
A Survey of Trends in Fast Packet Processing

Konstantina Tsiamoura
Betreuer: Florian Wohlfart, Daniel G. Raumer

Seminar Future Internet SS2014
Lehrstuhl Netzarchitekturen und Netzdienste

Fakultät für Informatik, Technische Universität München
Email: k.tsiamoura@tum.de

ABSTRACT
Network interfaces of 10 Gbit/s are used more and more. Despite
their high performance, packet processing rates are not
correspondingly higher. This happens due to the architecture of
the network stacks and the design of device drivers. There are
restrictive factors and overheads which need to be overcome, so
as to enable fast packet processing with commodity hardware. In
this paper, techniques towards this direction are discussed and
existing frameworks which exploit combinations of them are
presented and compared. The frameworks mentioned are divided
into two main categories, depending on whether they involve
GPU for the packet processing or not.

Keywords
fast packet processing, GPU packet processing, zero-copy
techniques

1. INTRODUCTION
Network interfaces have increased their performance and 10
Gbit/s rates tend to be nowadays commonplace. However, the
increased performance of these network interfaces cannot by
itself guarantee packet processing at high speeds. There are
overheads imposed by the network stacks' architectural design
which was meant to be used with general-purpose hardware. It
emphasizes on compatibility and overlooks performance [3].
Packet processing can become more efficient by alternating the
network stack and without necessitating more powerful hardware
[15]. This fact has led to surveys concerning how general-
purpose hardware and fast network interfaces can be effective
regarding packet processing. 10 Gbit/s entail a considerable high
amount of packets per second [16], which demands intensive
CPU usage, and the support of packet processing at high rates
without packet losses.

In order to understand which techniques would be beneficial to
making general-purpose hardware suitable for high speed
network applications, an understanding of its current restrictive
parameters is required. These factors refer to hardware resources
limitations and the way that packet processing is organized based
on the network stack. Afterwards, the presentation of widely
suggested techniques which target to avoid or decrease the
problems resulting from these factors is meaningful.

Two of the proposed techniques hold a special position. The first
one is zero-copy technique, which eliminates the overhead of the
data copy between kernel and user-space. It is implemented by

the majority of the existing frameworks for fast packet
processing. The second technique is more recent and emerging
and refers to the exploitation of GPU to perform parts of the
packet processing.

Frameworks aiming to enable fast packet processing are
presented as well as the way the proposed techniques can be put
into practice.

The rest of the paper is organized as follows: In Section 2, the
state-of-the art New API (NAPI) and the Click modular router
are presented. Section 3 provides an overview of the factors that
restrict the performance of general-purpose hardware towards
packet processing in combination with recommended solutions to
them. Section 4 is about zero-copy technique and frameworks
that make use of them in order to enable a faster packet
processing. In Section 5, Netslice is presented; a framework that
uses neither zero-copy technique, nor GPU for the packet
processing. Frameworks that exploit GPU processing are
presented in Section 6. Finally, in Section 7 a comparison
between the frameworks, in terms of the techniques they use,
takes place.

2. STATE OF THE ART

In this section the state-of-the art in packet processing is
presented, by the description of the Linux IP stack and its NAPI,
and the Click Modular Router. This section provides also some
essential background for network stacks and the packet flow
through them during packet processing.

2.1 LINUX NETWORK STACK AND
THE NEW API (NAPI)
The Linux network stack is introduced by the description of the
packet flow which takes place when a packet arrives. This packet
flow is represented in figure 1.

The packet arrives at one of the circular receiving queues (RX)
of the Network Interface Controller (NIC), which are also called
rings. There, the packet is stored in a data structure, the receiver
descriptor, which enables the copying of data between the NIC
and the main memory. The data transfer is achieved via the
Direct Memory Access (DMA) mechanism, which copies the
data to the DMA-able memory region without the CPU. At this
point a mechanism is needed to inform the system that a packet
has been received so as to perform the data transfer between the

Seminars FI / IITM SS 2014,
Network Architectures and Services, August 2014

41 doi: 10.2313/NET-2014-08-1_06

DMA-able memory region and the packet buffer that Linux
kernel allocates for each packet. For that purpose, in Linux
network stack, an interrupt-based mechanism is used and an
interrupt is raised at every packet's arrival. Then the packet has
to be copied from the kernel to user-space [3].

The interrupt mechanism is not suitable for packets arrival at
high rates, since it causes the receive or interrupt livelock
phenomenon [2]. This phenomenon results in reducing the
system's performance because all resources are devoted to
interrupts handling and not to real packet processing related
tasks [12, 5].

NAPI was introduced in the initial Linux network stack in order
to overcome the receive livelock problem, by using a polling
mechanism in addition to the interrupts, to exploit their benefits
at high and low speeds of packet arrival respectively. NAPI can
interchange these mechanisms dynamically. Interrupts are only
enabled for the first packet of a batch. Then a polling mechanism
gets periodically enabled, to inspect the devices that have
received packets that want to forward to the network stack [19].
These packets are temporarily stored to the DMA-able memory
region, waiting for the CPU to become available. The interrupts
mechanism can be activated again on the condition that there are
no more available packets in the DMA-able memory [3]. This
hybrid mechanism ensures that when the traffic is low, there will
be no increased latency due to the interrupts. In addition, when
there is packet arrival at high rates the polling mechanism
ensures: 1) reduced cache misses, 2) reduced I/O overhead, and
3) better CPU throughput [20].

2.2 Click Modular Router
Click modular router constitutes a framework for creating
modifiable and flexible routers. Click, which can be used instead
of the Linux IP stack [11], can be executed in kernel as well as in
the user-space. Similar to NAPI, Click uses both interrupts and
polling mechanism [1].

With Click, it is feasible to develop most of the packet
processing software by putting together elements in a pipeline

structure [23]. Click's simple architecture is enhanced due to the
pull processing and the flow-based router context [13].

The components of the Click are called elements. They are
individual units related to routing and forwarding processing, for
instance filters and queues [11], which can incrementally
implement a router configuration. A router configuration is
defined as a graph, where nodes represent the elements, and
edges represent the direction of the packets as they are moving
through the elements via their input and output ports. The ports
are responsible for establishing the connection between the
elements.

The pull processing, as well as the push processing, are two
functions that determine the way in which the elements
communicate with each other and which entity causes a packet to
travel from one element to another. According to the push
processing, the sending element delivers a packet to a receiving
element, while in the pull processing, it is the receiving element
which triggers the move of a packet by asking it from the
corresponding sending one. Sending and receiving elements are
also referred to as upstream element, which are found at the top
of the pipeline, and downstream element, which are found at the
bottom of the pipeline structure respectively [23]. An example of
a Click router configuration is depicted in figure 2. The black
and the white ports are used to represent push and pull ports
respectively. Queues are distinct entities in Click and are
represented by a distinct element, the Queue element. Such an
element is the second element of the router configuration.

The second important trait of the Click Modular Router is the
flow-based router context. It is information available to an
element, concerning the path that a packet needs to follow. With
this information, the element can identify all the other elements
which constitute the flow of the packet and not only these with
which it has an immediate link.

3. FAST PACKET PROCESSING
TECHNIQUES

Communication links have reached and exceeded the rate of 10
Gbit/s. This fact raises the question, how can general-purpose
systems support the huge number of packets that 10 Gbit/s link
entail [16]. Therefore, solutions that can achieve fast packet
processing are needed.

3.1 Fast Packet Processing Impediments
In [20] the following parameters are considered to affect the
performance of packet processing applications: 1) CPU speed and
inadequate utilization, 2) interrupts overhead, 3) limited bus
bandwidth in comparison to a fast processing unit, 4) memory
latency, 5) I/O latency.

Figure 2: Example of a Click router configuration [13]

Figure 1: Linux Network Stack [3]

Seminars FI / IITM SS 2014,
Network Architectures and Services, August 2014

42 doi: 10.2313/NET-2014-08-1_06

In [3], there is a more detailed description of the factors related
to the first parameter mentioned above, meaning the CPU, that
restrict high speed packet processing. More specifically these
overheads originate from: 1) performing memory allocation and
deallocation for each packet (per-packet memory allocation), 2)
overhead of copying data between kernel and user-space, 3)
expensive cache misses, 4) per-packet system calls, because of
the CPU-intensive context switch between kernel and user-space,
and 5) the transformation of the parallelized processing of
packets by the queues of multi-queue NICs to a serialized one.
This happens because all packets have to converge to one single
point, thus creating a bottleneck.

3.2 Techniques against Fast Packet
Processing Impediments

In [3], techniques that have been proposed as a countermeasure
against the limitations and overheads of packet processing have
been presented. Table 1 associates the problems discussed in
Section 3.1 with their proposed solution. These techniques are
widely adopted by the frameworks that are going to be presented
in the following sections.

Table 1. Solutions for the CPU-related problems

Problem Solution

Per-packet memory
allocation

 Memory pre-allocation

Copy of data
between kernel and
user-space

Zero-copy techniques

Cache misses Memory affinity, prefetching

System calls
Batch packet processing to reduce
system calls

Not parallel packet
processing to the
whole network stack

Direct paths from NICs to user-space
that can support parallelism

4. FRAMEWORKS SUPPORTING
ZERO-COPY TECHNIQUES
4.1 Zero-copy technique
As it has been already mentioned, one significant overhead of the
packet processing is caused because of the data copies between
kernel and user-space. To avoid data copies, a zero-copy
technique needs to be applied. The zero-copy technique actually
refers to a collection of techniques that reduce the copies
between either kernel and devices or kernel and user-space [22].

4.2 Netmap
Netmap [16] is a framework that performs packet processing at
high speeds by reducing the avoidable costs that slow the
processing down. It enables the applications to gain fast access to
the packets. Netmap is independent of specific devices and
hardware, and is built upon existing operating system
characteristics and applications [15].

In the figure 3, the Netmap architecture is presented. In
particular the data structures that Netmap incorporates in its

architecture are depicted, namely packet-buffers, netmap rings
and netmap_if. These data structures are all located to a shared
memory region which can be accessed both by kernel and user-
space applications, so as to avoid copying data. The shared
memory region is mapped to all user processes address space via
the system call mmap() [17]. It is important that due to the
contents of the shared memory region, an application running on
Netmap cannot lead to a kernel crash.

Packet-buffers: The packet buffers of Netmap have a
predetermined size and are preallocated. This reduces the cost
that per-packet allocations and deallocations entail. The size of
the buffer is sufficient for storing packets without fragmentation.
The packet buffers are used by both netmap and NICs' rings.

Netmap rings: They are circular queues that contain metadata
related to the buffer, similar to NICs rings. They contain
information like the count of data entries, slots, that the ring can
store, the count of available buffers and an array of slots. Netmap
decouples the NIC rings from the network stack, and it allows
user-space applications to communicate with them separately and
for different reasons through the netmap rings. More specifically,
Netmap exploits the speed with which a NIC can transfer packets
between the network and the memory. Synchronization can be
achieved through operating system functions like select() and
poll().

Netmap_if: The netmap_if data structure includes information
related to the interface, like how many rings there are.

The presented data structures offer the following advantages: 1)
reduced per-packet cost, 2) efficient communication between
interfaces and between NIC and network stack and 3) potential
use of multi-queue NICs.

4.3 RF_Ring
PF_Ring [14] is a framework that provides fast packet capturing
and processing. PF_Ring implements zero-copy by avoiding data
copy between the kernel and the user-space. It achieves that with
the use of packet buffers that are found in a memory region
common to the kernel and the users' applications [16]. The

Figure 3: Netmap Data Structure [14]

Seminars FI / IITM SS 2014,
Network Architectures and Services, August 2014

43 doi: 10.2313/NET-2014-08-1_06

packet buffers are preallocated. Due to this packet buffer
schema, it avoids the cost of per-packet memory allocation and
deallocation. The basic elements that compose PF_Ring's
architecture are:

PF_Ring kernel module: It is responsible for copying the
packets to the PF_Ring circular queues.

PF_Ring user-space library: It is through this library that
PF_Ring kernel module is exposed to user-space applications.

PF_Ring aware drivers: Although PF_Ring is NIC independent,
which means that it is not based on specific NICs, it can be used
with specialized drivers too and gain more in terms of
performance.

4.3.1 PF_Ring DNA (Direct NIC Access)
The PF_Ring can be used with a specialized type of device
driver, namely DNA, for achieving even faster processing
without the intervention of CPU and the use of system calls [18].
PF_Ring provides a mapping between the NIC memory and the
user-space memory and permits the explicit communication
between applications and NICs. This can be seen in figure 4. The
packets are transferred between the NIC and the user-space,
without the intervention of either Linux kernel or PF_Ring
module. In this case, there is only the data copying performed by
the NIC Network Process Unit (NPU) via DMA, while the copy
from the kernel packet buffer is omitted. This is referred to, as
full zero-copy [3].

Besides the high speed performance that can be achieved by the
PF_Ring DNA, this approach has two important disadvantages.
First, it entails the risk of misusing memory addresses via the
NIC's DMA engine and thus leading to a possible system crash
[16]. Second, its use is limited to one application at a time. [14]

4.4 INTEL Data Plane Development Kit
The Intel DPDK [7] is a framework that provides fast-packet
processing to applications related to the data plane part, meaning
to those applications that are responsible for forwarding packets
to their applications [21].

The framework supports two models for processing the packets.
It can implement either a run to completion model or a pipeline
one. In the run to completion model, every processing unit is
allocated to one packet, which it completely processes. All the
processing units execute a common application code. Contrary to
this, the processing units of the pipeline execute different
application code, since they perform a distinct task of the packet
processing. A packet is not entirely processed by a single thread,
and it has to be transferred through every processing unit of the
pipeline.

4.4.1 Intel DPDK Architecture
Environment Abstraction Layer (EAL): The framework
provides libraries for particular environments. It also implements
the Environment Abstraction Layer in order not to expose details
concerning each environment to the libraries and to the data
plane applications that will use them. Through the interface
provided by the EAL, applications can gain access to hardware
related resources.

More specifically, the EAL 1) allocates memory, 2) devotes cores
to execution units, 3) communicates with the PCI bus, and 4)
inspects the existence of interrupts.

Figure 4: PF_Ring DNA Architecture [6]

Seminars FI / IITM SS 2014,
Network Architectures and Services, August 2014

44 doi: 10.2313/NET-2014-08-1_06

Core Components: The core components define the libraries
offered by Intel DPDK for achieving fast packet processing.

Table 2. Intel DPDK's core components

library Description

Memory
Manager

Services for memory allocation

Ring
Manager

Defines the Ring data structure for storing the
packets

Memory
Pool

Manager

Allocates portions of memory of specific length
and stores object by using rings

Network
Packet
Buffer

Manages packet buffers

Timer
Manager

Services for scheduling functions

4.4.2 Intel DPDK Fast Packet Processing
Techniques
The Intel DPDK manages to perform packet processing at high
speeds due to the following characteristics:

• The ring data structure, which is implemented as queue,
provides faster access and storage than a linked list. Besides, it
diminishes the time needed for time-consuming bulk operations.

• It uses pre-allocated buffers. In fact, there is only one buffer
for keeping both metadata information and packet data and so
there is only one memory allocation per-packet.

• It enables the cores to have their own cache memory and
limits their accesses to the shared ring of a memory pool, which
can be CPU-intensive.

• It reduces interrupts overhead with the use of the Poll
Mode Drivers.

5. NETSLICE

In this section, NetSlice [10] is presented. Contrary to the
solutions of fast packet processing presented in the previous
section, NetSlice does not take advantage of zero-copy
techniques.

NetSlice is an operating system abstraction that attempts to
provide high-speed packet processing and runs in the user-space.
More specifically, it aims to reconcile the benefits of the packet
processing applications that run in the user-space, i.e fault
isolation and programmability, with the performance of 10
Gbit/s of current NICs. NetSlice is based on the high coupling of
software and hardware components that are related to packet
processing. Moreover, it allows these components to be managed
by the applications and reduces the contention between CPUs.

NetSlice is based on spatial instead of temporal partitioning of
the software and hardware components that are relevant to
packet processing, i.e of the memory, the CPU cores and the

NICs. By performing such partitioning, NetSlice minimizes the
contention of the shared resources.

The elementary notion of the NetSlice is the execution context,
named NetSlice. In fact, there is an array of such execution
contexts, in order to provide high parallel execution, as well as
keeping contention rates low.

In figure 5, an array of NetSlices is depicted. As mentioned
above, NetSlice takes advantage of multi-core and multi-queue
NICs. In order to support parallel execution at the multiple cores,
the multi-queue NICs maintain more than one queue for
transmission and reception. The NetSlice execution context
contains implicitly partitioned resources and the CPU cores and
NICs which are also referred to as explicitly partitioned
resources. More specifically, each NetSlice must have at least
two CPU cores. The CPU cores of a NetSlice execution context
are classified into k-peer, and u-peer, where the in-kernel and
user-mode tasks are executed correspondingly. Only one of these
CPU cores, which has been specified to receive the interrupts of
the queues of the context, is the k-peer CPU and is assigned to
execute the in-kernel network stack. The user-mode task is
executed in parallel on the u-peer CPU. The k-peer and the u-
peer CPU cores of an execution context are defined as tandem
CPU cores, and it is the number of tandem CPU cores that
determines the count of the NetSlices.

NetSlice also determines the path that packets have to follow
from NICs to applications and vice versa. Packets are slightly
processed on the k-peer CPU core, and then they are directed to
the user-space application, where they are processed in a
pipeline.

NetSlice is based on the conventional socket API. More
specifically, it uses the operations write, read and poll for the
distinct data flows of the different NetSlices. NetSlice extends
the API via the ioctl mechanism. One difference of the NetSlice
extended API is the batched system calls that it can support. Due
to the batching, NetSlice achieves a reduced number of system
calls, and thus minimizes the delays of system calls. Batching
results also in a reduction of the overheads that per packet
processing poses.

NetSlice does not exploit the advantages of zero-copy techniques,
and it does copy the packets from kernel to the user-space. It is
estimated that zero-copy technique could indeed further

Figure 5: Array of NetSlices [10]

Seminars FI / IITM SS 2014,
Network Architectures and Services, August 2014

45 doi: 10.2313/NET-2014-08-1_06

ameliorate the performance of NetSlice. However, it is not
implemented in the framework, since it would restrict portability.

6. PACKET PROCESSING WITH GPUs
6.1 GPU
The architecture of the Graphical Processing Units with the
hundreds or thousands of cores, have resulted in their use in
other applications too, except their primary use in graphics
rendering [8, 4]. Highly parallel applications can take advantage
of the ample computation cycles and the ample memory
bandwidth of GPUs, higher than that of CPUs, which enables
the access to different data sets [8]. Among the applications that
can be benefited from the highly parallel computing of GPUs are
applications related to packet processing tasks.

6.1.1 GPU Overview
Due to the numerous cores that they possess, modern GPUs have
gained a massively parallel processing power [23]. A GPU has a
device memory, which is explicitly accessed by the GPU.
Implicit access of the host memory can be achieved through
DMA or through the Peripheral Component Interconnect
Express (PCIe) bus. The PCIe bus is also necessary for the
communication between GPU and the corresponding host CPU.
GPUs are based on a SIMT (Single Instruction, Multiple Thread)
execution model. According to this, many cores have a common
program counter and threads are executed in parallel.

6.1.2 GPU Benefits in packet processing

GPUs provide high thread-level parallelism, while a CPU is
organized in a way that increases the instruction-level
parallelism. As a consequence, a GPU, contrary to a CPU
achieves to minimize the memory access latency by executing a
considerable number of threads.
The significant memory bandwidth of the GPU, can be used for
memory-intensive tasks. This can be very beneficial particularly
in cases where the CPU' s memory bandwidth is used for packet
I/O. Similarly, the processing power of the GPU can be used for
computing-intensive operations which run on software routers
and thus overcome the bottleneck posed by the CPU.

6.2 PacketShader
PacketShader [4] constitutes a user-space framework for fast-
packet processing that takes advantage of the GPU
characteristics. What increases the speed of the PacketShader is,
except the GPU computing power, the optimized packet I/O
engine which achieves the performance of 10Gbit/s due to
pipelining and batching.

6.2.1 PacketShader Architecture

The architecture of the PacketShader is depicted in the figure 6.
Its more important components are analyzed below:

Packet I/O Engine: PacketShader does not use the per-packet
buffer allocation scheme; it develops a new one, namely the huge
packet buffer. According to the huge packet buffer scheme, the
device drivers allocate one huge buffer for the metadata and
another one for the real packet data. This optimized buffer
allocation scheme offers two advantages. First, it does not result
in CPU overhead as the per-packet buffer allocation does.
Second, it reduces per-packet DMA mapping.

GPU Acceleration framework: The nodes in the GPU
acceleration framework are NUMA (Non-uniform memory
access) nodes and are used to increase parallelization. According
to the NUMA model, the time needed to access the memory, is
related to the position of the physical memory. The nodes contain
CPUs with four cores. Three cores are allocated for worker
threads and one for master thread.

Packet processing application: The packet processing
application works with batches of packets instead of individual
packets and is divided into three tasks, which are performed by
the methods Pre-Shader, Post-Shader and Shader.

The Pre-Shader method is executed by a worker thread. It is
responsible for packet classification and for forwarding data to
the master thread. While waiting for the master thread to finish
with the shading, the worker thread is processing the pre-shading
for the next batch of packets.

Then the Shader method is performed. The master thread copies
the data between the GPU device memory and the host memory,
and launches the kernel, i.e the code that is executed by the
GPU. The data copying and the execution of GPU kernel run
concurrently in order to increase GPU performance. This
technique is known as concurrent copy and execution.
Afterwards, it returns the data to the worker thread where the
Post-Shader method takes place. Another technique used in this
step, for better performance, is the gather/scatter, which enables

Figure 6: PacketShader Architecture [4]

Seminars FI / IITM SS 2014,
Network Architectures and Services, August 2014

46 doi: 10.2313/NET-2014-08-1_06

the system to process multiple batches of packets. The master
thread gathers data from the worker threads and after the shading
processing, scatters them in the corresponding worker threads.

During the post-shading, the packets can get modified,
duplicated or discarded and then they are ready for transmission.

6.3 Snap
Snap [23] is another framework that enables fast packet
processing due to both the processing power of GPU and the
modular and flexible architecture of the Click modular router.

6.3.1 Snap Architecture

Snap exploits the extended parallelism that GPU offers. In the
Snap framework, not all elements are offloaded to GPUs. Only
elements that result in bottlenecks are implemented in GPUs.
The other elements are still supported by the CPU as in the Click
architecture. Besides, not all tasks of packet processing are
suitable for highly parallel processing and therefore GPU is not
appropriate for them.

Snap supports two types of elements. The first is the serial
element and refers to Click's conventional elements, meaning
those elements that fit in Snap's architecture without having
undergone any change. The second type of elements is the GPU-
based parallel element that Snap introduces in order to execute
them in the GPU. This new type has, except the GPU code, a
CPU part, which is responsible for receiving batches of packets
and launching the kernel. For the communication of these
elements, which process single packets and batches of packets
respectively, a Batcher and a Debatcher element are needed.
These elements act as adapters. The Batcher gathers individual
packets from a serial element and inputs them in form of batches
in a parallel element. Its opposite element, the Debatcher,
receives batches of packets from a parallel element and transfers
the packets separately to a serial element. By attributing the
adapter functionality to specific elements, Snap allows the
developer to monitor batching and offloading.

Batching is necessary for achieving high performance through
GPU processing. Batching in Snap, as well as in PacketShader,
differs from batching in Click, in that the latter refers to batches
of elements that run on one individual packet, while Snap and
PacketShader's batching signifies that a batch of packets is
processed by the same element.

In order to be able to support this kind of batching, Snap
introduces the functions bpull() and bpush() that perform the
functionality of pull() and push() methods of Click for batches of
packets. These modified functions can be performed by GPU-
based parallel elements.

Similarly to the huge buffer allocation scheme that PachetShader
uses, Snap uses huge buffers too for the batches of packets. In
this way, it reduces per-packet DMA mapping.

As has been mentioned, GPU cores communicate only directly
with the device memory. Therefore, copying packets between
GPU and host memory through the PCIe bus is unavoidable.
Snap diminishes the times that such a copying is necessary and
consequently the memory overhead by implementing two types of

elements, the HostToDeviceMemcpy and the
DeviceToHostMemcpy element and putting them at the edges of
a sequence of parallel elements.

Snap manages to overcome the problem of packet reordering
which has been observed in parallel packet processing. This
happens because it requires that all threads of a parallel element
that processes a batch of packets must have finished before the
batch of packets can be processed by the next parallel element.
For avoiding a potential packet reordering because of the
asynchronous GPU scheduling, a GPUCompletionQueue element
is implemented and placed between the DeviceToHostMemcpy
and the Debatcher.

7. COMPARISON OF THE
FRAMEWORKS

In this section, the solutions presented above are compared. More
specifically a comparative table showing which of the techniques
discussed in the previous sections are implemented by each
framework, is presented.

8. CONCLUSION
Commodity network interface cards can achieve the speed of 10
Gbit/s. As a consequence, the need for performing packet
processing at a corresponding rate with general-purpose
hardware arose. In this paper, a survey of current techniques for
high-speed packet processing was conducted. The survey was
mostly focused on existing frameworks developed for serving fast
packet processing. This survey described and compared several
frameworks which provide fast packet processing. These
frameworks actually manage to do so, by applying proposed
techniques to the network stack and to the way that packet
processing is performed. A newly proposed and emerging
technique, that some recent frameworks have adopted, involves
the incorporation of GPU for processing parts of packet
processing.

9. REFERENCES
[1] Bianco, A., Birke, R., Bolognesi, D., Finochietto, J.,

Galante, G., Mellia, M., Prashant M., and Neri F. 2005.

Figure 7: Techniques per framework

Seminars FI / IITM SS 2014,
Network Architectures and Services, August 2014

47 doi: 10.2313/NET-2014-08-1_06

Click vs. Linux: Two Efficient Open-Source IP Network
Stacks for Software Routers. IEEE High Performance
Switching and Routing Workshop, Hong Kong, May 2005.

[2] Deri, L. 2004. Improving Passive Packet Capture: Beyond
Device Polling. Proceedings of the 4th International System
Administration and Network Engineering Conference
(SANE), 2004.

[3] Garcıa-Dorado, J., Mata, F., Ramos, J., Santiago del Rio, P.,
Moreno, V., and Aracil, J. 2013. High-Performance
Network Traffic Processing Systems Using Commodity
Hardware, in Biersack, E., Data Traffic Monitoring and
Analysis, (Berlin: Springer, 2013).

[4] Han, S., Jang, K., Park, K., and Moon, S., Packetshader: a
gpu-accelerated software router. ACM SIGCOMM
Computer Communication Review 40, 4 (2010), 195–206.

[5] Indiresan, A., Mehra, A., and Shin, K. 1998. Receive
Livelock Elimination via Intelligent Interface Backoff. TCL
Technical Report (Michigan: University of Michigan, 1998).

[6] Ine, J. 2014. PF_RING User Guide, Version 5.6.2, Jan
2014, ntop.org

[7] Intel. 2014. Intel® Data Plane Development Kit (Intel®
DPDK), Programmer’s Guide.

[8] Jang, K., Han, S., Han, Se., Moon, S., and Park K. 2011.
SSLShader: Cheap SSL Acceleration with Commodity
Processors. USENIX NSDI, April 2011.

[9] Kohler, E., Morris, R., Chen, B., Jannotti, J., and Kaashoek,
M. 2000. The Click modular router. ACM Trans.
Comput.Syst., 18(3):263–297, Aug. 2000.

[10] Marian, T., Lee, K., and Weatherspoon, H. 2012. Netslices:
Scalable Multi-Core Packet Processing in User-Space,
ANCS’12, October 29–30, 2012, Austin.

[11] Meyer, T., Wohlfahrt, F., Raumer, D., Wolfinger, B., and
Carle, G. 2013. Measurement and Simulation of High-
Performance Packet Processing in Software Routers. 7th
GI/ITG-Workshop MMBnet, Hamburg, September 2013.

[12] Mogul, J., and Ramakrishnan , K. 1997. Eliminating receive
livelock in an interrupt-driven kernel. ACM Transactions on
Computer Systems (TOCS) 15, 3 (1997), 217–252.

[13] Morris, R., Kohler, E., Jannotti, J., and Kaashoek, M. 1999.
The Click modular router. Operating Systems Review
34(5):217–231, December 1999

[14] NTOP. http://www.ntop.org/products/pf_ring/dna

[15] Rizzo, L. 2012. Revisiting Network I/O APIs: The Netmap
Framework. Communications of the ACM, vol. 55 no. 3,
March 2012.

[16] Rizzo, L. 2012. Netmap: a novel framework for fast packet
I/O. Proceedings of the 2012 USENIX conference on Annual
Technical Conference, USENIX ATC’12, Berkeley, CA,
2012.

[17] Rizzo, L., Carbone, M., and Catalli, G. 2012. Transparent
acceleration of software packet forwarding using netmap.
INFOCOM’12, Orlando, FL, March 2012,
http://info.iet.unipi.it/ luigi/netmap/. ∼

[18] Rizzo, L., Deri, L., and Cardigliano, A. 2012. 10 Gbit/s Line
Rate PacketProcessing Using Commodity Hardware: Survey
and new Proposals. Online: http://luca.ntop.org/10g.pdf
(2012).

[19] Salim, J., Olsson, R., and Kuznetsov, A. 2001. Beyond
Softnet. Proceedings of the 5th Annual Linux Showcase &
Conference - USENIX Association, (Oakland,CA, 2001).

[20] Salim, J. 2005. When NAPI Comes to Town. Linux 2005
Conference.

[21] Schuchard, M., Vasserman, E., Mohaisen A., Kune, D.,
Hopper, N., and Kim, Y. 2011. Losing Control of the
Internet: Using the Data Plane to Attack the Control Plane,
ISOC Network & Distributed System Security Symposium
(NDSS 2011).

[22] Song, J., and Alves-Foss, F. 2012. Performance Review of
Zero Copy Techniques. International Journal of Computer
Science and Security (IJCSS), Volume (6) : Issue (4) : 2012.

[23] Sun, W., and Ricci, R. 2013. Fast and Flexible: Parallel
Packet Processing with GPUs and Click. Proceedings of the
9th ACM/IEEE symposium on Architectures for networking
and communications systems, 2013.

Seminars FI / IITM SS 2014,
Network Architectures and Services, August 2014

48 doi: 10.2313/NET-2014-08-1_06

