
Privacy Strategies in Smart Metering

Tobias Klenze
Supervisor: Benjamin Hof

Seminar Innovative Internettechnologien und Mobilkommunikation
Chair for Network Architectures and Services

Department of Informatics, Technische Universität München
Email: klenzet@in.tum.de

ABSTRACT
This paper discusses the threat to privacy that smart meters
pose and offers solutions that protect user privacy without
diminishing the provider’s capabilities to use the data for
legitimate purposes. Two use cases are considered: collec-
tion of aggregated real-time data by the provider for opti-
mization, and monthly billing of customers. For the first, we
present various approaches before proposing our own strat-
egy for an aggregation protocol. For the second, we outline
a billing protocol that preserves user privacy.
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1. INTRODUCTION
Smart meters currently undergo a deployment in many coun-
tries. While their advocates promise benefits to users and
the grid infrastructure, the privacy implications of high-
frequency data collected by smart meters has received little
attention by the industry.

According to goals set by the European commission, 80 per-
cent of alls EU households shall be equipped with smart
meters by 2020 [1]. Advocates cite different reasons sup-
porting wide-spread smart meter deployment. Automated
billing eliminates the need for periodic inspections of meters
by utility providers. It is also anticipated that integration
of smart meters into a smart grid will facilitate fraud de-
tection. Furthermore, electricity providers are interested in
smart meters, because they enable complex tariffs, charg-
ing the customer more in peak consumption hours and less
during hours with an abundancy of electricity. By combin-
ing smart meters with “smart appliances” that are sensitive
to real-time electricity prices, it is possible to reduce the
consumption during peak hours. For example, electric cars
may charge up during the night, instead of busy hours dur-
ing the day, thus reducing the capability requirements of the
grid during peak hours, ultimately leading to fewer power
plants being required. Awareness of current consumption on
the user side may also lead to an overall reduction: studies
show that 3-5% less energy is consumed when real-time me-
ter readings are provided to consumers [8]. Finally, smart
meter advocates state that real-time usage information will
lead to a higher efficiency in managing grids and demand
forecasting, facilitating decisions such as whether to start
up a power plant and detecting leaks in pipelines as early as
possible [7].

Whether or not these expectations of the capabilities of a
“smart grid” (of which smart meters are a part) are justi-
fied, is beyond the scope of this paper. There have already
been over three billion Euros of smart grid investment in the
EU.[2] The fact of increasing deployment is reason enough
to examine the implications of smart meters for consumers,
particularly for their privacy. Current smart meters out-
put usage data at a high-frequency, for example every 15
minutes, and report this usage to utility or grid providers.
This is in contrast to old electromechanical meters, for which
the provider only has low-frequency data, for instance on a
monthly basis. As we will present in the next section, the
higher frequency in usage reports to the provider has a dras-
tic impact on the user’s privacy.

In some countries, efficient energy usage and user privacy
are debated as a dichotomy. Either the preference is given
towards the benefits of smart meters and privacy detriments
accepted as a necessary consequence, or the opposite holds,
and smart meters are rejected altogether [7]. We will present
protocols that protect the user’s privacy while providing a
high level of security.

Satisfying privacy and security at the same time is a difficult
task, as the use case of billing with time-dependent tariffs
illustrates. In this use case, monthly bills should be calcu-
lated from high-frequency usage data. On the one hand,
the utility has an interest in computing the bill itself, so
as to be secure against manipulation by the consumer. On
the other hand, it must not gain access to fine-grained us-
age data for privacy reasons. Protocols that we are going
to present in this paper use cryptographic mechanisms to
ensure both privacy and security.

When designing a secure and privacy-preserving smart me-
ter system, one also has to take device tampering into ac-
count. Attacks on smart meters are not merely theoretical.
A 2011 study cites an FBI report, stating that as much as
10% of smart meters in one US state had been tampered
with [7].

In this paper, we will present approaches that deal with
privacy problems introduced by smart meters. The goal is
to give an overview over the set of problems, while restricting
the solutions presented to those that illustrate the different
strategies in preserving the privacy of smart meter users.

We will start by presenting privacy problems in smart me-
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ters and then discuss at strategies that mitigate these issues
while retaining the desired features of smart meters that
smart meter advocates anticipate.

2. PROBLEM STATEMENT
We distinguish two different types of analysis that have im-
plications for user privacy. The first is a statistical analysis
that makes it possible to identify household appliances, such
as a TV, a shower or a toaster. The second one is aimed at
providing more abstract information, such as whether a per-
son suffers from insomnia, or what religious group a resident
belongs to. For the second type, it might be necessary to
first identify individual appliances. Not all abstract ques-
tions about a household require such analysis however.

2.1 Identifying appliances
It has been shown over the last years, that smart meter data
of sufficient quality can be used to identify single appliances
with great certainty using statistics and machine learning.
Existing approaches use high-frequency usage data, mainly
of electricity consumption, to identify a number of household
devices, such as televisions, washing machines, computers,
refrigerators and even low-powered devices such as alarm
clocks [11].

Figure 1 shows an example, where power consumption has
been recorded over the period of one day. Alongside the con-
sumption is annotated which appliances and which abstract
information the authors of [9] have been able to identify us-
ing statistical methods and machine learning.

Figure 1: A sample identification of appliances using
signatures. Source: [9]

2.2 Profiling on behavioral patterns
As the graph above demonstrates, using appliance signa-
tures, it is possible to gain more abstract insights and do
user profiling. For example, data on individual appliances
can be utilized to answer questions such as: “Is the resident
at home?” Imagining a utility provider asking this question
about their employees on sick leaves, one can see why this
data is sensitive and worthy of protection. After individual
appliances have been identified, it is possible to answer these
kinds of abstract questions [9].

It is difficult to tell which kind of data enables to such pro-
filing. Some conclusions require accurate, high-frequency
data, while others can be made with low-frequency and less

accurate information. Profiling can not be completely pre-
vented, but only limited. Abstract questions of the form
“How many residents does a household have” or “Did all the
residents go on vacation” can still be answered, even after
applying the methods presented in this paper. For these
questions, an analysis of very low-frequency data, maybe
even as low-frequency as the monthly bill is sufficient. Eval-
uating how much profiling the data provided in a certain
protocol permits is thus difficult. The more accurate, high-
frequency data is available to the adversary, the easier pro-
filing becomes. We will therefore aim to minimize accurate,
high-frequency data availability to the utility and third par-
ties.

3. SOLVING THE PRIVACY PROBLEMS
We will proceed to present solutions to the problems outlined
in the last section. Two different use cases for high-frequency
data will be distinguished and discussed separately.

3.1 Applications for smart meter data
In recent years, a lot of papers have discussed smart me-
ter privacy problems. They are very diverse in the problem
statement and the proposed solutions. For instance, some
research how smart meter data sharing with third parties
is possible in a privacy-preserving manner, and presuppose
that the utility has access to sensitive information [6, 13].
This is contrasted by most papers which consider the rela-
tionship between the end user and the utility provider (and
potentially a smart grid operator).

Leaving special cases aside, there turn out to be two common
use cases for high-frequency smart meters data that have
important privacy implications. The first is real-time data
sharing with the utility and the grid provider. This data is
used for management of the grids and plants, to have accu-
rate and live information on utility usage, for demand fore-
casting, to detect problems and leaks. It has been noted that
this use case is difficult to define, since there is no detailed
specification on which data utility providers and grid opera-
tors require to achieve these goals [4]. Some providers try to
collect as much data as possible, which is contrary to one of
the most important principles in privacy design strategies,
that data collection should be minimized [5]. Whether con-
sumption data from individual households is actually nec-
essary to achieve the goals outlined above, or whether the
accuracy and high frequency is required, is doubtful. We
will present approaches that contest these assumptions in
order to allow for protocols that protect user privacy.

The second use case of high-frequency metering data is billing
with non-constant tariffs. We will outline a scheme that al-
lows for sophisticated tariffs, while preserving user privacy
and keeping complex computations outside the smart me-
ter’s limited hardware.

The last point is an important consideration. Smart me-
ters are usually low-end systems both in terms of compu-
tational power and bandwidth [7]. Solutions which require
computationally expensive operations or different hardware
than what currently-produced smart meters offer, are less
likely to be deployed by providers. In addition, communi-
cation overhead should be kept to a minimum. It is due to
these reasons that protocols for smart meters are usually de-
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signed to have minimal computations inside the trusted and
tamper-resistant device itself. Instead, they only use the
smart meter to do basic operations and outsource compu-
tationally expensive operations to other, perhaps untrusted
devices.

3.2 Real-time data sharing
This section presents and discusses strategies for providers to
capture real-time usage information without diminishing the
user’s privacy. We will first present two approaches that we
regard not to be a sufficient solution to the problems outlined
in the last section and then take a closer look at a more
sophisticated protocol, which provides better protection of
user privacy. Following our critique of this approach, we
present our own modification of the protocol which aims at
protecting users in a better way against maliciously acting
smart meters.

3.2.1 Preprocessing
Preprocessing data is a strategy to hinder or at least to
impede inferences that usage data permits. The idea is to
obfuscate some of the information, making detailed analy-
sis harder, without having an effect on the use of aggregated
data. By preprocessing real-time usage data in certain ways,
it is harder to identify appliances and thus it is also more dif-
ficult to come to certain abstract conclusions. For example,
the data might still reveal that a person is in a household,
but not whether she is working, or watching TV.

In [11], Reinhardt, Englert, and Christin discuss two dif-
ferent ways of data preprocessing: quantization and down-
sampling. The first is restricting the possible values of re-
ported power consumption to a multiple of a certain factor.
The latter reduces the frequency with which readings are
reported. For instance, one might employ both techniques
and record usage only as a multiple of q = 100 watts (in-
stead of a higher precision). Then, instead of reporting this
consumption at a very high frequency, for instance every
second, it is reported only every t = 900 s.

The authors evaluate both methods on their own and in com-
bination. In their model, quantization is effective, whereas
down-sampling has a smaller impact on appliance detection
rate. Before applying any kind of preprocessing, their ma-
chine learning system is able to identify more than 90 per-
cent of appliances in a sample. Applying quantization with
q = 180 watts decreases accuracy to 58 percent, while ap-
plying down-sampling only decreases it to 74 percent with
t = 400 s. Combining both techniques with said values still
leaves the machine learning system able to identify 38 per-
cent of all appliances.1

While making it more difficult for adversaries to draw con-
clusions given the usage data of a household, preprocessing
is far from making it impossible altogether. Even with a de-
tection rate of only 38 percent, there remain inferences that
can be made from the preprocessed data, that problematic
in terms of user privacy.

1It should be noted that [11, 9] started with a frequency
of 1Hz, which is higher than current smart meter’s output
frequency.

3.2.2 Multi-party protocols
Since preprocessing data is not sufficient to fully solve pri-
vacy problems with real-time smart meter data, we turn
to a different approach. The assumption behind it is that
providers do not require real-time data from each house-
hold. Instead, they can rely on aggregated data from multi-
ple households. By obscuring the individual contributions of
households to the aggregated value, their privacy is upheld.

A naive implementation of this concept is to employ a trusted
third party (TTP), that aggregates each meter’s readings
and passes on the total to the provider. This proposal only
shifts the privacy problems to the TTP. There are a num-
ber of authors who propose aggregation protocols without
a TTP [7, 3, 4, 14]. For instance, [3] addresses the pri-
vacy problem by distributing data over different providers.
The smart meter divides its consumption data into K differ-
ent shares (which summed up, are the actual consumption),
each of which is sent to a different provider. The idea is
that a provider cannot infer information about an individ-
ual household with only a share of the actual consumption.
However, each provider can aggregate the data and share
that with other providers, thus enabling them to use high-
frequency data without gaining insights on any individual
household.

This approach is more promising than using a TTP, but
it has a severe problem: Individual privacy is lost when
an adversary learns the data shares sent to all K different
providers. This could be due to collusions by the providers,
but a perhaps more realistic scenario is when they are forced
to hand over information about individual shares to a gov-
ernment agency. We therefore conclude that this strategy
does not provide adequate protection in these adversarial
models.

3.2.3 “No-Leakage” aggregation protocol
We will now present an aggregation protocol (called the“No-
Leakage Protocol”) that was proposed by Garcia and Ja-
cobs [4]. We will then discuss drawbacks of the underlying
privacy strategy and offer a modified version of the protocol
in the next section.

The protocol gives the provider aggregated real-time con-
sumption data of multiple households without revealing their
individual shares. It uses homomorphic encryption in an
asymmetric cryptography setting.

Homomorphic Encryption. An encryption scheme is ho-
momorphic if it allows for sensible operations being carried
out on ciphertext. For example, this could be an opera-
tion ⊕ on two encrypted values enc(m1), enc(m2), such that
enc(m1)⊕enc(m2) = enc(m1+m2). This encryption scheme
is then called additively homomorphic.

A common additively homomorphic scheme is Paillier’s cryp-
tosystem, where:

dec(enc(m1) · enc(m2) mod n2) = m1 +m2 mod n

It is possible to multiply the encrypted value by a constant:

dec(enc(m)k mod n2) = m · k mod n
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Setting and Infrastructure. The setting which we assume
to work on consists of a local distribution station S and
N households, each with a smart meter Mi connected to S.
The goal is to provide near real-time usage information in ag-
gregated form to the distribution station without revealing
any individual contribution to the total consumption. The
local station has a direct data connection to every house-
hold’s smart meter. All data connection lines are assumed
to secure the integrity of messages exchanged between two
directly adjacent parties.

In the setup phase, each party (all Mi and S) creates a pub-
lic/private key pair and we assume that there is a mechanism
which distributes the public keys to all parties (e.g. by using
a PKI).2 It is assumed that the encryption scheme used is
additively homomorphic, with ⊕ being multiplication (as in
the example above).

The protocol may require a minimum number of participat-
ing smart meters. Since the security of the protocol is weak-
ened with too few participants, the smart meters should not
execute the data exchange if there are fewer than the mini-
mum number of smart meters.

Protocol flow. After each measurement interval (for exam-
ple, every 15 minutes), smart meters report on their house-
hold’s consumption. Instead of sending their usage data di-
rectly to the local station S, they prepare N shares that are
each sent to a different of the N −1 smart meters connected
to the local station, except for one share, which remains
at the meter. The shares are each encrypted using the re-
cipient smart meter’s public key (so that the local station,
which has to relay the messages, does not learn the shares in
plaintext). More formally, each smart meter Mi computes:

• Its own consumption mi.

• Random numbers ai1, ai2, . . . ai(N−1), and aiN ≡ mi−
N−1∑
j=1

aij mod n (using a sufficiently large n).

• Encrypted values yij = encpkj (aij) for each 1 ≤ j ≤
N , j 6= i, where pkj is j’s public key exchanged during
setup. aii is not encrypted and remains at the meter.

All the smart meters then send their yij values to S. S then
computes for each j:

sj :=
∏

i6=j

yij =
∏

i6=j

encpkj (aij) = encpkj (
∑

i6=j

aij)

Note that this equation holds due to the additive homomor-
phic encryption properties of the underlying cryptosystem.

S sends sj to Mj , for all j.

2The establishment of trust is an important challenge, but
cannot be resolved in this paper. For our purposes, we as-
sume that each party receives the correct public key of each
other party.

Mj decrypts sj using his private key skj , yielding
∑
i 6=j

aij .

To this, Mj adds his own ajj . Mj finally sends this value to
S:

rj :=
∑

i 6=j

aij + ajj mod n

The addition of ajj is essential, since otherwise S could ex-
ploit Mj ’s willingness to decrypt any ciphertext. If S probed
Mj with individual shares (yij) instead of aggregated shares
(sj), Mj would return the plaintext shares (aij) to S. To
avoid this, the value of rj is obscured by the random value
ajj . As a final step of the protocol, S sums up all reported
values:

total :=
∑

j

rj =
∑

j

∑

i 6=j

aij+ajj mod n =
∑

i

∑

j

aji mod n

This equals the total consumption of all households.

Proofs. Alongside the description of this protocol, [4] in-
cludes a proof of correctness and a proof of a “no leakage”
property. For the former, it is merely noted that each aij is
sent exactly once in a rj message to S (by meter j) and that
the sum of all shares aij over i and j is equal to the total
consumption.

The “no leakage” property states that even if all but two me-
ters are corrupted and act to reveal the uncorrupted meter’s
usage, no information about the latter meters’ readings is
leaked. This is an important result, since it means it is in-
feasible for colluding parties (e.g. S and a number of meters)
to learn the consumption of other meters.

To accurately define this property, a“no leakage game” is de-
fined. The proof relies on the underlying encryption scheme
being IND-CPA secure (which is a formal definition of secu-
rity in context of encryption). It shows that an adversary
who wins the “no leakage game” can also win the IND-CPA-
Game of the encryption scheme.3 Presenting this proof is
beyond the scope of this paper. Instead, we will discuss
disadvantageous design choices of the protocol in the next
paragraph and present a variation of the protocol addressing
these problems in the next section.

Discussion. The “No-Leakage Protocol” is a protocol be-
tween a local station (operated by the provider) and indi-
vidual household meters. It gives smart meters more control
over the process of aggregation and limits the information
that providers can learn. It therefore fits well the author’s
paradigm “Power to the Meter” which could be interpreted
to be contrary to the status quo, which gives “Power to the
Provider”.

3The paper does not discuss the underlying encryption in
detail, but mentions Paillier’s cryptosystem as being IND-
CPA secure.
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Taking power from the provider makes it more difficult for
them to learn anything about a household’s real-time con-
sumption, but depending on the adversary model, it does
not make it impossible. In the “Power to the Meter” setting
proposed by the protocol’s authors, meters are assumed to
be trustworthy. In a scenario where the utility or grid oper-
ator is assumed to be the adversary trying to extract real-
time usage data, this is a dubious assumption. Providers
could influence the trusted computing base of smart meters,
making all smart meters corrupted and thus violating the
premise required for the security proof.

If all meters are corrupted, a naive way for them to leak
usage information while following the protocol is to let each
smart meter i set aij = 0 for all i 6= j and aii = mi. Then the
actual consumption is revealed to the station S. To counter
this attack, one might allow the user (i.e. household resi-
dents) to monitor the connection between their smart meter
and S. The users would be able to detect such a simple at-
tack. However, there are more sophisticated attacks, where
detection is not possible. For example, aij for all i and j
s.t. i 6= j might be chosen from a pseudorandom sequence
that is available to all the smart meters and the local sta-
tion S. Each Mi uses these pseudorandom values, and sets
aii in a way such that over all j, aij add up to mi (as the
protocol demands). To learn the consumption by meter j,
S has to subtract the sum of all aij over i, s.t. i 6= j from
rj (these aij values are known to S, since they belong to
the pseudorandom sequence that S and all meters share).
The user monitoring the message exchange cannot distin-
guish between a honest smart meter using random values
and a malicious smart meter that uses pseudorandom val-
ues known to the utility to leak high-frequency data.

If smart meters are assumed to be untrusted, then they can-
not be trusted with creating random shares. Therefore, we
propose that the user provides the random values used in
the computation. We will present such a protocol, under
the paradigm “Power to the User” in the next section. The
protocol aims at protecting privacy, even if all of the meters
are corrupted.

It should be noted that in a setting where smart meters are
assumed to be untrusted, their accuracy while recording con-
sumption data is also in question. For example, the smart
meter might over- or underreport actual usage during the
real-time data aggregation protocol or the billing protocol.
This however, can be detected, at least with some effort.
For example, old electromechanical meters could be oper-
ated in sequence to the smart meter. Readings could then
make any deviation of the smart meter apparent.4 Such an
ability of detecting a dishonest smart meter is not possible
in the “No-Leakage” setting, since it is not possible to distin-
guish randomness from pseudorandomness using statistical
methods.

3.2.4 User-controlled aggregation protocol
We propose modifications to the protocol, which lead to a
new protocol under the “Power to the User” paradigm. The
principal concepts are:

4The meter’s own consumption has to be taken into account
when comparing the meters.

1. Introduce the user Ui as a third party to meters and
the local station.

2. Allow message exchanges between a smart meter and
the local station only via the user.

3. Let the user and the corresponding smart meter each
carry out the same computations as in the original
protocol, with the user providing the random numbers
and encryption parameters.

4. In particular, do so for message encryption: There is
a shared key pair (spk, ssk) between the user and the
meter. Both smart meter and user have the shared
secret key ssk. The key pair is created by the user and
then shared with the meter. The encryption scheme
used is homomorphic.

5. Let the meter verify the correctness of the user’s com-
putations and let it use digital signatures to certify
correctness and for integrity protection of the reported
shares. This is based on a different key pair (pk, sk)
for which the private key is available only to the meter
and not the user.

6. Include counters in signatures to protect against replay
attacks.

Figure 2 shows the full protocol flow. We do not display the
protocol’s initialization, where public keys are distributed to
all parties and where all parties check whether enough me-
ters participate in the protocol. Some parts of the protocol
are simplified to reduce the complexity. For example, we
did not include the fact that Ui will send parameters of the
underlying encryption scheme to Mi, so that both parties
get the same ciphertext.

The counters d1, d3 and d3 are not formally defined. They
provide protection against message replay attacks. Their
values should not overlap (so that signatures of one step of
the protocol can’t be used for other steps). If there is a du-
plicate or missing d value, the protocol should be aborted
(we rely on lower-level mechanism to ensure reliable trans-
port). If signature verification fails at any step for any party,
the protocol should be aborted as well.

Discussion. Our protocol makes the message flow between
the meter and the station transparent to the user. It also
aims at eliminating intentional leaks by meters, by letting
the user provide random values. Making assertions on the
protocol’s properties (such as non-leakage) requires rigor-
ous security proofs. Unfortunately, these are not as easy as
in the original “No-Leakage” protocol. Introducing a third
party and a variety of possible adversaries (meters, users,
the local station or any combination) makes a formal anal-
ysis more difficult. The complexity of the protocol is also
higher, as indicated by the increased number of steps and
the signature checks required.

We will therefore only give a short account of what a secu-
rity proof might show. In contrast to the original protocol,
our version takes into account the case, in which all meters
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S U i M i
mi←−−−−−

Pick ai1, . . . aiN
For j, j 6= i : yij := encspkj (aij)

aij ,yij−−−−−−−−→
For j, j 6= i :
y′ij := encspkj (aij)
Verify y′ij = yij , mi =

∑
j aij

sigij := signski(d1, yij)
sigij ,d1←−−−−−−−−

yij ,sigij ,d1←−−−−−−−−−−−
Verify d1 and sigij for all yij
si :=

∏
j 6=i yji = encspki(

∑
j 6=i aji)

sigsi := signskS (d2, si)
si,sigsi,d2−−−−−−−−−−→

si,sigsi,d2−−−−−−−−−−→
Verify d2 and sigsi for si Verify d2 and sigsi for si
r′i := decsski(si) + aii ri := decsski(si) + aii

sigri := signski(d3, ri)
ri,sigri,d3←−−−−−−−−−−

Verify d3, ri = r′i
and sigri for ri

ri,sigri,d3←−−−−−−−−−−
Verify d3 and sigri for ri
total :=

∑
i ri

Figure 2: Flow of the proposed user-controlled aggregation protocol

are malicious. We assume that meters record usage data ac-
curately, since this is a property verifiable by the user (using
a second meter, as discussed above).5

Most important for user privacy is that no consumption in-
formation leaks, even if meters and the local station collude.
This should hold even if a number of users are part of the
collusion. The protocol will not be able to protect the user
if he is the only honest party. As with the original pro-
tocol, the utility can simply subtract all the other meters’
readings from the total consumption to get the uncorrupted
user’s data.

Users should also not be able to distort the aggregated read-
ing in any way, that is to manipulate the shares such that
the total computed by S is not the sum of the individual
readings. Integrity protection is introduced for this purpose.

If this protocol indeed has the properties described above,
then it is an important improvement over the original pro-
tocol described in [4]. Not only is the user able to prevent
his meter from leaking information, she can also use the
real-time data herself, for her own analysis and purposes.

3.3 Billing

5Unnoticeably small modifications by the meter of its read-
ings could be used to encode information into the usage re-
ports, if they are not rounded to a lower precision. It might
therefore be necessary to include into the protocol prepro-
cessing (quantization) of usage data.

In contrast to real-time aggregation of data, it can be as-
sumed that in billing, each party has a profound interest in
manipulating the data, since it affects the final bill. The
bill is in its simplest form a sum that is owed by the con-
sumer to the provider. As with the aggregation protocol, it
is necessary to provide protection against replay attacks.

In this section, we will sketch a protocol proposed by A. Rial
and G. Danezis in [12]. They use homomorphic encryption,
zero-knowledge proofs and commitment schemes, to build a
secure and privacy-preserving billing system. In conformity
with our approach for real-time aggregation systems, this
protocol gives the user a great amount of control over the
data.

It should be noted that a very simple protocol would create
the bill entirely inside the smart meter’s trusted computing
platform. The bill then is sent over a trusted line to the
provider. This has two disadvantages. First of all, it requires
that the smart meter carries out all of the computations –
which might include billing according to complex tariffs – all
in a low-powered, tamper-resistant environment. Secondly,
it gives great power to the meter and does not enable the
user to verify the data herself, or to do her own computations
using the high-frequency data. In contrast, the protocol
proposed only requires adding digital signatures to the meter
outputs. Everything else for computing the bill is handled
by a computer (untrusted by the utility) under the user’s
control.
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System and design goals. Beside providing security to the
provider, the protocol should also provide security to the
user. This means, under the assumptions that the individual
signed readings are correct, that the provider cannot wrong-
fully claim to be owed a different sum under a certain tariff
than what is actually owed. The user’s privacy is the sec-
ond important design goal, which means that the provider
should not learn any high-frequency data. Lastly, meters
should not be required to carry out complex calculations,
except signing high-frequency reading outputs. As with our
real-time data protocol, they only have a data connection
to the user, and not the power company or grid operator
directly.

The following is the setting which we assume to be in place:

• Meter M outputs the consumption cons during a time
interval and other as information associated with the
reading (for example, the time).

• Υ is a publicly known tariff policy, i.e. a pricing func-
tion that takes as an input (cons, other) and outputs
a price. This function is signed by the provider P and
sent by it to the user U .

• The tariff policy can be linear (fixed price for each
consumption unit during a specific time) or cumulative
(price for each consumption unit may depend on how
much has been consumed).

• The sum on the bill is calculated by applying the pric-
ing function during each reading and adding up the
price of the individual readings. The total on the bill
is calculated by the user and sent to the utility, along-
side a proof that the total was computed using the
meter’s readings.

• Each party creates a key pair and distributes its public
key to other parties.

Various cryptographic primitives are used in the protocol,
which will be presented.

Commitment schemes. A commitment scheme is a cryp-
tographic scheme, where a party can commit to a certain
value, without immediately revealing the value. It can later
open the commitment by revealing the committed value
and the commitment’s unique opening. The distinctive fea-
ture of commitments is that it’s not possible to find a two
value/opening pairs that yields the same commitment. Af-
ter a commitment is opened, all other parties can be assured
that the value used for the opening was the value that was
committed to.

A classical example for a useful application is the rock, pa-
per, scissors game. Using commitment, each party can com-
mit to a certain value and reveal the commitment’s opening
along with the committed values only after all commitments
are public.

The protocol discussed here uses a homomorphic commit-
ment scheme.

Zero-knowledge proofs. A proof of knowledge of some
value that does not reveal the value itself, is called a zero-
knowledge proof. It is a protocol between a prover and a
verifier. Proofs can either be interactive, requiring message
exchanges between both parties (such that the verifier can
send challenges to the prover), or non-interactive, consisting
of a single message by the prover. The protocol presented
here uses non-interactive zero-knowledge proofs.

Protocol flow. For each reading tuple (cons, other), the
meter M creates a commitment to cons and a commitment
other. It then creates a digital signature, using its own
private key, over (d, com(cons), com(other)) (where d is a
counter) and sends this signature along with the value d,
the commitments and their the openings cons and other to
the user.

The billing protocol is initiated at the end of the billing
period to create a final bill from the individual (cons, other)
readings and the pricing policy Υ. The entire calculation
of the bill, and proof of its correctness, happens outside the
smart meter, i.e. on the user’s home computer. After the
bill has been transmitted to the utility alongside a proof
of correctness, the utility verifies the bill and charges the
customer with the total on the bill.

For each tuple (cons, other) by the meter, the user cre-
ates a commitment to the price price := Υ(cons, other). It
then creates a non-interactive zero-knowledge proof π of: (1)
knowledge of the signed commitment’s opening. (2) knowl-
edge of the opening for the committed price, (3) knowledge
of a digital signature by the provider P on (cons, other, price)
with which the provider certified that Υ(cons, other) = price.

Next, the user uses the homomorphic property of the com-
mitment scheme to aggregate the price commitment, pro-
ducing a commitment com(total). The user transfers both
the commitment and the opening to this total sum com(total)
and (total) to the utility. It also includes individual price
commitments and the zero-knowledge proofs π. The entire
message is signed by the user.

The provider verifies the user’s signature on the message,
the meters signature on (d, com(cons), com(other)) tuples
and the proofs π. Afterwards it uses the homomorphic op-
eration on the price commitments to get a commitment for
the total price. It compares this to com(total) and verifies
if the user-reported total and opening opens the aggregated
price commitment. Finally, via the counter d it is verified,
if the user did include exactly the readings for the billing
period.

The protocol requires that the user can be asked by the
provider to give up some (cons, other) tuples, by providing
the openings to the committed values.

Outlook. The construction used by Rial and Danezis is too
complex to fully explain in this paper. The same holds for
the consideration of different tariff structures and the se-
curity proofs. However, the sketched protocol flow above
outlines for which part of the protocol the cryptographic
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primitives presented above are required. It also shows, that
while difficult, creating privacy-preserving billing protocols
that allow for tariff computations outside smart meters is
feasible.

4. CONCLUSIONS
In this paper, we have presented and discussed several so-
lutions to the challenges brought up by smart meter tech-
nology. While current smart meters deployments largely ig-
nore risks for the user’ privacy, the results above show that
these threats are substantial. We have argued that the prob-
lems are not of the form of an unresolvable conflict between
privacy and the benefits that smart meters are claimed to
introduce. To the contrary, over the past years a number
of researchers have presented sophisticated approaches to
deal with problematic high-frequency data. Even though
providers are reluctant to share their requirements for real-
time data collection, researchers are able to make educated
guesses about which data is actually needed.

For the case of real-time data collection, we have seen three
different proposals. While preprocessing helps to reduce the
severity of the issues at hand, it does not fundamentally re-
solve them. As for the second approach, we argued that
a protocol requiring that providers do not collude in or-
der for privacy protections to be effective, provides little
protection when adveraries are government agencies. The
“No-Leakage” protocol presented is a promising approach to
protect privacy while enabling real-time data collection. In-
stead of distributing the control over multiple providers, the
control is given to the smart meters. Thus, in order for
information to leak, almost all meters have to be corrupted.

This seems like a satisfying result, until one considers the
influence that providers exert over the smart meter deploy-
ment. Attacks on privacy by providers who roll out cor-
rupted (i.e. backdoored) smart meters to their customers
form an adversarial model overlooked in the protocol’s de-
sign. In such a scenario, the data protection mechanism fails.
Worse yet, the user is unable to detect attacks. Without in-
spection of the software running on the tamper-resistant de-
vice, the user cannot decide whether the smart meter leaks
data or honestly follows the protocol. This holds even if she
is able to read all messages exchanged between the smart
meter and the provider.

To protect the user against such attacks, we proposed a pro-
tocol similar to “No-Leakage”, with the difference, that the
user is in control. She provides the randomness used in the
encryption key and the random shares. To prevent misuse,
the smart meter verifies the correctness of the user’s calcu-
lations and protects their integrity with a digital signature.

The protocol aims at ensuring privacy even if smart meters
behave maliciously. However, more research is required to
subject the protocol to a thourough security analysis and to
make formally proven statements on its properties.

A further topic of research is the distribution of public keys
to all parties. A public-key infrastructure with certificate
authorities scales well, but has problems: If certificate au-
thorities are run or controlled by providers, then trust can-
not be established, since they are assumed to be possible

adversaries. The users for one substation live in close prox-
imity, such that alternatively a personal key exchange and
a web-of-trust model might be feasible.

Lastly, we looked at the billing use case. There, security and
privacy were in conflict in particular, since each party has
an interest in manipulation of the bill. While it was only
possible to sketch one approach in the restricted scope of
this paper, it became apparent that complex tariffs can be
implemented in a privacy-preserving manner.

The architectures both of the billing protocol and our ag-
gregation protocol follow the “Power to the User” paradigm.
We argued that in order for customers to have confidence in
the protection of their privacy, it does not suffice to transfer
control from the providers to the meters. The user must
not only be able to read the message exchange, but act as
an active participant in the protocols. Although further re-
search is required to refine, evaluate and formally analyze
the protocols presented in this paper, they are promising
approaches for secure and privacy-preserving smart meters
systems.
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