planned 

 Cell Outage Compensation; reconfigure neighbor cells 

temporarily to compensate the failure of another cell. 

3.1 Self-healing use cases by 3GPP 
The 3GPP, 3rd Generation Partnership Program has therefore 

defined sell-healing use cases. 

Self-recovery of Network Element software: try loading an 

older software version or configuration to solve faults. This can be 

done multiple times until you reach a certain amount of tries. The 

process will then inform the IRP-Manager if the recovery was 

successful or not. 

Self-healing of board faults: discovery of malfunctioning 

network element hardware. If there is a redundant hardware 

element the cell will try to activate the backup. If there is no 

redundancy and there is a loss of radio services, cell outage 

management will be started. The use cases for cell outage 

management include: 

Cell outage Detection: The System detects a degraded, 

out-of-service or a “sleeping cell”. A cell that does not 

serve user equipment with requested data even though 

users are connected to the cell and that does not raise 

any alarms to indicate the malfunction.  To detect these 

kind of problems so called performance indicators are 

observed and irregularities are reported to the operator. 

  

Cell outage Recovery: Based on the diagnosis an 

available recovery action is performed to restore the 

systems normal capabilities and the results will be 

reported.  

Cell Outage Compensation: as stated above, the 

network reconfigures itself to compensate for potential 

coverage holes created by the failure.  

Return from Cell Outage Compensation: After the 

fault has been resolved the cells that took part in the 

compensation process have to return to their pre-fault 

state to ensure the optimal configuration state.  

3.2 3GPP self-healing process 
The proposed general self-healing process is structured as follows:  

An input monitoring function continuously checks whether a 

performance indicator has violated its corresponding threshold. In 

case one or more did the associated self-healing process will be 

triggered. The process will then gather additional system 

information like performance indicators, system variables, test 

results and radio measurements. See chapter 4 for a more detailed 

explanation about the detection process. With this aggregated data 

an analysis function is started to detect the root cause of the 

problem. Depending on the result of the diagnosis, i.e. was a there 

a problem at all, corrective action is taken if the problem can be 

solved through a SON-function. It is advisable to back up the 

system configuration prior to executing the SON process 

however. Afterwards an evaluation of the new system state is 

initiated to see whether the problem has been resolved or not or 

even if the new configuration created new problems. These steps 

are repeated until the fault is solved or stop conditions i.e. a reset 

counter is fulfilled. The result of the self-healing process will be 

monitored by the Self-healing and Monitoring function that has 

access to data of all of the above mentioned process and allows 

the operator to control the execution of the self-healing process. 

[3]  

3.3 Cell degradation management 
Cell Degradation management is one of the most important parts 

of the self-healing process. Detection and Diagnosis of faults can 

reduce the costs for the operator and help improving the user 

experience.  

The typical problems found in cellular networks are hardware or 

software faults, planning and configuration faults and 

environmental changes. Without SON functionality the 

degradation detection is only partially automated. The system will 

check itself for alarms, once an alarm is found the most common 

attempt to fix the cell is to reset it. If the problem is not resolved 

after a given number of resets the system will alert the operations 

department. The element will then be investigated remotely, in 

case this does not help solve the problem a technician will have to 

inspect the cell on-site and possibly replace hardware elements or 

the whole cell. Not all cell degradations cause alarms however, to 

see if a cell is working in an efficient, optimal way the 

optimization department will have to assess additional parameters 

provided by the cell. These are called KPI or PI, (key) 

performance indicators. To find malfunctioning cells thresholds 

for these parameters are set that should not by violated i.e. 

percentage of dropped calls. Base stations that breach the allowed 

limit or that show the biggest change in performance from one 

time period to another will then be selected for further 

investigation.  [3] 
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3.4 Cell outage compensation (COC) 
Cell outage compensation is one of the most crucial parts of the 

self-healing use cases. After the detection and diagnosis of a 

faulty network element neighbor cells will be configured to partly 

provide coverage for the area of the broken cell. The COC will be 

triggered when it is clear that the loss-of-service will persist for a 

prolonged period of time. To be able to do this several parameters 

of the neighboring nodes can be tweaked like antenna tilt, 

transmission power, beam forming and shaping. Since it is 

desirable to recover the service in the area as fast as possible to 

minimize user complaints the COC process will not try to find 

optimal parameters and settle for providing coverage in the 

affected area as fast as possible. After the COC process is finished 

additional self-optimization algorithms can be executed to find 

optimal settings for the new network environment. [3] 

4. DETECTION OF DEGRADATIONS 
The detection of faulty hardware or performance degradations 

plays an important role in the self-healing domain. Being able to 

reliantly detect problems in cells allows for faster diagnosis and 

reduces human resources. The detection algorithm does not equal 

the diagnosis process. Detection focuses on finding anomalous 

behavior and triggers an alarm if it found an unusual system state. 

The diagnosis process then gathers the information provided by 

the detection and concludes whether this is an actual fault or 

normal system behavior. The detection of degradation is based on 

event counters, KPIs and alarms. The process will determine if the 

provided performance indicators are in an acceptable range i.e. 

“healthy”. As these performance indicators are usually 

stochastically distributed statistical methods to define a healthy 

state have to be found. To do so you can create profiles for each 

of the KPIs that describe a range of normal, expected behavior. A 

KPI that leaves this range could point to degradation in the 

network performance. This approach has the advantage that the 

operator can define states that are normal and does not have to 

define states that are degraded, as these are often hard to define 

and statistically seen rather rare in overall network lifetime. The 

profiles can be split into three basic categories: 

 Absolute threshold: this profile defines a threshold that 

should not be violated. Therefore the KPI should not 

exceed or fall short of. Examples for values that should 

not be exceeded are fault or failure rates like call drop 

ratio. An example for a rate that should not fall below a 

certain threshold would be the handover success ratio. 

See Figure 1 

 Statistical profile: This profile defines an acceptable 

upper, maximum threshold that should not be exceeded 

and a lower, minimum threshold. These profiles can 

define a mean and it corresponding standard deviation 

that should not be violated. This profile can be 

symmetric or asymmetric. See Figure 2 

 Time dependent profile: Much like the statistical profile 

there is an upper and a lower threshold that the KPI 

should comply with. The difference is that these 

thresholds fluctuate with time, meaning that acceptable 

borders will change during the time period. These 

profiles are typically user driven, e.g. traffic generated 

in the system. See Figure 3 

While most of the task mentioned above, are already done 

automatically, the process to define what is faulty behavior and 

what is normal, but until now not encountered behavior has to be 

further refined to improve the accuracy of the fault detection. 

There are two different approaches for the anomaly detection. The 

first is the univariate, here a single performance indicator is 

observed and its specific distribution is considered to decide if it 

is in an acceptable range of its past mean and deviation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A drawback of this approach is that unusual behavior can be, 

depending on the profile, declared as a faulty behavior even 

though the cell is working fine. The other possible method is the 

multivariate anomaly detection where, as the name suggests, 

multiple performance indicators are considered and compared 

against each other to determine if the cell is working correctly. In 

this approach the performance of the cell as a whole rather than 

single KPIs can be evaluated, which makes it more reliable at 

avoiding false alarms.  

The quality of a detection algorithm can be classified by several 

grades, as shown in [3]: 

 The first is the detection accuracy, which gives an 

indication about the reliability of the detection 

algorithms. The goal of the detection process should be 

to have a high level of true negatives, i.e. no fault no 

alarm and true positives, i.e. a fault has occurred and an 

alarm was triggered and to avoid false negatives or false 

positive, i.e. an alarm was trigger even although there 

was no fault or worse there was a degradation but it was 

not detected by the process.  

 Detection delay is the amount of time passed between a 

fault appeared and the detection of it. The faster the 

detection works, the faster the problem can be resolved 

or at least compensated.  

 Other relevant metrics for operators may include 

severity indication accuracy that gives the operator an 

Figure 3: time dependent profile [3] 

Figure 2: statistical profile [3] 

Figure 1: absolute threshold [3] 
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estimation of the overall severity of the degradation so 

that he may schedule maintenance accordingly. The 

detection process should give a reliable estimate of the 

severity, because simpler less performance impairing 

faults do not have to be resolved immediately, whereas 

grave faults like cell outage might need fast corrective 

action. Signaling Overhead describes the network load 

produced by the detection process between the 

individual cells, the cell and the network management 

and the cell and user devices, e.g. User equipment 

measurements. 

 The last metric is the Processing Overhead, i.e. the 

amount of processing time needed for the detection 

algorithm. This typically depends on the amount of 

input data and can be exponential which poses a 

problem for network elements small processing 

capabilities.  

5. CELL-DEGRADATION DIAGNOSIS 
While the detection of problems in the network is at least partially 

automated nowadays the diagnosis of the corresponding root 

cause is still a manual task carried out by troubleshooting experts 

with years of experience. The general troubleshooting process 

starts with a notification of the expert by the detection system. 

The experts will then gather additional performance indicators 

and identify possible root causes for the problem. In case the 

problem can’t be identified by these means a drive test will have 

to be performed on-site. An increase in network elements however 

makes manual troubleshooting a time intensive and cost expensive 

task for operators. 

The complete automation of this process is the key goal of self-

organizing networks. A self-healing system would require less 

maintenance and less troubleshooting personnel to manage bigger 

systems than before.   

The challenge is to build a system that, like a human, can make 

decisions based on prior knowledge and can use its observations 

to include new similar cases to its database. To do so the system 

will have to learn a few basic symptom – root cause relations from 

existing human knowledge, this phase is called the learning phase 

of the diagnosis system. The next phase would be the assistive 

phase, where the diagnosis process would inform the 

troubleshooting expert about the most probable cause of the 

problem, but the execution of recovery action would still be done 

by the human operator. The root cause diagnosis will then be fine-

tuned by knowledge of the troubleshooting expert. The last phase 

would be a completely autonomous system where the human 

operator only supervises decisions done by the self-healing 

process. 

The critical component of this system is mapping symptoms to 

their respective root cause in an efficient, but reliant way. There 

are several ways to implement this association; some examples 

will be explained in short in the following sections, a more 

detailed view on these can be found in [3]. 

5.1 Rule Based Systems 
The easiest way to implement this diagnosis is the rule based 

system. Every set of symptoms A is mapped to the root case B in a 

simple “if (A) then (B)” style of rules. Obviously a rule based 

system is easy to train as new fault cases can added as a new rule 

set. This system is very similar to human reasoning and easy to 

understand. It also proved to work efficiently in smaller 

deterministic environments, but the huge number of different 

parameters in mobile networks and their linked nature make these 

systems hard to fine-tune to effectively find problems in mobile 

networks. Additionally symptoms cannot always be associated to 

a single root cause, but with a probability. Rule based system only 

allow one specific case for a set of input parameters.  

5.2 Bayesian Networks 
Based on Bayes’ theorem this system is able to include the 

uncertainty included in the performance indicators. Every root 

cause can be mapped to different symptoms and every symptom 

can be linked to different root cases. These links however do not 

always appear with the same frequency, thus they can be 

expressed with probabilities. The whole Bayesian network can be 

visualized by an acyclic directed graph to give a better overview 

of the individual dependencies for the operator. Since the 

direction of the tree does not matter operators can build the graph 

from the top-down. This means he can define new root-causes and 

add the accompanying symptoms, turning this into an easy to 

maintain and improve diagnosis system. The problem with this 

model however is that for each parent node several probabilities 

for its child nodes have to be defined. These probabilities are not 

always obvious or can be determined with the required knowledge 

for the system to work with the desired accuracy. Furthermore 

with a growing number of nodes the size of the conditional 

probability table grows exponentially in its size making it 

inefficient to compute and maintain. The Bayesian model can be 

simplified by two different models one is the naïve model, where 

only one root cause can be present each time. This simplifies the 

model because symptoms cannot be associated with multiple root 

causes which in turn decreases the amount of processing power 

required. The noise-or model allows multiple root-causes. It 

reduces the amount of space needed for the conditional 

probability table from 2n to n by representing every root cause as a 

binary node that either exists or not. Than the system will measure 

the individual contribution of the root cause to each symptom.  

5.3 Case Based Reasoning 
Bayesian Networks heavily rely on the distribution of faults to 

determine the root-cause, but during normal operation of a 

network element these fault cases should be rather rare. This 

makes finding a correct probability for the conditional probability 

table nearly impossible as reliable data on faults cannot be 

provided or the statistical sample is so small that even minor 

deviations can trigger false alarms. Case Based Reasoning 

therefore tries to classify normal operation and will only react if 

there is a deviation from this “healthy” state of the cell. The basic 

idea behind a CBR system is to continuously build on the fault 

states already discovered by the system. The system starts with no 

knowledge of fault cases and monitors the performance indicators 

for anomalies, if an anomaly is found it tries to solve the problem 

by looking at previously encountered fault states with identical 

KPI levels and tries to solve the problem accordingly to previous 

solutions. If the root case was found and the problem was solved 

the system adds this new case with the associated parameters to its 

fault database. In case the problem was not resolved the system 

informs an operator to troubleshoot the cell. The result of this 

manual troubleshooting process will then be added to the existing 

cases creating an ever growing database of root cases with their 

respective symptoms.  
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6. AUTOMATIC DETECTION AND 

DIAGNOSIS FRAMEWORK 
This Section will give a closer look into the working of an 

automatic detection and diagnosis framework proposed by 

Nováczki et al[4] and the exact mechanics behind the system. The 

system should be able to integrate into existing network 

environments without having to perform major modifications in 

the existing network. Additionally it has to be able to adapt itself 

to the existing system and its performance indicators and other 

available parameters. It is similar to case based reasoning, with 

the difference that it does not try to resolve issues by comparing it 

directly to older cases, but by assigning KPI footprints to so called 

targets and comparing these reports with the current 

measurements gathered by the system. 

6.1 Detection 
Instead of defining thresholds for variables that generate a binary 

result for the diagnosis algorithm, i.e. fault yes or no, a way to 

transform the KPI value into a continuous number in the range 

from 0 to 1 is proposed. Where 0 means perfectly healthy 

behavior and the 1 is asymptotically approached as the KPI state 

decreases. To build a profile of the KPI n consecutive samples xi 

of the KPI are averaged to build one sample ai. The KPI variable 

corresponding to the performance indicator K is called K*. The 

profile will then be built using the mean and variance of the K*. 

Assuming the xi are independent and identically distributed the 

variable K* should be normally distributed with 

K*
n→∞ ~ Ɲ(μ(K*), σ2(K*))  

As a general example n should be bigger than 40 and more than k 

> 20 samples should be used, if the samples are not correlated. If 

the samples are correlated more samples are needed. After the 

profiling process has been completed, the current state of the KPI 

called X(K) is computed using the average of the latest n samples 

of the variable K*. This current mean X(K) can then be transformed 

into a standard normal variable  

Z(X) = (X(K) – μ(K*)/σ(K*)) 

Where μ is the mean of the variable, this means the expected 

value and σ is the root of the variance the variable shows. The 

variance is the expected deviation from the mean. 

After creating the profile K* and current state X(K) of the KPI, a 

level function to evaluate the state and transform it into a number 

in the range from 0 to 1 has to be defined. The level of the KPI 

will be denoted by φ(K). The evaluation will be based on the 

desired thresholds of the KPI profile, i.e. upper threshold, lower 

threshold or both and the number of standard deviations -C 

allowed to result in the KPI level of 0.5. An acceptable upper 

threshold will be φ+(K) meaning that the KPI can decrease but 

should not increase. φ-(K) is the opposite where an increase in 

KPI levels is acceptable. Finally φ±(K) where neither an increase 

nor a decrease of the KPI level is desirable. The resulting 

functions are: 

φ+(K) = Φ (C + Z(K)) 

φ- (K) = Φ (C − Z(K)) 

φ±(K) = φ+(K) + φ- (K) 

Where Φ is the cumulative distribution function of Ɲ(0,1), i.e. the 

standard normal distribution. The advantage of this approach is 

that the function does not check for a single violation of a 

threshold, but for a constant continuous decrease in the overall 

KPI performance. It also provides a uniform level function for all 

KPIs without the operator setting specific thresholds for single 

KPIs. The problem with this definition of a profile however is that 

most performance indicators are user behavior dependent, 

meaning that the profile has to adapt to different user behavior in 

different time periods of the day. Using a profile with a large 

standard deviation proves impractical as it impairs the detection 

process, therefore constructing different profiles for different time 

slots should be created. Too get a mean of a specific time t you 

can interpolate the means of the times t1 and t2 using a standard 

linear interpolation function. [4] 

6.2 Diagnosis 
Now that the detection of KPI levels has been defined the actual 

mapping of the levels to Targets has to be created. Targets can be 

corrective actions or root cases. This mapping is called a report. 

Each time a fault with the same symptom appears an identical 

report will be created and added to a database so that the 

frequency of a target can be measured as well. These reports can 

either be created by an expert for the system or added based on 

the solution of previous faults occurring in the network. Each 

report contains the subset of KPIs that were observed and the 

target that was analyzed by the specific report. There is a special 

target T0 which means that the system is working perfectly healthy 

and its report R0 that contains an empty set of KPI and the target 

T0. No other report however is allowed to have an empty set of 

KPIs. 

In order to find targets the system continuously monitors the KPIs 

and the “winning” target is the one that matches the most KPI 

states based on reports previously acquired by the system. 

Because not all KPIs are relevant to a target and not all reports for 

a target have the same KPI subset a likelihood function is 

introduced to evaluate which performance indicators are actually 

relevant to the target. This likelihood function is denoted as lT(K) 

and shows the relevance of the KPI. It is calculated by dividing 

the number of reports for target T that contain the KPI K through 

the overall number of reports for T. A likelihood of 0.5 means that 

the observed KPI was present in half of the reports for T 

rendering it useless as an indicator for T, because it does not 

appear to be linked to the target.  

This can be further refined by balancing the KPI with a 

consistency function cf(x) = 2 * |x – 0.5|. This consistency 

function gives a weighted relevance of the KPI to a target. If the 

KPI K likelihood is close to 0 or to 1 for a Target Ti the KPI will 

have a high relevance, since you can say that whenever K is 

absent or present the target Ti is present too. To be able to 

compare different targets you have to quantify a score that is 

dependent on the KPIs. The score of a single KPI s(K) towards a 

the Target can be realized by multiplying the consistency function 

with a hamming distance: 

dT(K) = φ(K) if lT(K) ≥ 0.5 , else 1 – φ(K) 

The overall score of a target is the score of all KPI scores for T:  

S(T) = ∑ s(Ki). 

In case two targets T1 and T2 end up with the same overall score, 

the target with the higher overall number of reports will get the 

priority.  

Due to the consistency contradictory reports should be checked as 

they can cause the KPI scores to become close to zero giving the 
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target a lower score in the future. Contradictory results may also 

be an indication that there is an unknown error that should be 

investigated and added to the database. [4] 

6.3 Integration into the Network 
In general not all KPIs will be kept live to keep the amount of 

data an element creates to a minimum level, therefore not all KPIs 

should contribute to the initial detection of a problem. These 

inactive KPIs however could contain relevant data to the solution 

and need to be considered during the diagnosis. To resolve the 

problem an update of these KPIs is needed and should be initiated 

by the system. This is called an active measurement; they can be 

useful if a conclusion between different targets cannot be reached 

by the initial diagnosis process. In case the active measurement 

can’t be initiated by the system itself it should notify a 

troubleshooting expert with an alarm that an active measurement 

is required to resolve a problem. To find the most suitable KPI 

that will most likely resolve the stalemate the KPI with the 

maximum likelihood for one of the two cells should be 

considered, as it will most likely be the most impacting on the 

overall score of the respective targets.  

One advantage of the proposed framework is that it can, identical 

to case base reasoning, start with an empty knowledge base on 

targets and add targets and their corresponding reports during its 

lifetime. This means that the operator only has to initially do the 

troubleshooting process and can let the system take over if it has 

enough targets and reports to guarantee optimal operation. The 

management of the expert knowledge generated by the system 

could be stored on a management server and set to synchronize 

regularly with the cell to keep the information up-to-date. It would 

also enable the troubleshooting expert to edit the reports and add 

a root cause to help the system. [4] 

6.4 Possible improvements to the system 
To further reduce the amount of human interaction required by the 

system an extension to this system can be made where the 

operator only has to specify time slots where normal operation 

was detected. The framework can then implement a so called two-

sample Kolmogorov – Smirnov test, that can compare two random 

distributions to check whether they have the same distribution or 

not. 

Therefore it compares the empirical cumulative distribution 

functions, ECDF, and computes the maximum distance between 

these two functions. See Figure 4. [5] 

Figure 4: ECDF – comparison [5]. D is max{D+;D-}, D- is the max 

distance of ECDFA > ECDFB. D+ the max of ECDFB > ECDFA 

The ECDF is the cumulative addition of the probabilities over all 

events. Therefore the ECDF ranges from 0 to 1. 

The distribution of a KPI profile is its corresponding ECDF 

function, which means that an ECDF will have to be computed for 

every KPI that will be considered in future diagnosis processes. 

The operator now only has to mark the time slots in which the 

KPIs and the overall system operation were considered “healthy”. 

The input is then divided into fragments. For each of these 

fragments the ECDF is computed and saved as a possible profile 

candidate. To reduce the number of profiles only the most 

representatives are stored however. Then a process starts to find 

the minimum number of profiles that cover all the profile 

candidates. If a profile covers a candidate is decided as presented 

earlier by the two-sample Kolmogorov-Smirnov test. [5] 

To detect if one PI shows unusual behavior its latest N samples 

from the observation window are taken and the Actual-ECDF of 

the PI is computed. The detector then computes the maximum 

distance of this A-ECDF from all the profiles in the database of 

this particular PI. The minimum distance will be considered as the 

best matching example and it will be compared to a similarity 

threshold. Distances below this threshold can be defined as 

“healthy” operation, since fluctuation in parameters is normal to a 

certain level. Since there are different thresholds for each PI 

different methods to compute the distance will be used. 

 Success Indicators: if the values are higher than 

expected there is no fault present to therefore the 

distance of the lower side will be use D-
 (Figure 4) 

 Failure Indicators: Values should not fall below a 

certain threshold. The relevant distance is the high 

sided D+ 

 Neutral: Values should be between a certain range 

which means that both distances will be considered in 

diagnosis 

An unknown distribution can either mean normal operation that 

differs from all profiles gathered before or the system is in a 

faulty state. This has to be decided by the operator that marks this 

new distribution as a new error or normal behavior. [5] 

7. SON-FUNCTION COORDINATION 
Several SON-functions might interfere with each other at run-

time, e.g. the SON MRO (mobility robustness optimization) and 

the CCO (coverage and capacity optimization) where the MRO 

might try to resolve handover failures, but these failures are 

caused by a coverage hole, for which the CCO function would be 

responsible. To prevent this hierarchies of priorities could be 

introduced for SON-functions, but this could lead to deadlocks 

where a high priority function which is unable to fulfil its goal 

blocks a low priority function that could have resolved the 

problem. Another approach however is to implement another 

SON-function that monitors the execution of the other functions 

and tries to find locks in which no improvement in the network is 

seen, even though parameters are constantly adjusted. This 

function can be called a SONOT (SON Operational 

Troubleshooting) that has two main aims, to monitor the 

execution of other functions and find unresolvable problems and 

to help resolve the problem automatically.   

To detect a problem with a SON-function different approaches 

can be used a state-based approach that only considers the current 

system state and a history based approach that allows considering 

Seminars FI / IITM SS 2014,
Network Architectures and Services, August 2014

180 doi: 10.2313/NET-2014-08-1_22



the influence of changes to parameters to the overall system 

performance. It also enables the system to predict whether a 

function will be able to fulfil its target or not. It can also track if a 

function continuously tweaks parameters, an indicator that it is 

not able to achieve its desired state.  

The SONOT function will then try to analyze the functions 

involved and the root cause of the problem. It will also try to 

block all non-relevant SON-function execution to block any 

interference into the self-healing process. It will then call an more 

suitable SON-function to resolve the problem or if the problem is 

not resolvable by the system it will notify the network operator 

that the problem cannot be solved manually and requires manual 

troubleshooting. [1] 

8. Other Self-Organizing Systems 
Of course the applicability of SONs is not limited to mobile 

communications, another example of this network type is the 

freifunk network that is currently in development in Germany and 

Austria. This project tries to create an open network that provides 

internet access to all participants. To do so the nodes have to be 

able to find a path to an internet distributing node and deal with 

constant changes to the network topology in a self-organizing 

manner [6].  

A different application from wireless networks would be road 

networks. As shown in [7] by Prothmann et al. local, distributed 

routing decisions can be applied to improve the traffic flow in 

cities in the future. The paper shows that the routing algorithms 

used in the internet like Link State and Distance Vector can be 

modified to use them to control traffic. The traffic light at 

intersections equal routers and can be used to control how many 

vehicles can pass through a given route and optimize time to a 

cities important locations. 

9. Conclusion 
Self-Organizing Networks are an efficient way to manage the 

increasing complexity in cellular networks seen today. They offer 

an easy way to install new cells for the operator with their plug & 

play style self-configuration and reduce the amount of 

maintenance required through their self-optimization capabilities. 

At the same time they possibly improve the user experience 

beyond a level possible by manual configuration of parameters. 

As described in this paper there are also ways for the system to 

automatically deal with problems occurring during the run-time of 

the system. This reduces the amount of time needed to detect 

problems in the network and can decrease the amount of 

necessary drive tests in the network. It can also help detecting 

problems more reliably than it would be possible with manual 

troubleshooting. This paper also showed the requirements needed 

like reliable performance indicators and the corresponding 

profiles. The different diagnosis approaches are introduced and 

their respective weaknesses and advantages are explained. 

Then a conceptual framework is showcased and the way it handles 

the detection of degradation and how it build its profiles is 

explained. The diagnosis process and its advantages against other 

similar approaches are shown. In the last Section an approach to 

fault handling of SON-functions is outlined that can detect 

problems in the interaction of SON-functions or find functions 

that cannot reach their desired objectives. Other applications of 

Self-Organizing Systems are then given as a conclusion to the 

paper. 
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