
Determinism for Ethernet flows in industrial networks

Lukas Grillmayer
Advisor: Fabien Geyer

Seminar Innovative Internet Technologies and Mobile Communications (IITM) SS2014
Chair for Network Architectures and Services

Department of Informatics, Technische Universität München
Email: lukas.grillmayer@tum.de

ABSTRACT
Due to technological advances, network architectures must
handle a growing amount of exchanged data and number of
connections. This results in increasingly complex systems.
In the domain of industrial systems, it is necessary to provide
performance guarantees for large networks. This includes
bounded end-to-end latency, bounded end-to-end jitter, and
maximum buffer usage.

This paper presents the analytic approach of Network Cal-
culus by providing a basic theoretical background and ap-
plying it to simple systems. Finally it is shown how Network
Calculus can be applied to Ethernet and AFDX (Avionics
Full Duplex Switched Ethernet) networks.

Keywords
Determinism, Industrial Networks, Network Calculus, Eth-
ernet, AFDX

1. INTRODUCTION
Networks enable communication between numerous compu-
tational devices and are omnipresent in today’s world. As
technology advances the amount of electronic communica-
tion partners and quantity of exchanged data increases dras-
tically. This results in new challenges and requirements for
a network infrastructure as the competition for network re-
sources increases. Within the scope of this paper a network
is considered to be a system which can be divided into sub
systems such as servers or buffers. The effects of lacking
resources are easily observable in the domain of real-time
applications, where computer science differentiates between
soft and hard systems. For example VoIP internet telephony
is considered a soft system as a loss of frames will only re-
sult in degraded service quality, even system failure does not
impose a major problem. In contrast, an aircraft autopilot
is a hard real-time system. If a deadline is missed and sen-
sor data arrives too late at the autopilot, the entire system
might fail and endanger human lives as well as the physical
environment [8].

Industrial networks often deploy custom software and hard-
ware to achieve compliance with a set of requirements, needed
for hard real-time applications. In other words, industrial
networks must be deterministic. In order to provide guar-
antees, these networks need to be analyzed towards their
worst-case behavior. Common approaches are Network Cal-
culus, queuing networks simulation, and model checking [9].

This paper uses deterministic Network Calculus as described
by Jean-Yves Le Boudec [3], who also provided two short
tutorials on network calculus [1, 2].

The following section presents Network Calculus, a collec-
tion of theorems which forms a tool to analytically determine
performance bounds for systems. This section introduces
fundamental properties of networks and provides background
information of the proposed mathematical framework. Sec-
tion 3 discusses how Ethernet technology can be adapted
to suit hard real-time applications and shows how Network
Calculus can be applied to Avionics Full Duplex Switched
Ethernet (AFDX).

2. NETWORK CALCULUS
Network calculus is an algebraic framework to describe and
analyze fundamental properties of integrated service net-
works. It provides insight into network flow problems, to
form an understanding of e.g. window flow control, schedul-
ing, and buffer dimensioning. Using network calculus a sys-
tem can be analyzed towards compliance to given perfor-
mance constraints, i.e. required for real-time applications
[3].

2.1 Basics
In contrast to traditional system theory network calculus op-
erates on the Min-Plus algebra (also referred to as Min-Plus
dioid, Min-Plus semiring or < min,+ >) where addition
is the computation of the minimum and multiplication is
addition [1].

Convolution and deconvolution of two functions f and g are
defined as follows [1]:

(f ⊗ g)(t) = inf
0≤s≤t

{f(t− s) + g(s)} (1)

(f � g)(t) = sup
u≤0
{f(t+ u)− g(u)} (2)

A data flow in a system is measured in data units per time
interval, e.g. bit/s. It is characterized by a non-decreasing
function R(t) ∈ F , whereas t ∈ R+ denotes time [1, 4]:

F =
{
f : R+ → R+, ∀t ≥ s : f(t) ≥ f(s), f(0) = 0

}
(3)

As an entire network is hard to model, it can be abstracted as
a system consisting of numerous smaller subsystems, which
are easier to analyze. Every system has an input flow R(t),
and an output flow R∗(t). While processing data it imposes

Seminars FI / IITM SS 2014,
Network Architectures and Services, August 2014

73 doi: 10.2313/NET-2014-08-1_10



a (variable) delay d(t) on an input flow. The amount of data
traversing a system at time t is called backlog R(t)−R∗(t).
For a loss-less system this is defined as follows whereas τ
denotes the time window width [4, 3]:

d(t) = inf {τ ≥ 0 : R(t) ≤ R∗(t+ τ)} (4)

An example for a simple system S is a FIFO queue (or
buffer), which experiences a constant input rate r, thus the
input flow is characterized by R(t) = rt. The output flow
is denoted as R∗(t) = R(t + d(t)). Figure 1 illustrates this
with r = 10Mbit/s and d(t) = 5s.

0 2 4 6 8 10
0

20

40

60

80

100

delay

b
a
ck

lo
g

time (in seconds)

d
a
ta

(i
n

M
b
it

s)

R(t)

R∗(t)

Figure 1: Illustration of input and output flow

2.2 Arrival Curves
Requirements for industrial networks commonly ask for guar-
antees for data flows. For a data flow R(t) this can be mod-
eled by an arrival curve α(t) ∈ F with t ≥ 0. R(t) is limited
by α(t) if for all s ≤ t [3]:

R(t)−R(s) ≤ α(t− s) (5)

This is equal to:

R(t) ≤ inf
0≤s≤t

{α(t− s) +R(s)} = (α⊗R)(t) (6)

For example let R(t) have an arrival curve of α(t) = rt then
the flow is ”peak rate limited” by rτ for any time window τ .
In case of a constant arrival curve α(t) = b the flow will not
accept more than b data ever.

As this representation assumes a loss-less system, affine ar-
rival curves are commonly used to model the concept of leaky
buckets. In this analogy a flow is represented as a bucket,
which is leaking fluid (data) at a constant rate when not
empty. Data is poured into the bucket. If additional data
causes the bucket to overflow, the excess data is marked
as ”non-conformant” and will be discarded or buffered. An

affine arrival curve γr,b with burst tolerance (maximal num-
ber of parallel incoming bits) b and rate r is defined as follows
[1]:

γr,b =

{
rt+ b t > 0

0 t ≤ 0
(7)

In the domain of Integrated services framework of the Inter-
net (Interserv) additional parameters for maximum packet
size M and sustainable rate r are introduced to calculate the
arrival curve. As a result the traffic specification (T-SPEC)
can be given as (p,M, r, b) [1]:

α(t) = min {M + pt, rt+ b} = γp,M (t) ∧ γr,b(t) (8)

2.3 Service Curves
In addition to arrival curves, which have put constraints on
a flow, systems must also offer guarantees to a flow. Gener-
ally this is realized by packet schedulers. Network calculus
represents schedulers as service curves. A system S with
input flow R(t) and output flow R∗(t) offers a service curve
β to the flow if ∀t ≥ 0 ∃t0 ≥ 0 with t0 ≤ t to satisfy the
following [1]:

R∗(t)−R(t0) ≥ β(t− t0) (9)

This is equal to:

R∗(t) ≥ inf
0≤s≤t

{β(t− s) +R(s)} = (β ⊗R)(t) (10)

2.4 Bounds for simple networks
Service and arrival curves can be used to simplify some ex-
pressions. For lossless networks with service guarantees fol-
lowing theorems can be applied to analyze a system towards
guarantees concerning bounded end-to-end latency, bounded
end-to-end jitter, and maximum buffer usage [3].

2.4.1 Backlog Bound
Theorem 1.4.1 (Backlog Bound): Assume a flow, constrained
by arrival curve α, traverses a system that offers a service
curve of β. The backlog R(t)−R∗(t) for all t satisfies:

R(t)−R∗(t) ≤ sup
0≤s≤t

[R(t)−R(t− s) + β(s)] (11)

≤ sup
0≤s≤t

[α(s) + β(t− s)] (12)

2.4.2 Delay Bound
Theorem 1.4.2 (Delay Bound): Assume a flow, constrained
by arrival curve α, traverses a system that offers a service
curve of β. The virtual delay d(t) for all t satisfies:

d(t) ≤ h(α, β) (13)

2.4.3 Output Flow
Theorem 1.4.3 (Output Flow): Assume a flow, constrained
by arrival curve α, traverses a system that offers a service
curve of β. The output flow is constrained by the arrival
curve

α∗ = α⊗ β (14)

Seminars FI / IITM SS 2014,
Network Architectures and Services, August 2014

74 doi: 10.2313/NET-2014-08-1_10



2.5 Applied Network Calculus
This section shows how the network calculus methods pre-
sented above can be applied to a small network.

2.5.1 Example 1 - Single System
Consider a network consisting of one server S with service
curve β10,10, and one traversing flow with arrival curve γ5,25.

0 5 10 15 20
0

20

40

60

80

100

120

delay b
a
ck

lo
g

time

d
a
ta

γ5,25(t)

β10,10(t)

Figure 2: Arrival and service curve of a system

Figure 2 shows the system’s arrival curve and service curve.
The required backlog (or buffer size) of the server can be
computed as presented in subsection 2.4.1. For all t the
backlog bound must satisfy:

R(t)−R∗(t) ≤ sup
0≤s≤t

[R(t)−R(t− s) + β(s)]

≤ sup
0≤s≤t

[α(s) + β(t− s)]

≤ sup
s≥0

[α(s)− β(s)]

≤ sup
s≥0

[γ5,25(s)− β10,10(s)] = 75

The maximum delay (or latency) of the flow can be com-
puted according to subsection 2.4.2. For all t the delay
bound must satisfy:

d(t) = inf {τ ≥ 0 : α(t) ≤ β(t+ τ)}
= inf {τ ≥ 0 : γ5,25(t) ≤ β10,10(t+ τ)}
≤ h(α, β)

≤ h(γ5,25, β10,10)

≤ sup
t
{d(t)} = 12.5

Following equation 5 the constraint of the output flow (ar-
rival curve) is as follows. For all t the arrival curve α∗(t)
must satisfy:

α∗(t− s) ≥ R∗(t)−R∗(s)

≥ R∗(t) + 75 = 5t+ 75

2.5.2 Example 2 - Concatenated Systems
Consider a network consisting of two servers S1 and S2 with
service curve β10,10, and one flow with arrival curve γ5,25
traversing first S1 and then S2.

Some results from subsection 2.5.1 can be reused as the sys-
tem S is equal to S1 now. Thus, the curve of the flow R1(t)
after it has traversed S1 is

R1(t) = 5t+ 75

The curve of the flow after it has traversed S2, that is the
entire system S:

R∗(t) = R1(t) + 75 = 5t+ 150

The latency of the flow after S1:

D1 =
b

R1
+ T1

=
25

10
+ 10 = 12.5

The latency of the flow after S2:

D2 =
b+ rT1

R2
+ T2

=
25 + 5 ∗ 10

10
+ 10 = 17.5

The resulting end-to-end delay D:

D = D1 +D2

= 12.5 + 17.5 = 30

According to the Pay Bursts Only Once theorem [3] the end-
to-end delay D0 of concatenated systems can be improved
as follows. Let R = mini(Ri) and T0 =

∑
i Ti:

D0 =
b

R
+ T0

=
25

10
+ 20 = 22.5

3. ETHERNET
Ethernet was first standardized in 1983 as IEEE 802.3 and is
the most wide spread transmission technology for local area
networks today.

In early Ethernet networks a single coaxial cable was used
as shared broadcast media in a bus architecture. If a con-
nected host wanted to send a message, it had to wait until
the medium is idle. All hosts were part of the same collision
domain and if two hosts sent messages at the same time
a collision occurred which was detected. After a suitable
back-off strategy a host may retransmit the message. This
strategy is referred to as CSMA/CD (Carrier Sense, Multiple
Access, Collision Detection). At this time Ethernet was not
suited for industrial networks as there was no central coordi-
nation for broadcast media access and the back-off interval
increased exponentially plus a randomly chosen number to
time slots, which results in non-deterministic behavior [7].

Over the years the coaxial cables were replaced by twisted
pair copper cables. Common category 5 UTP cables include
two twisted pairs of copper wire (Tx and Rx). In half-duplex

Seminars FI / IITM SS 2014,
Network Architectures and Services, August 2014

75 doi: 10.2313/NET-2014-08-1_10



mode the issues discussed in previous paragraph are not re-
solved since transmissions can still collide and an exponen-
tial back-off algorithm can result in very large transmission
delays [7].

The usage of switches reduced the size of collision domains
significantly. In Full-duplex Mode Ethernet there are dedi-
cated wires for each directions of transmission, thus allowing
simultaneous transmitting and receiving without collisions.
Figure 3 shows an example for full-duplex, switched Ether-
net, in which collisions are impossible but other issues need
to be considered. In theory the Rx and Tx buffers can over-
flow, which results in packet loss. Using Network Calcu-
lus the buffers can be sized adequately to form a loss-less
system. Furthermore, packets may be delayed due to con-
gestion within the switch, which results in an unpredictable
amount of jitter [7].

Figure 3: Full-Duplex Switched Ethernet [7]

In order to apply Network Calculus to actual hardware a
model needs to be derived. To model an Ethernet switch we
need to split the switch into smaller subsystems, which rep-
resent various functionality aspects of an Ethernet switch.

Being overly simplistic we are assuming omniscient knowl-
edge about the network. Now, an unmanaged full-duplex
Ethernet switch with sufficient backplane bandwidth could
be modeled as a single system which adds a (variable) delay
to an input signal. This is the time required to map the des-
tination MAC address to a port and redirect the Ethernet
packet correctly. Of course, this could also be split into more
subsystems. The arrival curve would be determined by the
maximum network speed and the maximum Ethernet packet
size.

3.1 AFDX
In the domain of avionic networks, the Airbus Group de-
veloped an Ethernet derivative based on IEEE 802.3 called
Avionics Full-Duplex Switched Ethernet (AFDX), which is
defined in ARINC 664 section 7 [6, 7]. An example of AFDX
deployment is the Airbus A380. The major difference to reg-
ular Ethernet is the usage of Virtual Links (VL). Portions
of the available bandwidth of the physical link are dedicated
to Virtual Links as illustrated in figure 4. Virtual Links
are unidirectional fixed communication paths from one end
system to one or more end systems.

Figure 4: Three Virtual Links in a physical link [7]

For every VL the maximum packet size smin and minimum
time between two packets BAG is known. This allows for
the formulation of guarantees by means of network calculus
[6, 7]. Exemplary, an arrival curve α(t) for AFDX is defined
as follows:

α(t) = min
{
t, smin +

smin

BAG
t
}

4. TOOL: DISCO DNC
There are only few tools available for network calculus. The
interested reader might want to look at the DISCO Deter-
ministic Network Calculator. This Java library supports
network analysis by means of deterministic network calculus
presented above [5].

5. CONCLUSION
In the domain of industrial networks it is important to for-
mulate performance guarantees. In addition to hardware
constraints this requires the usage to deterministic proto-
cols. As the development and certification of custom appli-
cation specific standards is very expensive a current trend is
to adapt Ethernet to fit the needs. An example for an Eth-
ernet based derivative is AFDX, which adds central coordi-
nation by dedicating network bandwidth to certain commu-
nication paths. Using Network Calculus upper bounds can
be calculated for required buffer size, end-to-end delay, and
end-to-end jitter. It is apparent that upper bounds can only
exist if the underlying model of the system has deterministic
characteristics. Using traffic shapers even non-deterministic
aspects can be modeled in an abstract manner to a certain
extend although this might decrease the significance of the
result. Network Calculus should only be used to analyze
or model a system with hard requirements. The presented
approach might be overly pessimistic as only the worst-case
behavior is considered though it might be very unlikely. In

Seminars FI / IITM SS 2014,
Network Architectures and Services, August 2014

76 doi: 10.2313/NET-2014-08-1_10



order to evaluate the average system performance one should
resort to network simulations.

6. REFERENCES
[1] J.-Y. Le Boudec, P. Thiran: A SHORT TUTORIAL

ON NETWORK CALCULUS - I: FUNDAMENTAL
BOUNDS IN COMMUNICATION NETWORKS, In
IEEE International Symposium on Circuits and
Systems, pages IV-93 - IV95, IEEE, Lausanne,
Switzerland, 2000

[2] J.-Y. Le Boudec, P. Thiran, S. Giordano: A SHORT
TUTORIAL ON NETWORK CALCULUS - II:
MIN-PLUS SYSTEM THEORY APPLIED TO
COMMUNICATION NETWORKS, IEEE, Lausanne,
Switzerland, 2000

[3] J.-Y. Le Boudec, P. Thiran: Network Calculus: A
Theory of Deterministic Queuing Systems for the
internet, Springer, Berlin, Germany, 2001

[4] J.-P. Georges, T. Divoux, É. Rondeau: Network
Calculus: Application to switched real-time
networking, In Proceedings of the 5th International
ICST Conference on Performance Evaluation
Methodologies and Tools, pages 399-407, ICST,
Vandœuvre lès Nancy, France, 2011

[5] DISCO Deterministic Network Calculator, Technische
Universität Kaiserslautern,
http://disco.informatik.uni-

kl.de/index.php/projects/disco-dnc (accessed on
2014/07/01)

[6] C. Fuchs: The Evolution of Avionics Networks From
ARINC 429 to AFDX, In Proceedings of the Seminars
Future Internet (FI), Innovative Internet Technologies
and Mobile Communication (IITM) and Aerospace
Networks (AN), Summer Semester 2012, p.65-76,
Technische Universität München, Munich, Germany,
2012

[7] General Electric: AFDX/ARINC 664 Protocol:
Tutorial, General Electric, Fairfield, CT, USA

[8] Dr. C. Buckl: Echtzeitsysteme WS 2013/14,
Technische Universität München, Munich, Germany,
2013,
http://www6.in.tum.de/Main/TeachingWs20123chtzeitsysteme

(accessed on 2014/07/01)

[9] H. Charara, J.-L. Scharbarg, J. Ermont, C. Fraboul:
Methods for bounding end-to-end delays on an AFDX
network, In Proceedings of the 18th Euromicro
Conference on Real-Time Systems (ECRTS’06),
Toulouse, France, 2006

Seminars FI / IITM SS 2014,
Network Architectures and Services, August 2014

77 doi: 10.2313/NET-2014-08-1_10


