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ABSTRACT
Network interfaces of 10 Gbit/s are used more and more. Despite  
their  high  performance,  packet  processing  rates  are  not 
correspondingly higher. This happens due to the architecture of 
the network stacks and the design of device drivers.  There are 
restrictive factors and overheads which need to be overcome, so 
as to enable fast packet processing with commodity hardware. In 
this paper,  techniques towards this direction are discussed and  
existing  frameworks  which  exploit  combinations  of  them  are 
presented and compared. The frameworks mentioned are divided 
into  two main  categories,  depending  on  whether  they involve 
GPU for the packet processing or not. 
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1. INTRODUCTION
Network  interfaces  have  increased  their  performance  and  10 
Gbit/s  rates  tend  to  be  nowadays commonplace.  However,  the 
increased  performance  of  these  network  interfaces  cannot  by 
itself  guarantee  packet  processing  at  high  speeds.  There  are  
overheads  imposed  by the  network  stacks'  architectural  design 
which was meant to be used with general-purpose hardware.  It 
emphasizes  on  compatibility  and  overlooks  performance  [3]. 
Packet processing can become more efficient  by alternating the 
network stack and without necessitating more powerful hardware 
[15].  This  fact  has  led  to  surveys  concerning  how  general-
purpose  hardware  and  fast  network  interfaces  can be  effective 
regarding packet processing. 10 Gbit/s entail a considerable high 
amount  of  packets  per  second  [16],  which  demands  intensive 
CPU usage,  and the support of packet  processing at  high rates  
without packet losses.

In order to understand which techniques would be beneficial  to 
making  general-purpose  hardware  suitable  for  high  speed 
network applications,  an understanding of its current restrictive 
parameters is required. These factors refer to hardware resources  
limitations and the way that packet processing is organized based 
on  the  network  stack.  Afterwards,  the  presentation  of  widely 
suggested  techniques  which  target  to  avoid  or  decrease  the 
problems resulting from these factors is meaningful.  

Two of the proposed techniques hold a special position. The first  
one is zero-copy technique, which eliminates the overhead of the  
data copy between kernel  and user-space.  It is  implemented by 

the  majority  of  the  existing  frameworks  for  fast  packet 
processing.  The second technique is more recent  and emerging 
and  refers  to  the  exploitation  of GPU to perform parts  of the 
packet processing. 

Frameworks  aiming  to  enable  fast  packet  processing  are 
presented as well as  the way the proposed techniques can be put 
into practice. 

The rest  of the paper is organized as follows: In Section 2, the 
state-of-the  art  New API (NAPI) and the  Click modular  router 
are presented.  Section 3 provides an overview of the factors that  
restrict  the  performance  of  general-purpose  hardware  towards 
packet processing in combination with recommended solutions to 
them.  Section  4  is  about  zero-copy technique  and  frameworks 
that  make  use  of  them  in  order  to  enable  a  faster  packet 
processing. In Section 5, Netslice is presented; a framework that  
uses  neither  zero-copy  technique,  nor  GPU  for  the  packet  
processing.  Frameworks  that  exploit  GPU  processing  are 
presented  in  Section  6.  Finally,  in  Section  7  a  comparison 
between the frameworks,  in terms of the techniques  they  use,  
takes place.  

2. STATE OF THE ART

In  this  section  the  state-of-the  art  in  packet  processing  is 
presented, by the description of the Linux IP stack and its NAPI, 
and the Click Modular Router. This section provides also some 
essential  background  for  network  stacks  and  the  packet  flow 
through them during packet processing.

2.1 LINUX NETWORK STACK AND 
THE NEW API (NAPI)
The Linux network stack is introduced by the description of the  
packet flow which takes place when a packet arrives. This packet  
flow is represented in figure 1. 

The packet arrives at one of the circular receiving queues (RX) 
of the Network Interface Controller (NIC), which are also called 
rings. There, the packet is stored in a data structure, the receiver 
descriptor,  which enables  the copying of data between the NIC 
and  the  main  memory.  The  data  transfer  is  achieved  via  the 
Direct  Memory  Access  (DMA)  mechanism,  which  copies  the 
data to the DMA-able  memory region without the CPU. At this 
point a mechanism is needed to inform the system that a packet  
has been received so as to perform the data transfer between the 
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DMA-able  memory  region  and  the  packet  buffer  that  Linux 
kernel  allocates  for  each  packet.  For  that  purpose,  in  Linux 
network  stack,  an  interrupt-based  mechanism  is  used  and  an 
interrupt is raised at every packet's arrival. Then the packet has 
to be copied from the kernel to user-space [3].

The  interrupt  mechanism is  not  suitable  for  packets  arrival  at 
high  rates,  since  it  causes  the  receive  or  interrupt  livelock 
phenomenon  [2].  This  phenomenon  results  in  reducing  the 
system's  performance  because  all  resources  are  devoted  to 
interrupts  handling  and  not  to  real  packet  processing  related  
tasks [12, 5].

NAPI was introduced in the initial Linux network stack in order  
to  overcome  the  receive  livelock  problem,  by using  a  polling 
mechanism in addition to the interrupts, to exploit their benefits  
at high and low speeds of packet arrival respectively. NAPI can 
interchange these  mechanisms dynamically.  Interrupts  are  only 
enabled for the first packet of a batch. Then a polling mechanism 
gets  periodically  enabled,  to  inspect  the  devices  that  have 
received packets that want to forward to the network stack [19].  
These packets are temporarily stored to the DMA-able memory 
region, waiting for the CPU to become available. The interrupts  
mechanism can be activated again on the condition that there are  
no more available  packets  in  the  DMA-able  memory [3].  This 
hybrid mechanism ensures that when the traffic is low, there will  
be no increased latency due to the interrupts.  In addition, when 
there  is  packet  arrival  at  high  rates  the  polling  mechanism 
ensures: 1) reduced cache misses, 2) reduced I/O overhead, and 
3) better CPU throughput [20]. 

2.2 Click Modular Router
Click  modular  router  constitutes  a  framework  for  creating 
modifiable and flexible routers. Click, which can be used instead 
of the Linux IP stack [11], can be executed in kernel as well as in 
the user-space. Similar to NAPI, Click uses both interrupts  and 
polling mechanism [1]. 

With  Click,  it  is  feasible  to  develop  most  of  the  packet 
processing software  by putting together  elements  in  a  pipeline  

structure [23]. Click's simple architecture is enhanced due to  the 
pull processing and the flow-based router context [13]. 

The  components  of  the  Click  are  called  elements.  They  are  
individual units related to routing and forwarding processing,  for 
instance  filters  and  queues  [11],  which  can  incrementally 
implement  a  router  configuration.  A  router  configuration  is 
defined  as  a  graph,  where  nodes  represent  the  elements,  and 
edges represent  the direction of the packets as they are moving 
through the elements via their input and output ports.  The ports 
are  responsible  for  establishing  the  connection  between  the 
elements.

The  pull  processing,  as  well  as  the  push  processing,  are  two 
functions  that  determine  the  way  in  which  the  elements 
communicate with each other and which entity causes a packet to 
travel  from  one  element  to  another.  According  to  the  push 
processing, the sending element delivers a packet to a receiving 
element, while in the pull processing, it is the receiving element 
which  triggers  the  move  of  a  packet  by  asking  it  from  the 
corresponding sending one. Sending and receiving elements are 
also referred to as upstream element, which are found at the top 
of the pipeline, and downstream element, which are found at the 
bottom of the pipeline structure respectively [23]. An example of 
a  Click router  configuration is  depicted  in  figure 2.  The black 
and  the  white  ports  are  used  to represent  push  and  pull  ports 
respectively.  Queues  are  distinct  entities  in  Click  and  are 
represented  by a distinct element,  the  Queue element.  Such an 
element is the second element of the router configuration.

The second important  trait  of the Click Modular  Router  is  the 
flow-based  router  context.  It  is  information  available  to  an 
element, concerning the path that a packet needs to follow. With 
this information, the element can identify all the other elements  
which constitute the flow of the packet and not only these with 
which it has an immediate link. 

3. FAST PACKET PROCESSING 
TECHNIQUES

Communication links have reached and exceeded the rate of 10 
Gbit/s.  This  fact  raises  the  question,  how can general-purpose 
systems support the huge number of packets that 10 Gbit/s link 
entail  [16].  Therefore,  solutions  that  can  achieve  fast  packet  
processing are needed.

3.1 Fast Packet Processing Impediments
In  [20]  the  following  parameters  are  considered  to  affect  the 
performance of packet processing applications: 1) CPU speed and 
inadequate  utilization,  2)  interrupts  overhead,  3)  limited  bus 
bandwidth in comparison to a  fast  processing unit,  4)  memory 
latency, 5) I/O latency.

Figure 2: Example of a Click router configuration [13]

Figure 1: Linux Network Stack [3]
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In [3], there is a more detailed description of the factors related  
to the first parameter mentioned above, meaning the CPU, that  
restrict  high  speed  packet  processing.  More  specifically  these 
overheads originate from: 1) performing memory allocation and 
deallocation for each packet (per-packet memory allocation), 2) 
overhead  of  copying  data  between  kernel  and  user-space,  3) 
expensive cache misses,  4) per-packet system calls,  because of 
the CPU-intensive context switch between kernel and user-space, 
and  5)  the  transformation  of  the  parallelized  processing  of 
packets by the queues of multi-queue NICs to a serialized one. 
This happens because all packets have to converge to one single 
point, thus creating a bottleneck.

3.2 Techniques against Fast Packet 
Processing Impediments

In [3],  techniques that have been proposed as a countermeasure  
against the limitations and overheads of  packet processing have 
been  presented.  Table  1  associates  the  problems  discussed  in  
Section 3.1 with their  proposed solution.  These techniques  are  
widely adopted by the frameworks that are going to be presented 
in the following sections.

Table 1. Solutions for the CPU-related problems

Problem Solution

Per-packet memory 
allocation

 Memory pre-allocation

Copy of data 
between kernel and 
user-space

Zero-copy techniques

Cache misses Memory affinity, prefetching

System calls
Batch packet processing to reduce 
system calls

Not parallel packet 
processing to the 
whole network stack

Direct paths from NICs to user-space 
that can support parallelism

4. FRAMEWORKS SUPPORTING 
ZERO-COPY TECHNIQUES
4.1 Zero-copy technique
As it has been already mentioned, one significant overhead of the 
packet processing is caused because of the data copies between 
kernel  and  user-space.  To  avoid  data  copies,  a  zero-copy 
technique needs to be applied. The zero-copy technique actually 
refers  to  a  collection  of  techniques  that  reduce  the  copies  
between either kernel and devices or  kernel and user-space [22].

4.2 Netmap
Netmap [16] is a framework that performs packet processing at  
high  speeds  by  reducing  the  avoidable  costs  that  slow  the 
processing down. It enables the applications to gain fast access to 
the  packets.  Netmap  is  independent  of  specific  devices  and 
hardware,  and  is  built  upon  existing  operating  system 
characteristics and applications [15].
 
In  the  figure  3,  the  Netmap  architecture  is  presented.  In 
particular  the  data  structures  that  Netmap  incorporates  in  its 

architecture  are  depicted,  namely packet-buffers,  netmap  rings 
and netmap_if. These data structures are all located to a shared  
memory region which can be accessed both by kernel and user-
space  applications,  so  as  to  avoid  copying  data.  The  shared  
memory region is mapped to all user processes address space via 
the  system  call  mmap()  [17].  It  is  important  that  due  to  the 
contents of the shared memory region, an application running on 
Netmap cannot lead to a kernel crash.

Packet-buffers:   The  packet  buffers  of  Netmap  have  a 
predetermined  size and are  preallocated.  This  reduces the cost 
that per-packet allocations and deallocations entail.  The size of 
the buffer is sufficient for storing packets without fragmentation.  
The packet buffers are used by both netmap and NICs' rings.  

Netmap rings: They are  circular  queues  that  contain metadata 
related  to  the  buffer,  similar  to  NICs  rings.  They  contain 
information like the count of data entries, slots, that the ring can 
store, the count of available buffers and an array of slots. Netmap 
decouples  the NIC rings from the network stack,  and it  allows 
user-space applications to communicate with them separately and 
for different reasons through the netmap rings. More specifically, 
Netmap exploits the speed with which a NIC can transfer packets 
between  the  network and the  memory. Synchronization can be 
achieved  through  operating  system  functions  like  select() and 
poll(). 

Netmap_if: The  netmap_if  data  structure  includes  information 
related to the interface, like how many rings there are.

The presented data structures offer the following advantages: 1) 
reduced  per-packet  cost,  2)  efficient  communication  between 
interfaces and between NIC and network stack and 3) potential 
use of  multi-queue NICs.

4.3 RF_Ring
PF_Ring [14] is a framework that provides fast packet capturing 
and processing. PF_Ring implements zero-copy by avoiding data 
copy between the kernel and the user-space. It achieves that with 
the  use  of  packet  buffers  that  are  found  in  a  memory region 
common  to  the  kernel  and  the  users'  applications  [16].  The 

Figure 3: Netmap Data Structure [14]
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packet  buffers  are  preallocated.  Due  to  this  packet  buffer 
schema, it  avoids the cost of per-packet memory allocation and 
deallocation.  The  basic  elements  that  compose  PF_Ring's 
architecture are:

PF_Ring  kernel  module:  It  is  responsible  for  copying  the 
packets to the PF_Ring circular queues.

PF_Ring  user-space  library:  It  is  through  this  library  that 
PF_Ring kernel module is exposed to user-space applications.

PF_Ring aware drivers: Although PF_Ring is NIC independent, 
which means that it is not based on specific NICs, it can be used  
with  specialized  drivers  too  and  gain  more  in  terms  of 
performance.

4.3.1 PF_Ring DNA (Direct NIC Access)
The  PF_Ring  can  be  used  with  a  specialized  type  of  device 
driver,  namely  DNA,  for  achieving  even  faster  processing 
without the intervention of CPU and the use of system calls [18]. 
PF_Ring provides a mapping between the NIC memory and the 
user-space  memory  and  permits  the  explicit  communication 
between applications and NICs. This can be seen in figure 4. The 
packets  are  transferred  between  the  NIC  and  the  user-space,  
without  the  intervention  of  either  Linux  kernel  or  PF_Ring 
module. In this case, there is only the data copying performed by 
the NIC Network Process Unit (NPU) via DMA, while the copy 
from the kernel packet buffer is omitted.  This is referred to, as  
full zero-copy [3].

Besides the high speed performance that can be achieved by the 
PF_Ring DNA, this approach has two important disadvantages.  
First,  it entails  the risk of  misusing memory addresses  via the  
NIC's DMA engine  and thus leading to a possible system crash  
[16]. Second, its use is limited to one application at a time. [14]

  

4.4 INTEL Data Plane Development Kit
The  Intel  DPDK [7]  is  a  framework  that  provides  fast-packet 
processing to applications related to the data plane part, meaning 
to those applications that are responsible for forwarding packets  
to their applications [21].
 
The framework supports two models for processing the packets.  
It can implement either a run to completion model or a pipeline  
one.  In the  run  to  completion  model,  every processing  unit  is 
allocated to one packet,  which it  completely processes.  All  the 
processing units execute a common application code. Contrary to 
this,  the  processing  units  of  the  pipeline  execute  different 
application code, since they perform a distinct task of the packet 
processing. A packet is not entirely processed by a single thread,  
and it has to be transferred through every processing unit of the 
pipeline.

4.4.1 Intel DPDK Architecture
Environment  Abstraction  Layer  (EAL):   The  framework 
provides libraries for particular environments. It also implements 
the Environment Abstraction Layer in order not to expose details 
concerning  each  environment  to  the  libraries  and  to  the  data 
plane  applications  that  will  use  them.  Through  the  interface 
provided by the EAL, applications can gain access to hardware  
related resources.

More specifically, the EAL 1) allocates memory, 2) devotes cores 
to execution units,  3)  communicates  with  the  PCI bus,  and  4) 
inspects the existence of interrupts.

Figure 4: PF_Ring DNA Architecture [6]
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Core  Components:  The  core  components  define  the  libraries 
offered by Intel DPDK for achieving fast packet processing. 

Table 2. Intel DPDK's core components

library Description

Memory 
Manager

Services for memory allocation

Ring 
Manager

Defines the Ring data structure for storing the 
packets

Memory 
Pool 

Manager

Allocates portions of memory of specific length 
and stores object by using rings

Network 
Packet 
Buffer

Manages packet buffers

Timer 
Manager

Services for scheduling functions

4.4.2 Intel DPDK Fast Packet Processing 
Techniques
The Intel DPDK manages to perform packet processing at high 
speeds due to the following characteristics:

• The  ring  data  structure,  which  is  implemented  as  queue,  
provides faster access and storage than a linked list.  Besides,  it  
diminishes the time needed for time-consuming bulk operations.

• It uses pre-allocated buffers. In fact, there is only one buffer 
for keeping both metadata  information and packet  data  and so 
there is only one memory allocation per-packet. 

• It enables  the cores  to have their  own cache memory and 
limits their accesses to the shared ring of a memory pool, which 
can be CPU-intensive.

• It  reduces  interrupts  overhead  with  the  use  of   the  Poll 
Mode Drivers.
 

5. NETSLICE

In  this  section,  NetSlice  [10]  is  presented.  Contrary  to  the 
solutions  of  fast  packet  processing  presented  in  the  previous  
section,  NetSlice  does  not  take  advantage  of  zero-copy 
techniques.

NetSlice  is  an  operating  system  abstraction  that  attempts  to 
provide high-speed packet processing and runs in the user-space. 
More specifically, it aims to reconcile the benefits of the packet  
processing  applications  that  run  in  the  user-space,  i.e  fault 
isolation  and   programmability,  with  the  performance  of  10 
Gbit/s of current NICs. NetSlice is based on the high coupling of 
software  and  hardware  components  that  are  related  to  packet  
processing. Moreover, it allows these components to be managed 
by the applications and reduces the contention between CPUs. 

NetSlice is based on spatial  instead of temporal  partitioning of 
the  software  and  hardware  components  that  are  relevant  to 
packet  processing,  i.e  of the  memory,  the  CPU cores  and  the 

NICs. By performing such partitioning,  NetSlice  minimizes the 
contention of the shared resources. 

The elementary notion of the NetSlice is the execution context,  
named  NetSlice.  In  fact,  there  is  an  array  of  such  execution 
contexts, in order to provide high parallel  execution, as well as 
keeping contention rates low. 

In  figure  5,  an  array  of  NetSlices  is  depicted.  As  mentioned 
above,  NetSlice  takes  advantage of multi-core and multi-queue 
NICs. In order to support parallel execution at the multiple cores, 
the  multi-queue  NICs  maintain  more  than  one  queue  for 
transmission  and  reception.  The  NetSlice  execution  context 
contains implicitly partitioned resources and the CPU cores and 
NICs  which  are  also  referred  to  as  explicitly  partitioned 
resources.  More  specifically,  each NetSlice  must  have at  least  
two CPU cores. The CPU cores of a NetSlice execution context  
are  classified  into  k-peer,  and  u-peer,  where the in-kernel and 
user-mode tasks are executed correspondingly. Only one of these 
CPU cores, which has been specified to receive the interrupts of 
the queues of the context, is the k-peer CPU and is assigned to 
execute  the  in-kernel  network  stack.  The  user-mode  task  is 
executed in parallel  on the u-peer CPU. The k-peer  and the u-
peer  CPU cores of an execution context are defined as tandem 
CPU  cores,  and  it  is  the  number  of  tandem  CPU  cores  that 
determines the count of the NetSlices. 

NetSlice  also determines  the  path  that  packets  have  to  follow 
from NICs to applications  and  vice versa.  Packets  are  slightly 
processed on the k-peer CPU core, and then they are directed to 
the  user-space  application,  where  they  are  processed  in  a 
pipeline.

NetSlice  is  based  on  the  conventional  socket  API.  More 
specifically,  it  uses  the operations write,  read and poll  for the  
distinct  data  flows of the different  NetSlices.  NetSlice  extends 
the API via the ioctl mechanism. One difference of the NetSlice 
extended API is the batched system calls that it can support.  Due 
to the batching,  NetSlice achieves a reduced number of system 
calls,  and thus  minimizes  the  delays of system calls.  Batching 
results  also  in  a  reduction  of  the  overheads  that  per  packet 
processing poses. 

NetSlice does not exploit the advantages of zero-copy techniques,  
and it does copy the packets from kernel to the user-space. It is  
estimated  that  zero-copy  technique  could  indeed  further 

Figure 5: Array of NetSlices [10]
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ameliorate  the  performance  of  NetSlice.  However,  it  is  not 
implemented in the framework, since it would restrict portability. 

6. PACKET PROCESSING WITH GPUs
6.1  GPU 
The  architecture  of  the  Graphical  Processing  Units  with  the 
hundreds  or  thousands  of cores,  have  resulted  in  their  use  in 
other  applications  too,  except  their  primary  use  in  graphics 
rendering [8, 4]. Highly parallel applications can take advantage 
of  the  ample  computation  cycles  and  the  ample  memory 
bandwidth of  GPUs, higher than that  of CPUs, which enables  
the access to different data sets [8]. Among the applications that  
can be benefited from the highly parallel computing of GPUs are 
applications related to packet processing tasks. 

6.1.1 GPU Overview
Due to the numerous cores that they possess, modern GPUs  have 
gained a massively parallel processing power [23]. A GPU has a 
device  memory,  which  is  explicitly  accessed  by  the  GPU. 
Implicit  access  of  the  host  memory can  be  achieved  through 
DMA  or   through  the  Peripheral  Component  Interconnect 
Express  (PCIe)  bus.  The  PCIe  bus  is  also  necessary  for  the  
communication between GPU and the corresponding host CPU. 
GPUs are based on a SIMT (Single Instruction, Multiple Thread)  
execution model. According to this, many cores have a common 
program counter and threads are executed in parallel.

6.1.2 GPU Benefits in packet processing

GPUs  provide  high  thread-level  parallelism,  while  a  CPU  is  
organized  in  a  way  that  increases  the  instruction-level 
parallelism.  As  a  consequence,  a  GPU,  contrary  to  a  CPU 
achieves to minimize the memory access latency by executing a 
considerable number of threads. 
The significant memory bandwidth of the GPU, can be used for 
memory-intensive tasks. This can be very beneficial particularly 
in cases where the CPU' s memory bandwidth is used for  packet  
I/O. Similarly, the processing power of  the GPU can be used for 
computing-intensive  operations  which  run  on  software  routers 
and thus overcome the bottleneck posed by the CPU.

6.2 PacketShader
PacketShader  [4]  constitutes  a  user-space  framework  for  fast-
packet  processing  that  takes  advantage  of  the  GPU 
characteristics. What increases the speed of the PacketShader is,  
except  the  GPU  computing  power,  the  optimized  packet  I/O 
engine  which  achieves  the  performance  of  10Gbit/s  due  to 
pipelining and batching.

6.2.1 PacketShader Architecture

The architecture of the PacketShader is depicted in the figure 6.  
Its more important components are analyzed below:

Packet  I/O Engine:  PacketShader  does not use the per-packet 
buffer allocation scheme; it develops a new one, namely the huge 
packet buffer.  According to the huge packet buffer scheme, the 
device  drivers  allocate  one  huge  buffer  for  the  metadata  and 
another  one  for  the  real  packet  data.  This  optimized  buffer 
allocation scheme offers two advantages. First, it does not result  
in  CPU  overhead  as  the  per-packet  buffer  allocation  does. 
Second, it reduces per-packet DMA mapping.

GPU  Acceleration  framework: The  nodes  in  the  GPU 
acceleration  framework  are  NUMA  (Non-uniform  memory 
access) nodes and are used to  increase parallelization. According 
to the NUMA model, the time needed to access the memory, is  
related to the position of the physical memory. The nodes contain 
CPUs  with  four  cores.  Three  cores  are  allocated  for  worker 
threads and one for master thread. 

Packet  processing  application: The  packet  processing 
application works with batches of packets instead of individual  
packets and is divided into three tasks, which are performed by 
the methods Pre-Shader, Post-Shader and Shader. 

The  Pre-Shader  method  is  executed  by a  worker  thread.  It  is  
responsible  for packet  classification and for forwarding data  to 
the master thread. While waiting for the master thread to finish  
with the shading, the worker thread is processing the pre-shading 
for the next batch of packets. 

Then the Shader method is performed. The master thread copies 
the data between the  GPU device memory and the host memory, 
and  launches  the  kernel,  i.e  the  code  that  is  executed  by the 
GPU.  The  data  copying and  the  execution  of GPU kernel  run 
concurrently  in  order  to  increase  GPU  performance.  This 
technique  is  known  as  concurrent  copy  and  execution. 
Afterwards,  it  returns  the data  to the worker  thread  where  the  
Post-Shader method takes place. Another technique used in this 
step, for better performance, is the gather/scatter, which enables 

Figure 6: PacketShader Architecture [4]
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the  system to process  multiple  batches  of packets.  The  master  
thread gathers data from the worker threads and after the shading  
processing, scatters them in the corresponding worker threads.

During  the  post-shading,  the  packets  can  get  modified,  
duplicated or discarded and then they are ready for transmission.

6.3 Snap
Snap  [23]  is  another  framework  that  enables  fast  packet  
processing  due  to  both  the  processing  power  of GPU and  the 
modular and flexible architecture of the Click modular router. 

6.3.1 Snap Architecture

Snap exploits  the extended  parallelism that  GPU offers.  In the 
Snap framework, not all  elements  are offloaded to GPUs. Only 
elements  that  result  in  bottlenecks  are  implemented  in  GPUs. 
The other elements are still supported by the CPU as in the Click  
architecture. Besides,  not  all  tasks  of  packet  processing  are 
suitable for highly parallel  processing and therefore GPU is not 
appropriate for them.  

Snap  supports  two  types  of  elements.  The  first  is  the  serial  
element  and  refers  to  Click's  conventional  elements,  meaning 
those  elements  that  fit  in  Snap's  architecture  without  having 
undergone any change.  The second type of elements is the GPU-
based parallel  element that Snap introduces in order to execute 
them in the GPU.  This new type has, except the GPU code, a  
CPU part,  which is responsible for receiving batches of packets  
and  launching  the  kernel.  For  the  communication  of  these  
elements,  which process  single  packets  and batches of packets 
respectively,  a  Batcher  and  a  Debatcher  element  are  needed.  
These elements act as adapters.  The Batcher gathers individual  
packets from a serial element and inputs them in form of batches 
in  a  parallel  element.  Its  opposite  element,  the  Debatcher,  
receives batches of packets from a parallel element and transfers  
the  packets  separately  to  a  serial  element.  By attributing  the  
adapter  functionality  to  specific  elements,  Snap  allows  the 
developer to monitor batching and offloading.

Batching  is  necessary for  achieving  high  performance  through 
GPU processing. Batching in Snap, as well as in PacketShader,  
differs from batching in Click, in that the latter refers to batches 
of elements  that  run on one individual  packet,  while  Snap and 
PacketShader's  batching  signifies  that  a  batch  of  packets  is  
processed by the same element. 

In  order  to  be  able  to  support  this  kind  of  batching,  Snap 
introduces  the  functions  bpull() and  bpush()  that  perform  the 
functionality of pull() and push() methods of Click for batches of 
packets.  These  modified  functions  can be  performed by GPU-
based parallel elements. 

Similarly to the huge buffer allocation scheme that PachetShader 
uses,  Snap uses huge buffers too for the batches of packets.  In 
this way, it reduces per-packet DMA mapping.

As has been mentioned,  GPU cores communicate  only directly 
with  the  device  memory.  Therefore,  copying packets  between 
GPU and  host  memory through  the  PCIe  bus  is  unavoidable. 
Snap diminishes the times that such a copying is necessary and 
consequently the memory overhead by implementing two types of 

elements,  the  HostToDeviceMemcpy and  the 
DeviceToHostMemcpy element and putting them at the edges of 
a sequence of parallel elements. 

Snap  manages  to  overcome the  problem of  packet  reordering 
which  has  been  observed  in  parallel  packet  processing.  This 
happens because it requires that all threads of a parallel element  
that processes a batch of packets must have finished before the 
batch of packets can be processed by the next parallel  element.  
For  avoiding  a  potential  packet  reordering  because  of  the 
asynchronous GPU scheduling, a GPUCompletionQueue element 
is implemented and placed between the  DeviceToHostMemcpy 
and the Debatcher.

7. COMPARISON OF THE 
FRAMEWORKS

In this section, the solutions presented above are compared. More 
specifically a comparative table showing which of the techniques 
discussed  in  the  previous  sections  are  implemented  by  each 
framework, is presented.

8.  CONCLUSION
Commodity network interface cards can achieve the speed of 10 
Gbit/s.  As  a  consequence,  the  need  for  performing  packet 
processing  at  a  corresponding  rate  with  general-purpose 
hardware arose. In this paper, a survey of current techniques for 
high-speed  packet  processing  was  conducted.  The  survey was 
mostly focused on existing frameworks developed for serving fast 
packet processing.  This survey described and compared several 
frameworks  which  provide  fast  packet  processing.  These 
frameworks  actually  manage  to  do  so,  by  applying  proposed 
techniques  to  the  network  stack  and  to  the  way that  packet 
processing  is  performed.  A  newly  proposed  and  emerging 
technique,  that  some recent frameworks have adopted,  involves 
the  incorporation  of  GPU  for  processing  parts  of  packet  
processing.
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