
Performance evaluation of TCP flows

Florian Hisch
Advisor: Fabien Geyer

Innovative Internet Technologies and Mobile Communication SS 2014
Lehrstuhl Netzarchitekturen und Netzdienste

Fakultät für Informatik, Technische Universität München
Email: hisch@in.tum.de

ABSTRACT
The behavior of different TCP algorithms has been subject
to researchers over the past two decades. Various models
have been developed to suit diverse network and traffic struc-
tures. This paper presents some of those analytic models
and compares them with respect to their assumptions and
validation techniques. It also classifies the given models and
finally investigates their applicability on different network
types.

Keywords
TCP modeling, Fluid model, IEEE802.11, AQM, congestion
control

1. INTRODUCTION
Several analytic TCP (Transmission Control Protocol) mod-
els, like [3], [5], [7], [12], [14], [15], [16] and [17], have been
proposed in the last decades. This amount of different mod-
els is justified by the fact that over 90% of network traffic is
transported by TCP.
The models are used to show and improve some TCP char-
acteristic like the throughput, responsiveness or TCP friend-
liness. Models are also used to estimate the overall perfor-
mance of a network topology. [10]

The large amount of different TCP models necessitate a
comparison and survey on the assumptions and validation
techniques. This paper reviews the outcome made by Khal-
ifa et al.[10]. It updates their results on the basis of more
recent developments and extends them with models for wire-
less networks. The rest of this paper is structured as follows:
Section 2 gives an overview about TCP and Active Queue
Management (AQM). The models are classified in Section 3
and discussed (in order of assumptions and network restric-
tions) in Section 4. A comparison of their applicability in
different network topologies is made in Section 5. Conclu-
sions are given in Section 6.

2. OVERVIEW OF TCP AND AQM
The Transmission Control Protocol (TCP) is one of the most
used transport protocols (ISO/OSI level 4). In contrast to
UDP (User Datagram Protocol) it’s called a ‘connection-
oriented’-protocol, because it establishes a bidirectional con-
nection between two end-points.

The protocols on network level (ISO/OSI level 3), such as
IP, are packet oriented. These packets can arrive in any or-
der, duplicated or can be even dropped by any point in the
network. Latter will be simply called a packet loss. These
losses are neither reported to the packet source nor to its
destination.
A TCP connection is used to ensure the data exchange
and comes therefore with several features like Three-Way-
Handshake, Sequence-Numbers and Acknowledgments. It
also tries to address two major issues in networking: flow
control and congestion control.

The data to be send is organized in a Sliding Window, that
limits the amount of data which can be send at once. All
bytes (octets) get a consecutive sequence number which is
also used to identify the packets on network level. The
source sends wnd (window size) bytes into the network.
Those bytes are combined to segments which are acknowl-
edged by the receiver with its sequence-number.

Flow control makes sure that the source never sends a higher
amount of data than the receiver can handle. A field in the
TCP header shows the current space in the receiver-buffer
rwnd.
Congestion control assumes that the probability of an IP-
packet loss because of a transmission error is, thanks to
channel-coding, very low (approx. 10−9 with 8b10b coding
and Cat-5e cable) [18]. Most losses occur due to network
congestion and thus induced packet drops. The congestion
control uses a Congestion Window to determine how many
bytes the network could handle. The size of this window is
labeled cwnd. [4]

The size of the Sliding Window wnd is the minimum of the
Receiver Window rwnd and Congestion Window cwnd. All
reviewed papers assume that the Receiver Window rwnd is
as big as possible. That said, the Sliding Window size is
only related to the Congestion Window cwnd.

Many RFCs, like [9], [19] or [2], suggest different algorithms
to calculate cwnd. They have the most impact on the
throughput of TCP flows and are therefore described in the
following.

Seminars FI / IITM SS 2014,
Network Architectures and Services, August 2014

79 doi: 10.2313/NET-2014-08-1_11

t in
rounds

RTT T1 T2 T3 T4 T5

1 2 3 4 5 6 7 8 9 10 11 12

IW

cwnd in segments

DACK
Timeout DACK

Figure 1: Example: TCP Congestion Window during Initial Slow Start and Congestion Avoidance (TCP
Reno like). Horizontal dashed line is the current threshold ssthresh. IW marks the initial window and RTT
the round-trip-time. DACK stands for: triple Duplicated ACK arrived.

TCP Slow Start
The Congestion Window cwnd is initially set to a small de-
fault value, e.g. iw = min(4 · SMSS,max(2 · SMSS, 4380))
in bytes [9]. The SMSS is the size of the largest segment
that the sender can transmit.

For each acknowledged packet, the Congestion Window in-
creases by one SMSS. Thus, the window grows roughly ex-
ponential by cwnd(t+1) = cwnd(t)+SMSS·cwnd(t) after
cwnd bytes were send. The exact growing policy is subject
to miscellaneous TCP versions like TCP Reno or TCP Ve-
gas .

Slow Start ends and Congestion Avoidance begins when
cwnd exceeds a given threshold ssthresh or when conges-
tion is detected. Latter is observed due to a Timeout or
Duplicated Acknowledgments DACKs.

Congestion Avoidance
During Congestion Avoidance the size of the Congestion
Window increases only linear. TCP Reno for example in-
creases with cwnd = cwnd+SMSS ·SMSS/cwnd for each
received ACK. Doing so, the network load converges to its
maximum in smaller steps to avoid a sudden overload.

ssthresh and cwnd are reduced if congestion was detected.
The exact reduction-behavior depends on the used TCP ver-
sion. TCP Reno for example distinguishes between

ssthresh = cwnd/2
3-Duplicated-ACKs: cwnd = cwnd/2

start with Congestion Avoidance
ssthresh = cwnd/2

Timeout : cwnd = iw
start with Slow Start

Figure 1 shows an example developing of the Congestion
Window size cwnd over the time. At time t = 0 the window
size is given by the initial window IW. In the section 0 <
t < T1 cwnd grows exponential until cwnd > ssthresh

(t = T1). The window increases only linear until three Du-
plicated ACKs (DACKs) are received (t = T2) when cwnd
is halved and ssthresh is adjusted accordingly. TCP is in
Congestion Avoidance phase until t = T3 where a Timeout
(TO) occurred. Again, cwnd and ssthresh are adapted,
but the Timeout has triggered a Slow Start . After reaching
the threshold (t = T4), TCP is back in Congestion Avoid-
ance again.

Fast Retransmit / Fast Recovery
A Duplicated ACK could be generated when the packets
arrive out-of-order. This can be caused by full buffers, a
re-ordering of network packets or a replication of the data
packet or the ACK itself. RFC 5681 suggest to use a ‘fast
retransmit’ algorithm to detect Duplicated ACKs and to
perform an immediate retransmission of the lost data.

After this retransmission, the ‘fast recovery’ algorithm sends
new data ignoring Duplicated ACKs until a non-duplicate
ACK is received. [2] recommends, not to perform Slow Start
but to artificially inflate the Congestion Window. This is
legitimate because the Duplicated ACKs state that there
were already packets received, which don’t participate in
the network traffic anymore. If ACKs for the previously
missed packets arrive, the Congestion Window is deflated to
its original size before Fast Retransmit was done.

Active Queue Management
Buffers are used by routers to accommodate stress peaks
in traffic and to keep a reserve, so that the link doesn’t go
idle [20]. Has the buffer reached his maximum amount of
packets, further received packets have to be dropped. The
method of simply fill and drop the rest is known as Taildrop
algorithm.

Floyd et al. [8] show that the behavior of Taildrop leads
to an oscillation between nearly idle and highly congested
due to TCP flow synchronization. Active Queue Manage-
ment (AQM) algorithms tries to avoid this synchronization

Seminars FI / IITM SS 2014,
Network Architectures and Services, August 2014

80 doi: 10.2313/NET-2014-08-1_11

by a more ‘intelligent’ dropping policy. RED (Random Early
Detection) calculates for every incoming packet a drop prob-
ability. Doing so, a packet can be randomly dropped even if
the buffer would have enough space to handle it. Enhance-
ments of RED consider QoS (Quality of Service) factors to
calculate the drop probability which prefer real-time flows
like VoIP.

3. TCP MODEL CLASSIFICATION
Khalifa et al. [10] introduce three different classes for TCP
models. The first one characterizes a TCP flow by its av-
erage throughput. The second class pays attention to the
interaction between TCP flows, whereas the last class deals
with TCP dynamics.

This paper presents a new classification, which distinguishes
between Single connection models (SCM), Multiple connec-
tions models (MCM) and Fluid models.

3.1 Single connection models
This class observes a single TCP flow and its throughput in
a single bottleneck network. Padhye et al. [15] give a model
for the steady-state TCP Reno throughput of bulk transfers.
This model was used by Parvez et al. [16] to develop a model
for the more up-to-date TCP version NewReno. Cardwell et
al. [5] introduce in contrast to the above ones, a model for a
short-lived TCP flow. The papers [16] and [5] are reviewed
more in detail below.

Three-Way-Handshake
The Three-Way-Handshake is used to establish the connec-
tion between two TCP endpoints. [5] et al. consider two
phases:

• The initiating host sends i ≥ 0 SYN packets until the
(i+ 1)-th SYN arrives successfully. The probability of
a successful packet transfer is pf (forward probability).

• The receiver of the SYN packets answers with j ≥
0 SYN/ACK packets until the (j + 1)-th SYN/ACK
arrives successfully. The probability of a successful
packet transfer is pr (reverse probability).

Let Ph(i, j) the probability of having a successful Three-
Way-Handshake with exact i respectively j packet losses (see
above).

Ph(i, j) = pir · (1− pr) · pjf · (1− pf)

The probability that the latency Dh, of a general Three-
Way-Handshake, is t seconds or less, is

P [Dh ≤ t] =
∑

Dh(i,j)≤t
Ph(i, j)

where Dh(i, j) is the latency for exact i and j losses. Dh(i, j)
is given as

Dh(i, j) = RTT + (2i + 2j − 2) ·Ds
RTT describes the average round trip time between the two
points of the TCP flow. Ds is the minimum waiting time for

a answer during Three-Way-Handshake. This time doubles
with every try.

Cardwell et al. [5] present an approximation of the expected
handshake time for loss rates low enough that most Three-
Way-Handshakes succeed before TCP gives up.

E[Dh] = RTT +Ds ·
(

1− pr
1− 2pr

+
1− pf
1− 2pf

− 2

)
(1)

Initial Slow Start
After a successful Three-Way-Handshake, TCP starts with
an Initial Slow Start . Cardwell et al. [5] observe two cases:
The first one lets the Congestion Window increase unlim-
ited, whereas the second case gives a maximum window size
Wmax. To compare this model to the other ones, Wmax will
be set to infinity.

Let E[Sss], the expected number of data segments send be-
fore a loss occurs, be

E[Sss] =

(
S−1∑

k=0

(1− p)k · p · k
)

+ (1− p)S · S

=
(1− (1− p)S(1− p)

p
+ 1

where S is the total amount of data to be send in the whole
TCP flow and p the probability for a segment loss. p does
not distinguish between forward and reverse probability any-
more.

cwnd increases during Slow Start with

cwndi+1 = cwndi + cwndi/b

= γ · cwndi

with γ = (1 + 1/b) and w1 as the initial window size.

The time needed to send all segments in a Congestion Win-
dow is further referred as a ‘round’.

i = logγ

(
Si(γ − 1)

w1
+ 1

)

is the count of rounds needed to send Si segments.

The formulas for i and E[Sss] lead to the expected time to
send E[Sss] data segments during Slow Start:

E[Dss] = RTT · logγ

(
E[Sss](γ − 1)

w1
+ 1

)
(2)

Congestion Avoidance / Fast Recovery
TCP distinguishes two ways to detect a packet loss: Triple-
Duplicate-ACKs (DACK) and Timeouts (TO). Parvez et al.
[16] derive a model without Timeouts (NoTO) first and ex-
tends it with the missing behavior later.

The evolution of the Congestion Window during Congestion
Avoidance and Fast Recovery can be modeled as statistically

Seminars FI / IITM SS 2014,
Network Architectures and Services, August 2014

81 doi: 10.2313/NET-2014-08-1_11

identical cycles. Those cycles consists of several rounds, like
the ones described above. Each cycle (CAFR) combines a
Congestion Avoidance period and a Fast Recovery period.
The throughput of one of those cycles is given as

E[TNoTO] =
E[SCAFR]

E[DCAFR]

where E[SCAFR] is the expected number of successfully trans-
mitted segments and E[DCAFR] the duration for this period.

Parvez et al. [16] use, besides the packet loss probability p,
also a segment loss rate q within a loss event. This indicates
how many segments relative to all segments in a round are
affected by a packet loss. During the Three-Way-Handshake
and the initial Slow Start, q was set to 1, meaning that if a
packet loss occurs, all segments in that round are lost.

The expected amount E[m] of uniformly spaced drops in a
window of size W can be obtained as

E[m] =

W−3∑

m=1

m · f(m− 1,W − 1, q)

=

W−3∑

m=1

m ·
(
W

m

)
· qm−1 · (1− q)W−m

≈ 1 + (W − 1) · q ≈ 1 +W · q
The upper border for the sum W − 3 is valid, as there has
to be a DACK. f(m−1,W −1, q) is obviously the Binomial
probability mass function.

E[SCAFR] and E[DCAFR] can be split in a Linear Increase
(LI), β and Fast Recovery (FR) phase. For example
E[SCAFR] = E[SLI] + E[Sβ] + E[SFR].
The most interesting value is E[SFR], because of the inflation
respectively the deflation of the Congestion Window . Each
DACK increases cwnd by one segment. This behavior leads
to the possibility that during Fast Recovery not only missing
(lost) data is transmitted, but also new data. If m > W

2
,

TCP will not transmit any new data. Parvez et al. [16]
obtain

E[SFR]m≤
W
2 =

m∑

j=1

(
W

2
−m+ j − 1

)
=
m

2
· (W −m− 1)

E[SFR]m>
W
2 =

m−1∑

k=m−W
2

+1

(
W

2
−m+ k

)
=
W 2

8
− W

4

E[SFR] =

W
2∑

m=1

f(m− 1,W − 1, q) · Sm≤
W
2

FR

+

W−3∑

m=W
2

+1

f(m− 1,W − 1, q) · Sm>
W
2

FR

≈ W 2

2
(q − q2) +

W

2
(1− 5q + 3q2)− (1− 2q + q2)

where f(m − 1,W − 1, q) is again the Binomial probability
mass function.

The remaining expressions of those phases are:

E[SLI] =
W∑

i=W
2

i =
3

8
W 2 +

3

4
W

E[Sβ] =
W

2

E[DLI] =

(
W

2
+ 1

)
· RTT

E[Dβ] =
RTT

2
E[DFR] = E[m] · RTT ≈ (1 +Wq) · RTT

With the expressions above the total terms E[SCAFR] and
E[DCAFR] are:

E[SCAFR] =

(
3

8
+
q

2
− q2

2

)
W 2 +

(
7

4
− 5q

2
+

3q2

2

)
W −

(
1− 2q + q2

)
(3)

E[DCAFR] =

(
W

2
+Wq +

5

2

)
RTT (4)

The formulas above need an approximation for the Conges-
tion Window size W . The size can be expressed in terms of
p and q as

W ≈ 10pq − 5p+
√
p(24 + 32q + 49p

p(3 + 4q)
(5)

To extend the NoTO model and to include also the Time-
out case, Parvez et al. [16] adapt their throughput ex-
pression given in (6). pTO is the probability that a loss
leads to a Timeout. E[DCA] + E[DTO] + E[DSS] combines
a Congestion Avoidance (CA) phase with the Timeout it-
self and the consecutive Slow Start (SS) phase. From the
NoTO model follows that E[DCA] = E[DLI] + E[Dβ] and
E[SCA] = E[SLI] + E[Sβ]. Since TCP forgets all outstand-
ing packets after a Timeout, E[Sβ] = E[Dβ] = 0 and thus
E[SCA] = E[SLI] respectively E[DCA] = E[DLI].

The derivation of pTO has to be split up in pTO = pDTO +
pIFR, a direct Timeout during Congestion Avoidance and
a Timeout during Fast Recovery. First one is detected by
more than W − 3 segments are lost. From the Binomial
probability mass function f follows

pDTO =
W∑

m=W−2

f(m− 1,W − 1, q)

The latter case probability derivation is rather complex and
includes several assumptions (see section 4). Therefore only
the result is presented

pIFR =

W−3∑

m=1

f(m− 1,W − 1, q)
[
1− (1− p)mW

2

]

Seminars FI / IITM SS 2014,
Network Architectures and Services, August 2014

82 doi: 10.2313/NET-2014-08-1_11

E[TFull] =
(1− pTO)E[SCAFR] + pTO(E[SCA] + E[STO] + E[SSS])

(1− pTO)E[DCAFR] + pTO(E[DCA] + E[DTO] + E[DSS])
(6)

The total probability for a Timeout is given as

pTO = 1−
W−3∑

m=1

f(m− 1,W − 1, q)
[
(1− p)mW

2

]
(7)

Obviously TCP transmits no new data during a Timeout,
thus E[STO] = 0. T0 is the initial Timeout duration which
doubles with each try. So, the Timeout of the i-th retrans-
mission is Ti = 2i−1T0. The probability that an i-th retrans-

mission is needed, is pi−1

1−p (geometric series). The total time
spend during the Timeout is

E[DTO] = T0
1 + p+ 2p2 + 4p3 + 8p4 + 16p5 + 32p6

1− p

In the following Slow Start phase, the Congestion Window
starts with size 1 and doubles each round until it reaches
W
2

. Similar to the derivation of the Initial Slow Start phase
follows

E[SSS] = 1 + 2 + 4 + . . .+
W

4
= 21+log W

4 − 1

E[DSS] =

(
log

W

4
+ 1

)
RTT

With the expressions above the total terms SFull and DFull

are:

E[SFull] =

1

p
+

W 2q

1 +Wq
(8)

E[DFull] =

E[N] · RTT + pTO

(
(1 + 2p+ 4p2)T0 +

(
1 + log

W

4

)
RTT

)
(9)

where E[N] =
(
W
2

+ 3
2

+ (1− pTO)(1 +Wq)
)
.

Model for Short-Lived Transfers
Many TCP flows in today’s Internet, transport only a small
amount (less than 10 KB) of data and will therefore never
leave the Slow Start phase. Cardwell et al. [5] used this
statistical information to derive a model which focuses on
the Three-Way-Handshake and Slow Start.
The throughput of a Short-Lived TCP transfer is approxi-
mated by:

E[Tshort] =
S

E[Dss] + (S−E[Sss])
E[TFull]

(10)

The exact expression given by Cardwell et al. [5] also con-
sider the delays E[Dloss] and E[Ddelack] which are caused by
the first loss and delayed ACKs (Nagle algorithm).

3.2 Multiple connections models
This class observes many TCP flows and their through-
put in a multiple bottleneck network. Firoiu et al. [7]
are using their results in the single bottleneck case to de-
rive also a model for the steady-state TCP throughput in
larger networks. In contrast to Single connection models
is a detailed analysis of startup effects (e.g. Three-Way-
Handshake) due to the parallelism of the many TCP flows
not possible. Though, heterogeneous traffic, like TCP and
UDP, and Active Queuing Management (e.g. RED) can be
modeled additionally.

Because of the similarity of Multiple connections models
to Single connection models, a detailed derivation of the
throughput is skipped. Nevertheless, the throughput at the
k-th link in the network is given by

Tk
({
{qm}i,j

}
k

)
=

{fi}k∑

i

ti ({qk}) +

{uj}k∑

j

rj
(
p′
)

(11)

with the average queue length on link k qk and p′ the overall
drop rate over multiple bottlenecks. ti(.) and rj(.) is the
throughput of the i-th TCP flow and j-th UDP flow. The
total throughput of the whole network is the sum over all

Tk
({
{qm}i,j

}
k

)
.

3.3 Fluid models
Fluid models use adjacency matrices to define a network. It
distinguishes between Sources and Links, which both have a
different view on the traffic. This can be used to model not
only TCP’s congestion control but also some Active Queuing
Management (AQM).

Network model
A typical approach is to define a set L of links with finite
capacities c = (cl, l ∈ L). Sources are centralized in the set
S and every of these sources can use Ls ⊆ L of links. To
connect the links with the sources a routing matrix

Rls =

{
1, if l ∈ Ls
0, otherwise

(12)

is defined. Each source is associated with its transmission
rate xs(t), whereas the links are associated with a congestion
measure pl(t) ≥ 0 at time t. Using the routing matrix Rls
the following expressions can be derived:

yl =
∑
sRlsxs(t) aggregated source rate at link l

qs =
∑
lRlspl(t) end-to-end congestion for sources

y(t) = Rx(t)

q(t) = RT p(t)

Seminars FI / IITM SS 2014,
Network Architectures and Services, August 2014

83 doi: 10.2313/NET-2014-08-1_11

Like in reality, a source s can only observe its own traffic
rate xs(t) and the end-to-end congestion qs(t). Link l can
only observe its own congestion pl(t) and the flow rate yl(t).

To model the adjustments on transmission rate and conges-
tion measure Low [14] uses three state functions F,G,H.
They are defined as

xs(t+ 1) = Fs(xs(t), qs(t)) (13)

pl(t+ 1) = Gl(yl(t), pl(t), vl(t)) (14)

vl(t+ 1) = Hl(yl(t), pl(t), vl(t)) (15)

The internal state vector vl(t) gives the opportunity to store
information, such as queue lengths. A specific set of F,G,H
functions is the essential part of a Fluid model. It contains
the whole behavior of TCP (F) and AQM (G,H).

To get a steady-state, the F,G,H functions above shall reach
an equilibrium point (x, p) so that xs = Fs(xs, qs). To get
the end-to-end congestion in the specific equilibrium point,
an additional function fs is defined with qs = fs(xs) > 0.
This can be used to identify the equilibrium point without
congestion (xs, 0). Obviously Fs(xs, 0) = xs and fs(xs) = 0.
The existence of these equilibrium points is subject to sev-
eral assumption respectively conditions and not all Fluid
models can comply with all [17].

To determine the overall performance of the network in a
steady-state equilibrium point, a utility function for each
source s is defined as

Us(xs) =

∫
fs(xs)dx, xs ≥ 0

This utility function can be used to maximize the aggregated
utility given by an equilibrium point xs by

max
x≥0

∑

s

Us(xs), subject to Rx ≤ c (16)

under the premise that the flow rate y = Rx(t) never exceeds
the capacities c.

(F,G,H)-models
Some definitions that are used in the following are adjusted
from the original papers to suit the definitions made in pre-
vious models:
Let Ws be the Congestion Window size of source s and let
RTTs be the equilibrium round-trip time which is assumed
to be constant. The average source rate xs(t) is defined by
xs(t) = Ws(t)/RTTs, since the time is discrete and is on the
order of several round-trip times.

Exemplary derivation of a F model for TCP Reno:
Since Fluid models can only observe the steady-state of the
network, Three-Way-Handshake and Slow Start are no sub-
ject. One variant of TCP Reno halves the Congestion Win-
dow every time congestion is detected. This congestion de-
tection is done by ‘marks’. Let pl(t) be the current marking

probability at link l, then the end-to-end loss probability is

qs(t) =
∑

l

Rlspl(t)

This definition is only valid if 0 ≤ qs(t) ≤ 1, so the prob-
abilities pl have to be small enough. On average, source s
receives x(t)(1 − qs(t)) positive acknowledgments per unit
time. Each positive ACK increases Ws by 1/Ws(t) (Con-
gestion Avoidance). The x(t)qs(t) negative ACKs (marks)
per unit time halves the Congestion Window. In total, the
Congestion Window changes on average by

xs(t)(1− qs(t)) · 1

Ws(t)
− xs(t)qs(t) · 1

2
· 4Ws(t)

3

The TCP Reno algorithm in Fs(xs(t), qs(t)) shape is given
as

xs(t+ 1) = Fs(xs(t), qs(t))

=

[
xs(t) +

1− qs(t)
RTT2

s

− 2

3
qs(t)x

2
s(t)

]+
(17)

Using the F function above, the fs(xs) = qs function for
TCP Reno is

qs =
3

2x2sRTT2
s + 3

=: fs(xs)

and the utility function Us(xs) can be expressed as

Us(xs) =

√
3/2

RTTs
tan−1

(√
2

3
xsRTTs

)
(18)

With only one internal state in the functions G,H, it is
not possible to model abrupt changes in the queuing behav-
ior. For example, there is only an approximation for Drop-
Tail since the dropping immediately starts if the buffer is
full. Dropping algorithms like RED (Random Early Drop)
and REM (Random Exponential Marking) which are more
‘smooth’, can be modeled without any discrepancy. Exem-
plarily derivation of a G,H model for RED:

RED consists of two internal variables, the current queue
length bl(t) and the average queue length rl(t), which is
calculated with a factor α ∈ (0, 1):

bl(t+ 1) = [bl(t) + yl(t)− cl]+

rl(t+ 1) = (1− αl)rl(t) + αlbl(t)

The marking (loss) probability of the link l is given as a
function of the average queue length rl(t). There are three
additional RED characteristics: bl and bl being a lower /
upper threshold and ml ∈ (0, 1) being a value to adjust the
stringency. If ml is nearly 0, RED will start dropping some
packets if the queue is longer than bl. If ml is nearly 1, RED
will drop every packet if the queue length exceeds bl. The
exact expression for the RED dropping behavior is:

pl(t) =





0, rl(t) ≤ bl
ml

bl−bl
(rl(t)− bl), bl ≤ rl(t) ≤ bl

1−ml

bl
(rl(t)− bl), bl ≤ rl(t) ≤ 2bl

1, otherwise

Seminars FI / IITM SS 2014,
Network Architectures and Services, August 2014

84 doi: 10.2313/NET-2014-08-1_11

To write the formulas above in the G,H form, the internal
state vector hast to be:

pl(t+ 1) = Gl(yl(t), pl(t), vl(t)) (19)

v(t+ 1) =

(
bl(t+ 1)
rl(t+ 1)

)
= Hl(yl(t), pl(t), vl(t))

=

(
[bl(t) + yl(t)− cl]+
(1− αl)rl(t) + αlbl(t)

)
(20)

4. ASSUMPTIONS AND VALIDATION
Before making any assumptions, there is not a generally
accepted TCP implementation. The RFCs describing the
behavior of TCP are full of recommendations and thus TCP
implementations vary very much. Therefore, assumptions
have to be made to define the TCP environment. These
assumptions can be categorized in classes regarding the Data
Transfer, End Points and Network.

Data Transfer
The availability of the data to be sent is one of the first as-
sumptions made during the modeling process. Usually, it is
assumed that the application layer generates the data with-
out any latency. This assumption is only true if the applica-
tion can generate data faster than the TCP connection can
send it. Compared to nowadays communications technolo-
gies (Ethernet, Wifi, ...), computer memory and CPUs are
rarely the bottleneck in TCP transfers. Tough, for special
cases, like the direct point-to-point high speed connection
(e.g. via Gigabit LAN), the transmit queue may run empty.

Most of the paper propose a predefined amount of data or
rather the Data transfer length d. Knowing this length, it
is possible to estimate how much the initial TCP behavior
(Three-Way-Handshake, Initial Slow Start) affects the over
all throughput. Is d rather small (around 10 KB), Short-
Lived models like [5], which consider the initial TCP behav-
ior, are more accurate than the Steady-State models. Those
ignore the start-up effects and simplify their model by con-
sidering only Congestion Avoidance and Fast Recovery al-
gorithms.

Fluid models are Steady-State models with an unlimited
amount of data. They can give no statement, how much
data is needed to reach the equilibrium point of the net-
work. To get an approximation for the needed data length
or the time to reach this point, expressions from the Single
connection models can be used.

End Points
TCP implementations and TCP versions vary, as already
mentioned, very much. This affects especially the conges-
tion control. Three different TCP versions are referred in
the papers: TCP Tahoe (1988), TCP Reno (1990) respec-
tively TCP NewReno (1999) and TCP Vegas (1995-2005).
TCP Reno is the version, which is implemented in the most
operating systems. [1]

Most papers give their model in different variations for the
loss detection algorithms of some of the TCP versions. Ad-
ditional assumptions regarding the End Points are

• the average number of segments acknowledged by a
single ACK,

• the size of one segment,

• the size of the window limitation (the size of the Re-
ceiver Window), which can be also set to infinity, and

• timing constraints (duration of initial Timeout, Three-
Way-Handshake Timeout , ...).

A common assumption is to neglect additional algorithms
like the Nagle algorithm and silly window syndrome.

Network
Since TCP is theoretical independent from the network layer,
it can be used on any network topology. Nevertheless TCP
throughput is always a function of the loss probability p
which depends on the used network. Hence, models never
specify the exact topology, but are more accurate in a certain
network category. These categories can be distinguished by
means of tethered / wireless connections and whether there
are single or multiple bottlenecks.

A typical assumption (found in all reviewed models) is to
neglect transmission and processing delays. Further, the
round-trip time RTT is assumed to be independent from
cwnd and in most cases even constant. Doing so, the model
becomes less complex, because a variable RTT would add an
additional stochastic process. This assumption is however
not justifiable, since nobody knows how the TCP packets
are routed through the network, fragmented or delayed by
Active Queuing Management. Even TCP itself has to mea-
sure the RTT during the whole connection time to adjust
the Retransmission Timeout duration RTO to the current
network situation. Hence, RTT cannot be assumed to be
constant.
Wired networks, especially those with only direct links (no
switches), have a small RTT with a little variance. Most
network layers for wireless networks (e.g. 802.11x, Wire-
less LAN) use CSMA/CA, which contains a random waiting
time after a collision has occurred. Thus, wireless connec-
tions have a bigger RTT with a higher variance.

Table 3 summarizes some of the characteristics of all re-
viewed models.

Model Validation
All models have to be proofed, how accurately they re-
produce the reality. They can be validated by comparing
the calculated throughput with results from: simulations,
controlled measurements under conditions that suit the as-
sumptions and live measurements from the Internet. Table 1
shows some of the advantages and disadvantages of the said
validation methods. Table 2 shows the validation methods
used by the miscellaneous papers.

Seminars FI / IITM SS 2014,
Network Architectures and Services, August 2014

85 doi: 10.2313/NET-2014-08-1_11

1
2

n

R1 R2

1
2

n

bottleneck

Figure 2: Single bottleneck layout. n sources and
sinks are connected via a single link which has more
incoming data than it can transmit.

5. APPLICABILITY
None of the models is applicable to every network topol-
ogy. The applicability can be defined on the basis of some
assumptions. Table 4 shows the network restrictions that
can be derived from the assumptions. For example, if the
RTT is expected to be constant, the network topology has
to be tethered or contains not more than one single wireless
hop. This relation can be explained by the used physical
layers (mostly Ethernet respectively 802.11x) and especially
by the different CSMA variants (Collision Detection / Col-
lision Avoidance).

Most models consider a single bottleneck. This is however
given only in small networks. Firoiu et al. [7] define that a
link is a bottleneck when the arrival rate of incoming packets
is higher than service rate (departure rate), and the packets
are enqueued. Thus, a network topology has to be like figure
5 to be called single bottleneck. Typical networks are more
complex and hence contain multiple bottlenecks. The tran-
sition of a single to a multiple bottleneck model and their
resulting (relative) error is shown in [7]. Fluid models con-
sider multiple bottlenecks per default as there are all link
capacities known.

6. CONCLUSION
This paper presents an extended overview of TCP models
based on the previous summary made by Khalifa et al. [10].
It classified the models in Single connection models, Multi-
ple connections models and Fluid models, compared them
and surveyed their validation and applicability.

Single connection models (SCM) can reproduce TCP in a
microscopic way (considering Three-Way-Handshake, Slow
Start, Congestion Avoidance and Fast Recovery) but loose
accuracy in complex networks with multiple bottlenecks.
Multiple connections models (MCM) extend SCM and are
used in complex networks with multiple bottlenecks. They
reproduce the steady-state throughput of many TCP flows
and can model heterogeneous traffic (e.g. TCP and UDP
flows). In contrast, Fluid models observe only the macro-
scopic behavior of TCP but is accurate also in complex net-
works. Fluid models can be easily extended to consider Ac-
tive Queuing Management.

The comparison showed that most of the models are only val-
idated by simulation. The complex behavior of TCP, with its
not standardized implementations, can generate side-effects
which lower the simulated throughput. Only two models
have been validated by live measurements in the Internet.
Future models should be validated especially by live mea-
surements and comparisons to existing models, to show their
achievements.

The current extensive growth of wireless networks require
new models for the TCP throughput. Most of the reviewed
models assume characteristics of a tethered network which
makes them inaccurate in wireless (especially Ad-Hoc) net-
works. Future models have to consider both network types.

7. REFERENCES
[1] A. Afanasyev, N. Tilley, P. Reiher, and L. Kleinrock.

Host-to-host congestion control for TCP. IEEE
Communication Surveys and Tutorials, 12(3):304–342,
July 2010. (2012 The IEEE Communications Society
Best Tutorial Paper Award).

[2] M. Allman, V. Paxson, and E. Blanton. TCP
Congestion Control. RFC 5681 (Draft Standard),
Sept. 2009.

[3] E. Altman, K. Avrachenkov, and C. Barakat. A
Stochastic Model of TCP/IP with Stationary Random
Losses. SIGCOMM Comput. Commun. Rev.,
30(4):231–242, Aug. 2000.

[4] A. Badach and E. Hoffmann. Technik der IP-Netze -
TCP/IP incl. IPv6 - Funktionsweise, Protokolle und
Dienste, 2. erw. Aufl. Carl Hanser Verlag, München,
2007.

[5] N. Cardwell, S. Savage, and T. Anderson. Modeling
TCP latency. In INFOCOM 2000. Nineteenth Annual
Joint Conference of the IEEE Computer and
Communications Societies. Proceedings. IEEE,
volume 3, pages 1742–1751 vol.3, Mar 2000.

[6] V. Firoiu, J.-Y. Le Boudec, D. Towsley, and Z.-L.
Zhang. Theories and models for Internet quality of
service. Proceedings of the IEEE, 90(9):1565–1591, Sep
2002.

[7] V. Firoiu, I. Yeom, and X. Zhang. A framework for
practical performance evaluation and traffic
engineering in IP networks. IEEE ICT 2001, 2001.

[8] S. Floyd and V. Jacobson. Random early detection
gateways for congestion avoidance. Networking,
IEEE/ACM Transactions on, 1(4):397–413, Aug 1993.

[9] V. Jacobson, R. Braden, and D. Borman. TCP
Extensions for High Performance. RFC 1323
(Proposed Standard), May 1992.

[10] I. Khalifa and L. Trajkovic. An overview and
comparison of analytical TCP models. In Circuits and
Systems, 2004. ISCAS ’04. Proceedings of the 2004
International Symposium on, volume 5, pages
V–469–V–472 Vol.5, May 2004.

[11] X. Lan, S. Li, and S. Zhang. Network Coded TCP
throughput Analysis in Wireless Mesh Networks. In
Mobile Ad-hoc and Sensor Networks (MSN), 2013
IEEE Ninth International Conference on, pages
225–232, Dec 2013.

[12] X. Li, P.-Y. Kong, and K.-C. Chua. TCP Performance

Seminars FI / IITM SS 2014,
Network Architectures and Services, August 2014

86 doi: 10.2313/NET-2014-08-1_11

in IEEE 802.11-Based Ad Hoc Networks with Multiple
Wireless Lossy Links. Mobile Computing, IEEE
Transactions on, 6(12):1329–1342, Dec 2007.

[13] Y. Liu, F. Lo Presti, V. Misra, D. Towsley, and Y. Gu.
Fluid Models and Solutions for Large-scale IP
Networks. SIGMETRICS Perform. Eval. Rev.,
31(1):91–101, June 2003.

[14] S. Low. A duality model of TCP and queue
management algorithms. Networking, IEEE/ACM
Transactions on, 11(4):525–536, Aug 2003.

[15] J. Padhye, V. Firoiu, D. F. Towsley, and J. F. Kurose.
Modeling TCP Reno Performance: A Simple Model
and Its Empirical Validation. IEEE/ACM Trans.
Netw., 8(2):133–145, Apr. 2000.

[16] N. Parvez, A. Mahanti, and C. Williamson. An
Analytic Throughput Model for TCP NewReno.
IEEE/ACM Trans. Netw., 18(2):448–461, Apr. 2010.

[17] Q. Peng, A. Walid, and S. H. Low. Multipath TCP
Algorithms: Theory and Design. SIGMETRICS
Perform. Eval. Rev., 41(1):305–316, June 2013.

[18] E. Stein. Taschenbuch Rechnernetze und Internet. Mit
94 Tabellen. Fachbuchverl. Leipzig im
Carl-Hanser-Verl., München, 3., neu bearb. aufl.
edition, 2008.

[19] W. Stevens. TCP Slow Start, Congestion Avoidance,
Fast Retransmit, and Fast Recovery Algorithms. RFC
2001 (Proposed Standard), Jan. 1997. Obsoleted by
RFC 2581.

[20] D. Wischik and N. McKeown. Part I: Buffer Sizes for
Core Routers. SIGCOMM Comput. Commun. Rev.,
35(3):75–78, July 2005.

Seminars FI / IITM SS 2014,
Network Architectures and Services, August 2014

87 doi: 10.2313/NET-2014-08-1_11

Table 1: Advanteges and disadvanteges of model validiation methods
advantages disadvantages

simulation full knowledge on the environment not simulated side-effects can affect
throughput in reality

all characteristics observable (e.g. queue
lengths on all routers)

simulation and model fails can compensate
each other

measurement recording does not falsify the
results

TCP implementation can differ from real
implementation in operation systems

controlled measurements partial knowledge on the environment, but
enough to ensure the assumptions

high effort to control the network environ-
ment

real-world side-effects affect the results measurement recordings partially falsify the
result, because of additional traffic

live measurements model can be validated against the reality small knowledge of the environment (topol-
ogy is rather complex)

Table 2: Model validation techniques.
Model Simulations Controlled meas. Live meas. Comparison

Padhye [15] Yes Yes No None
Cardwell [5] Yes Yes Yes [15]
Firoiu [7] Yes No No None
Low [14] Yes No No None
Liu [13] Yes No No None
Altman [3] No Yes No [15]
Li [12] Yes No No None
Parvez [16] Yes Yes Yes [15]
Peng [17] Yes No No [14]

Table 3: Summary of the models. The TCP algorithms are Three-Way-Handshake (TWH), Initial Slow
Start (ISS), Congestion Avoidance (CA) and Fast Recovery (FRC). Losses are detected by Triple Duplicated
ACKs (DACK) or Timeouts (TO). CA1 and DACK1 represent that Fluid models observe only the macroscopic
behavior of TCP. 2: Firoiu et al. introduce a SCM and a MCM, which means that TWH and ISS are only
modled in the SCM.

Model Type Based on Lengths TCP algorithm Loss detection Data/ACK Losses AQM

Padhye [15] SCM Long-lived CA DACK, TO Bursty/None Taildrop
Cardwell [5] SCM [15] Short/Arbitrary TWH, ISS, CA DACK, TO Bursty/SYN only Taildrop

Firoiu [7] MCM2 [15], [5] Arbitrary TWH, ISS, CA DACK, TO Bursty/SYN only RED

Low [14] Fluid Long-lived CA1 DACK1 /None RED, REM

Liu [13] Fluid Long-lived CA1 DACK1 Bursty/None RED
Altman [3] SCM [15] Long-lived CA DACK, TO Stationary/None Taildrop
Li [12] SCM Long-lived CA, FRC DACK, TO Bursty/None Taildrop
Parvez [16] SCM [15] Long-lived CA, FRC DACK, TO Adjustable/None Taildrop

Peng [17] Fluid [14] Long-lived CA1 DACK1 Bursty/None RED

Table 4: Assumptions and the validity on different network types. A X marks wether the RTT vaiance or
the Loss probability variance is small or large.

RTT Losses
small large small large

single bottleneck
tethered X X
wireless X X

multiple bottleneck
tethered X X
wireless X X

Seminars FI / IITM SS 2014,
Network Architectures and Services, August 2014

88 doi: 10.2313/NET-2014-08-1_11

